
Citation: Karalus, S.; Köpfer, B.;

Guthke, P.; Killinger, S.; Lorenz, E.

Analysing Grid-Level Effects of

Photovoltaic Self-Consumption

Using a Stochastic Bottom-up Model

of Prosumer Systems. Energies 2023,

16, 3059. https://doi.org/10.3390/

en16073059

Academic Editor: Fernando Sánchez

Lasheras

Received: 14 February 2023

Revised: 13 March 2023

Accepted: 15 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Analysing Grid-Level Effects of Photovoltaic Self-Consumption
Using a Stochastic Bottom-up Model of Prosumer Systems †

Steffen Karalus 1,* , Benedikt Köpfer 1, Philipp Guthke 2, Sven Killinger 1,3 and Elke Lorenz 1

1 Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany;
benedikt.koepfer@ise.fraunhofer.de (B.K.); sven.killinger@greenventory.de (S.K.);
elke.lorenz@ise.fraunhofer.de (E.L.)

2 TransnetBW GmbH, Osloer Str. 15–17, 70173 Stuttgart, Germany; p.guthke@transnetbw.de
3 Greenventory GmbH, Georges-Köhler-Allee 302, 79110 Freiburg, Germany
* Correspondence: steffen.karalus@ise.fraunhofer.de
† This paper is an extended version of our paper published in Proceedings of the 11th Solar & Storage Power

System Integration Workshop (SIW 2021), Institution of Engineering and Technology, Berlin, Germany,
28 September 2021; pp. 146–153.

Abstract: Self-consumption of the energy generated by photovoltaics (PV) is playing an increasingly
important role in the power grid. “Prosumer” systems consume part of the produced energy directly
to meet the local demand, which reduces the feed-in into as well as the demand from the grid. In order
to analyse the effects of PV self-consumption in the power grid, we introduce a stochastic bottom-up
model of PV power generation and local consumption in the control area of the German transmission
system operator TransnetBW. We set up a realistic portfolio of more than 100,000 PV/prosumer
systems to generate representative time series of PV generation and consumption as a basis to
derive self-consumption and feed-in. This model allows for the investigation of the time-dependent
behaviour in detail for the full portfolio whereas measurements are presently only available as
aggregated feed-in time series over a nonrepresentative subset of systems. We analyse the variation
of self-consumption with PV generation and consumption at the portfolio level and its seasonal,
weekly and diurnal cycles. Furthermore, we study a scenario of 100% prosumers as a limiting case
for a situation without subsidized feed-in tariffs and local energy storage.

Keywords: solar energy; photovoltaics; PV power forecasting; PV system modelling; PV self-consumption;
grid integration

1. Introduction

The successful integration of a rising share of decentralized electricity generation into
the power grid is crucial for the transition to a sustainable energy system. Grid operators
find themselves faced with an increase of power generation from fluctuating renewable
energy sources accompanied by diversifying strategies of local consumption, short-term
storage and marketing of the generated energy. Therefore, reliable information and models
for the present and for the forecasting of renewable energy feed-in is becoming increasingly
more important for a secure and cost-efficient electricity supply. This study builds on
data records and regulatory aspects for Germany, but the problem setting and, hence,
the findings can be applied generally to any system with decentralized generation and
consumption. Parts of this paper were presented at the 11th Solar & Storage Integration
Workshop and published in the workshop’s proceedings [1].

The generation of electric power by photovoltaics (PV) is primarily determined by the
incoming solar irradiance. Models to describe its changes with fluctuating weather condi-
tions and solar position have been developed in solar energy meteorology [2]. The local
demand has to be considered additionally in order to describe the electricity feed-in since
many PV systems are part of an environment of electricity consumers, e.g., a commercial
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or residential building. These so-called “prosumer” systems simultaneously act as energy
producers and consumers in the power grid. Instead of feeding all the generated electricity
into the grid, energy can be used for self-consumption, i.e., to meet the local demand
directly. The problem of a rising share of prosumers in the power system and its influence
on PV feed-in and consumption profiles was discussed in detail in a recent review article [3].
The effect is also called “behind-the-meter PV”, as the balancing between power generation
and load in many cases takes place before the measurement point and can therefore not be
monitored by utilities or grid operators.

The energy consumption in a power grid is commonly estimated using standard load
profiles, in Germany for consumers with an annual demand up to 100 MWh, while the
PV feed-in is typically assessed independently [4]. PV self-consumption changes load
profiles considerably, which has prompted the idea of developing additional prosumer
load profiles [5]. The share of self-consumption in the total energy generated by PV has
increased continuously over the past years, reaching around 7% in Germany in the year
2018 [6]. It can be expected that with decreasing remuneration by feed-in tariffs (FITs) and
increasing energy purchase prices, self-consumption will become even more attractive in
the very near future [7]. For roof-mounted PV systems in Germany, a growth up to almost
15% in 2025 was predicted [8]. With a targeted development in total installed nominal PV
power from 66.5 GWp in 2022 to 215 GWp in 2030 and to 400 GWp in 2040 in Germany [9],
large amounts of self-consumed energy in absolute numbers are anticipated. Hence, errors
in the estimation of self-consumption have the potential for disruptive effects on the grid.

Detailed information concerning energy generation, consumption and feed-in on vari-
ous aggregation levels in the power grid is required for the trading and billing of balancing
groups, grid load calculations and operational planning. The decision-making involved
is especially challenged by the distributed energy generation and self-consumption [10].
Moreover, in order to accomplish these tasks, grid operators have only limited access to
relevant measurement data. Feed-in time series are measured for a subset of PV systems,
called “SOL systems” here according to the German accounting category for this class
of systems. Generally, these are installations with higher-than-average nominal power,
e.g., on commercial or industrial buildings, and it is expected that the profiles cannot
simply be extrapolated to the full portfolio of PV systems. Furthermore, transmission
system operators (TSOs) can access this data only in terms of transfer time series which are
aggregated over entire distribution grids. Time-resolved measurements of PV generation
or self-consumption are usually not available at all. The total energy generated by an
individual PV system, together with a breakdown into self-consumption and feed-in, can
be obtained from annual meter readings. However, this information is known to be incom-
plete. In Germany, for example, no separate measurements are required for PV systems
with a nominal power less than 10 kWp [6].

The fundamentally different time courses and local balancing of PV generation and
electricity consumption build up a complex system. Independent averaging of generation
and consumption at the grid level, e.g., using standard load profiles, will not adequately
describe actual feed-in and consumption. Instead, an integrated analysis of both is required
in order to understand the behaviour of the system as a whole. Since very little measure-
ment data are available for this task, a detailed bottom-up simulation model comprising
PV power generation and consumption on an individual prosumer level is chosen here
to fill this gap. The approach facilitates a detailed analysis of influencing factors on PV
self-consumption and the identification of suitable parameters in data-driven models as
a basis to improve PV upscaling methods. It furthermore allows for the estimation of
the future effects of expected changes and variable compositions of different prosumer
systems in large portfolios. In order to keep the complexity of different usage strategies
out, additional technologies such as local battery storages, heat pumps or electric cars are
not included in the model at this stage.

In contrast to other approaches of modelling PV self-consumption, the bottom-up
simulation allows for the reproduction of the local balancing of PV generation and con-
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sumption at the individual prosumer level. In this way, the observed mismatch between
PV generation estimates (obtained, e.g., from PV power upscaling) and actually measured
feed-in can be described realistically. In a top-down model, this mismatch has to be es-
timated from an overall perspective on the grid for which currently a good data basis is
missing, as the balancing takes place “behind-the-meter” [11]. The results obtained with the
stochastic bottom-up model accounting for all individual prosumer systems in a portfolio
are thought to better reflect the effects and be suitable to building a basis for the implemen-
tation of data-driven models describing the grid-level effects of PV self-consumption. Such
a model could follow a top-down approach enriched by other influencing factors, such as
the seasonal cycles identified in the bottom-up model.

Other perspectives on PV self-consumption require different modelling approaches.
As the model presented here does not cover energy storage, demand-side management or
other flexibility options, it cannot describe, for instance, the economics of different prosumer
usage strategies. For this, models of single PV prosumers with battery storage under
different optimization targets, such as self-sufficiency vs. cost-efficiency maximization,
have been examined [12], for example. Energy system optimization models (ESOMs) are
used to find globally optimized grid configurations from a top-down perspective [13].
Agent-based models (ABMs), on the other hand, can capture the effects of locally optimized
usage strategies of PV prosumers in a grid [14]. The coupling of ESOMs and ABMs has been
proposed to study the economics of prosumer business models, regulatory frameworks
and cost-efficient energy system design [15]. For the disaggregation of PV generation and
consumption profiles from net demand measurements, methods from game theory have
also been employed [16].

Our novel approach to PV self-consumption modelling and analysis at the portfolio
level is as follows. Based on currently available data records on PV generation, consumption
and feed-in and the characteristics of PV systems and prosumers (Section 2.1), we developed
a realistic bottom-up simulation model system of self-consumption in the control area of
the German TSO TransnetBW (Section 2.2). We validated the prosumer model against
available measurement data and quantified the improvement over a linear reference model
(Section 3). We analysed the overall effect of self-consumption and its change with yearly,
weekly and daily cycles as well as other parameters (Section 4). Furthermore, the expected
differences in behaviour in a 100% prosumers scenario were estimated. In the final section
of this paper, we conclude with a short summary and outlook (Section 5).

2. Methodology
2.1. Data Sets

Several data sets of PV/prosumer system characteristics and measurements have been
used to determine the necessary modelling parameters and for validation. All measurement
data used here cover the control area of the German TSO TransnetBW for the full year of
2018 which we used as the modelling period throughout this study.

PV system master data: All renewable energy systems in remuneration under the German
Renewable Energy Sources Act (“Erneuerbare-Energien-Gesetz” EEG) are listed in the EEG
master data record. It comprises basic system characteristics such as the nominal power,
the date of commissioning, the address and whether time-resolved feed-in measurements
are taken. In order to cover the state of the PV portfolio in 2018, the record used here is the
version of 18 December 2018. From 31 January 2019 on, the EEG master data was integrated
into the Marktstammdatenregister (MaStR) [17], including additional information, e.g., on
building usage, which has been used to set-up the prosumer model here.
Annual meter readings: Regular power meter readings provide annual energy totals for
each PV system. The total energy generation is additionally broken down into feed-in
under the EEG FIT, self-consumption and direct marketing.
Transfer time series EUZ: Feed-in time series are recorded on a distribution grid level for
the data transfer between the distribution system operator (DSO) and the TSO (in German
“Einspeiseüberführungszeitreihen” EUZ). They contain the time course of the PV feed-in
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under the EEG FIT in a 15 min resolution. For each distribution grid, two time series
subsume the “SOL systems” which are measured on the one hand and the “SOT systems”
which are derived from estimated feed-in profiles on the other hand. As the latter are not
based on measurements, they were not be used in this study.

2.2. Model System

Based on the PV system master data, a stochastic bottom-up model for PV self-
consumption building on the combination of existing approaches to describe PV generation
and electricity consumption has been developed. This section describes the modelling steps
comprising metadata enrichment, PV generation and consumption simulations as well as
their aggregation to self-consumption and feed-in in a portfolio.

As the available metadata neither provide full technical information on each PV system
nor the details of individual building usages, this missing data are modelled stochasti-
cally. It should be emphasised here that although statistically representative ensembles
of PV/prosumer systems—and, hence, time series—are generated with this stochastic
approach, substantial deviations from the actual power generation and consumption at the
individual systems are likely to be observed. However, in aggregating over a sufficiently
large portfolio, e.g., at the distribution grid level, a realistic description of the actual power
time series can be expected.

2.2.1. System Locations and Building Classification

Knowledge of the location of each PV system is necessary to determine the solar
irradiance and to classify the usage category of the local power system into which it is
integrated. First, the addresses provided by the system master data have been used for
geo-coding, i.e., to determine the geo-coordinates of each system, by an address search in
the OpenStreetMap database [18]. For the solar irradiance modelling with satellite data,
approximate locations based on incomplete addresses (up to the street name or even postal
code level) are usually sufficient to acquire reasonable results. For 329,494 PV systems, such
approximate locations were determined and included in the PV generation model. For the
consumption modelling, on the other hand, a precise building to which a PV system is
attached to has to be identified in order to determine its usage category. As a full address
(including the house number) is provided in the system master data for only 119,152 PV
systems in the whole control area, the consumption model was restricted to this subset.

For the different consumers, we distinguish three main categories: ground-mounted
PV systems (without consumption), residential buildings and commercial buildings. The
MaStR record [17] provides a rough classification of building usage for about 25% of the
selected PV systems. Further information was retrieved from OpenStreetMap and other
publicly available databases. Since for some categories like transportation, no reasonable
consumption profiles could be generated with our tools, these buildings were also removed
from consideration. Altogether 118,650 out of the 329,510 PV systems could be assigned to a
usage category and, hence, were included in the model. These contain 96 ground-mounted
systems, 98,066 residential buildings and 20,488 nonresidential buildings.

2.2.2. Generation Model

In this section, the PV generation model is briefly summarized. A more detailed de-
scription was published earlier [19]. The modelling of PV generation is based on PV power
simulations with the software ZENIT [20] and requires solar irradiance and ambient tempera-
ture as input as well as information on technical and environmental PV system parameters.

Solar Irradiance and Temperature

Irradiances are calculated from meteorological satellite image data using the Heliosat
method [21]. Images are provided by EUMETSAT Meteosat Second Generation (MSG)
satellites in a temporal resolution of 15 min. The high-resolution visible (HRV) broadband
channel is used as input to calculate 15 min averages of the global horizontal irradiance
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(GHI) for the entire control area of TransnetBW in a spatial resolution of approximately
1.3 km × 2.2 km. The irradiance on the tilted PV modules is derived by splitting the
GHI into its diffuse and direct components using the DIRINT model [22] followed by a
transposition to plane-of-array irradiance [23]. Ambient temperatures are extracted from
high-resolution deterministic weather forecasts by the European Centre for Medium-Range
Weather Forecasts (ECMWF).

PV System Classification and Simulation Parameters

The system parameters for the PV simulation are chosen based on the information
provided by the PV system master data record. To this end, the systems are classified
into 5 nominal power categories with limits of 10, 30, 100 and 1000 kWp and two age
categories by date of commissioning before and after 1 January 2010. For the resulting
10 classes of systems, assumptions on the system environment and technologies are made
based on long-standing experience with yield assessments and monitoring of PV systems.
An overview of the different PV simulation parameters is given in Table 1.

Table 1. Technical and environmental parameters used for the PV power simulation with the range
of values for the different classes of PV systems.

Ambient temperature increase in settlements up to 5 K
Irradiance-induced module temperature increase 25–35 K at 1000 W/m2

Mean shading horizons at 3◦–7◦ solar elevation
Internal shading losses 1–2% for systems above 100 kWp
Degradation losses 0.25% per year of operation
String, medium, central inverters typical models built in 2005/2015
Medium-voltage transformers for systems above 100 kWp

PV Module Orientations

The module orientation is particularly important for a realistic modelling of PV genera-
tion. To achieve a realistic representation, a stochastic method based on reference data from
real PV systems is deployed here. Typical orientations of PV systems in Germany were
investigated in various studies [24,25]. The classification into the above-mentioned nominal
power categories reflects typical installation surfaces (pitched roofs, flat roofs, ground) and,
thus, the constraints for module orientations [26]. A reference data set of about 35,000 PV
systems in Germany is used here for orientation modelling, including information on
location, orientation and nominal power [25]. In a stochastic attribution, to each PV system
in the simulation the orientation angles of a randomly chosen system in the same nominal
power category from the reference data set are assigned. In this way, the joint distribution
of both angles is reproduced. For the 212 PV systems with a nominal power above 1 MWp
only very few reference systems are available. As the contribution of those systems to the
total PV power generation is particularly large, the orientation was determined manually
on the basis of satellite images when possible. Tilt and azimuth angles that could not
be determined in this way are then drawn independently from known distributions [26].
Figure 1 shows the marginal distributions of both angles for all power categories.
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Figure 1. Distributions of azimuth (left) and tilt angles (right) of the PV systems to be simulated
(in blue) and reference systems (in orange) by nominal power classes. In the legend, both the
numbers N of the sampled PV systems to be simulated and the reference systems for each class
are given. The tilt angles for smaller systems often take high values (steeper roof inclinations of
smaller residential buildings), low values for medium-sized systems (flatter roof inclination of large
commercial buildings and rack mounting on flat roofs) and intermediate values for large systems
(optimised for maximum energy yield). The azimuth angles are increasingly concentrated to the
south as the nominal power increases (transition from available roof orientations to yield-optimised
south orientations).

Postprocessing to Account for Additional Losses

A realistic representation of a portfolio has to rely on observations of the actual
technical and environmental conditions of real PV systems. An intrinsic problem rises
from the fact that these conditions are examined only for PV systems subject to quality
monitoring which, consequently, results in higher-than-average performance. The causes
of lower performance in the vast majority of PV systems are known: extensive shading,
soiling, technical defects and other types of losses. All of these can, in principle, be modelled
precisely, but representative measurements to calibrate to are inherently missing. For this
reason, additional losses are described here with a linear scaling based on the distribution of
measured specific yields (energy totals per nominal power). For each system, the simulated
PV output power is scaled by an individual factor such that in each class, the spread of the
simulated specific yields matches the corresponding spread in the annual meter readings
data set. All PV generation time series are sampled down to the hourly resolution of the
consumption model described in the following section.
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2.2.3. Consumption Model

As consumption profiles strongly depend on the usage categories, the modelling steps
here are completely different for residential and nonresidential buildings.

Residential Sector

The software synPRO [27] is used to generate synthetic load profiles for residential
buildings. It employs a stochastic bottom-up approach of simulating the consumption on a
device level and subsequent aggregation. For each dwelling, the number of inhabitants is
estimated from the building area in OpenStreetMap and a socioeconomic status is assigned
according to the distribution in the Zensus 2011 data [28]. A stock of devices is selected
matching the inhabitants and their socioeconomic status. For each device, a load profile is
generated depending on the type of device as well as the intensity and duration of usage.
The underlying probabilities are derived from HETUS [29]. By summation over all devices,
electrical load profiles are created for 420 different configurations of households.

Nonresidential Sector

For nonresidential buildings, a simulation tool developed in the project synGHD [30]
is used to model consumption. In this project, energy consumption in the sectors commerce,
trade and service was investigated. LSTM (long short-term memory) neural networks were
trained on a data collection of 485 electrical load profiles. These load profiles were further
subdivided into 18 usage categories. As features, hour of the day, day of the week, informa-
tion about holidays and weather information from ERA 5 reanalysis data [31] are chosen.
Due to strongly facility-dependent energy consumption in the sectors commerce, trade and
service, the results have to be scaled to a realistic annual demand. As industrial energy
consumption was not considered in the synGHD project, industry is treated as commerce.

For scaling, typical electricity consumption in the region of interest has to be identified.
As the control area of TransnetBW closely matches that of the federal state of Baden–
Württemberg, information about the companies has been taken from the official business
register of the state office for statistics [32]. This provides the number of companies and
the number of employees subjected to social insurance contributions in the individual
branches of the economy. From the official energy balance for Baden–Württemberg [33],
information about the energy demand in the different categories was derived. Since the
energy consumption for the sector commerce, trade and service, the transport sector and
the residential sector is only available as aggregate over the respective sector, the energy
consumption was split according to typical energy consumption per employee as pub-
lished by the AG Energiebilanzen [34]. After a scaling to the demand from the official
energy balance, this gives an annual average demand per company in the specific eco-
nomic branch. As electricity consumption in the agricultural sector cannot be derived the
way described above, typical demands as published by the Bayerische Landesanstalt für
Landwirtschaft [35] are used.

Modelling Consumption

For reasons of computational effort, the consumption time series are generated in an
hourly time resolution. The residential sector is modelled by a cluster approach. For the
420 configurations of households, up to 200 load profiles per type are generated. From these
clusters, load profiles are drawn randomly. The load profiles for the nonresidential sector
are generated for each building individually with the determined usage category and
total consumption.

In Figure 2, the mean electric load for the different days of the week in the model
are visualized. In the model, nonresidential load is considerably higher than residential
load. It exhibits strong differences between workdays and weekends and remains almost
at the base level for the whole of Sunday. In contrast, residential buildings have less
variation in the course of week, with loads being slightly higher on weekends. The overall
load, as a mixture of both, is dominated by the nonresidential part in the morning and
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by the residential part in the afternoon and evening. On Sundays, the total load basically
resembles the residential load in its time course.
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Figure 2. Mean electric load on workdays, Saturdays and Sundays for residential buildings, nonresi-
dential buildings and the whole consumption model.

2.2.4. Self-Consumption Model

After the simulation of electric power time series of PV generation P(i)
PV and consump-

tion P(i)
Load for each prosumer system i, the self-consumption and feed-in time series can

be calculated as follows. Without energy storage devices or demand-side management,
prosumers do not, in principle, have any abilities to adapt either their electricity generation
or consumption. Hence, they are considered as “passive” here using at any time as much
as possible of the PV generation power to meet the local demand. Any excess or shortage
in the local generation is then balanced via the power grid.

As meeting the local demand is prioritized, the self-consumption P(i)
SC at any time step

is the minimum of current PV generation and consumption,

P(i)
SC = min

{
P(i)

PV, P(i)
Load

}
. (1)

The surplus of the generated power is transferred to the grid as feed-in P(i)
FI ,

P(i)
FI = P(i)

PV − P(i)
SC = max

{
P(i)

PV − P(i)
Load, 0

}
. (2)

For PV systems not acting as prosumers, self-consumption is zero (P(i)
SC = 0), and hence, PV

generation equals feed-in (P(i)
FI = P(i)

PV).
Aggregated time series of PV generation, load, feed-in and self-consumption over a

portfolio are obtained straightforwardly by summing over all individual systems,

PPV = ∑
i

P(i)
PV , accordingly for PLoad, PFI, PSC . (3)

Energy yields over days, months or years are computed as integrals over the respective
time interval for all power quantities, EPV =

∫
PPV dt and accordingly for ELoad, EFI, ESC.
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For the comparison of portfolios differing in size and composition, a normalization of
powers and energy yields by the total nominal PV power Pnom = ∑i P(i)

nom in the portfolio
is used, giving the specific powers,

P̂PV = PPV/Pnom , accordingly for P̂Load, P̂FI, P̂SC , (4)

and specific yields ÊPV = EPV/Pnom, respectively.
Self-consumption rates can then be derived as shares of self-consumption of PV

generation on an annual basis or time-resolved as follows:

ESC/EPV = ÊSC/ÊPV , PSC/PPV = P̂SC/P̂PV . (5)

3. Model Validation

As described in Section 2.1, the measurement data available for a rigorous validation
are very limited. We completed two steps of validation, comparing the simulation results
first with the annual meter readings and second with the transfer time series EUZ. The dif-
ferent data sets do not provide fully coherent information about which PV systems actually
perform self-consumption. Some PV systems do not report any self-consumed energy in
the annual meter readings although they are registered as “designed for self-consumption”
in the system master data record and vice versa. As the regulations of the German Re-
newable Energy Act EEG do not require reporting self-consumption for PV systems up to
10 kWp, this is not necessarily an error in the data. Therefore, the set of prosumers in the
model portfolio was selected differently for the two validation steps according to the best
information available.

3.1. Comparison with Annual Meter Readings

The structure of the full model portfolio with 118,650 PV systems is presented in Table 2.
For the first step of validation, annual totals of simulated PV generation, feed-in, and self-
consumption were compared to the corresponding meter readings which are available for
almost 117 thousand PV systems in the portfolio. Here, it is assumed, that only the PV
systems with reported self-consumption (Table 2, right column) are prosumers. Table 3
shows the results. The model slightly overestimates the reported annual PV generation
(3.5%) but underestimates self-consumption by 10.7%. There are several explanations for
this deviation. First, the model does not consider battery storages and load management,
which are often designed to increase self-consumption capabilities. Second, especially in
the nonresidential case, consumption profiles are very individual and not straightforward
to identify. Particularly industry, the sector with the potentially largest consumption,
is not considered as a separate usage category. Furthermore, due to data availability, no
postprocessing calibration is performed on the consumption model. The resulting modelled
self-consumption rate is 7.2%, slightly below the 8.3% from the meter readings. Finally, this
results in a deviation of less than 5% of the modelled PV feed-in compared to the meter
readings. This is overall an acceptable agreement which indicates that the prosumer model
can quantitatively represent different factors contributing to PV power feed-in.

Table 2. Composition of the full model portfolio with the number of PV systems (total nominal power
in parentheses) by type of installation and information on self-consumption capability.

All PV Systems Systems Designed for
Self-Consumption

Systems with Reported
Self-Consumption

All installations 118,650 (1755 MWp) 41,033 (566 MWp) 22,705 (405 MWp)
Residential 98,066 (952 MWp) 35,511 (334 MWp) 18,542 (211 MWp)

Nonresidential 20,488 (791 MWp) 5493 (231 MWp) 4148 (193 MWp)
Ground mounted 96 (12 MWp) 29 (1 MWp) 15 (1 MWp)
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Table 3. Comparison of the annual meter readings with the corresponding simulated energy sums.
Here, feed-in integrates feed-in both under FIT and for direct marketing. The relative deviation is the
difference between simulation and the reading normalized by the reading value.

Meter Readings Simulation Relative Deviation

PV generation 1667 GWh 1725 GWh +3.5%
Feed-in 1528 GWh 1601 GWh +4.8%

Self-consumption 139 GWh 124 GWh −10.7%
Self-consumption rate 8.3% 7.2% −13.3%

3.2. Comparison with Transfer Time Series

In a second validation step, the time series generated by the prosumer model were
compared to the SOL transfer time series EUZ. This represents the part of the PV systems
which are measured. Those systems for which the feed-in is estimated based on feed-in
profiles by the grid operators (SOT systems) were not considered for validation. It is worth
noting at this point that all metadata records and measurements used here were collected
under real operating conditions for regulatory and market processes and not to provide an
exact basis for scientific evaluations. Furthermore, as described above, our model portfolio
does not include all systems. Therefore, a subset of the EUZ time series has to be selected
in order to minimize irregularities in and between the different data sets. The validation is
in this part restricted to distribution grids for which the following quality criteria apply:

• The difference between the annual feed-in energy integrated over the EUZ and the
meter reading sum over all systems is less than 5%.

• The share of systems (in number and nominal power) for which meter readings are
available is at least 90%.

• The EUZ contains data for the whole year, and no irregularities like jumps or data
gaps are observed.

• There are at least 10 systems of the distribution grid in the model portfolio.
• The model portfolio contains at least 50% of the SOL systems in the distribution grid.

This quality check selects 34 out of the 157 distribution grids for the validation of
time series. These 34 distribution grids contain, according to the system master data,
2711 SOL systems with 369.5 MWp nominal power out of which the prosumer model
covers 1761 systems with 225.1 MWp nominal power. Table 4 summarizes the composition
of this portfolio.

Table 4. Composition of the SOL systems portfolio for time series validation with the number
of PV systems (total nominal power in parentheses) by type of installation and information on
self-consumption capability.

PV Systems Designed for SC

All installations 1761 (225 MWp) 610 (69 MWp)
Residential 360 (37 MWp) 151 (13 MWp)

Nonresidential 1392 (184 MWp) 459 (56 MWp)
Ground mounted 9 (4 MWp) 0

Here, unlike the validation against meter readings, all PV systems registered as “de-
signed for self-consumption” are treated as prosumers. As the model only covers about
65% of the SOL systems in the validation set, the resulting time series have to be rescaled for
comparison with the measurement data (SOL EUZ). The simulated time series are scaled
by a global factor to match the total energy of the corresponding transfer time series.

In order to analyse the benefit of introducing the detailed prosumer model, a compar-
ative validation with a linear reference model was used. The linear modelling approach
is grounded on the idea that the only available measurement data on PV generation, self-
consumption and feed-in representative for the whole grid are annual energy totals. As the
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basic time-resolved estimates for self-consumption based on this information, PV genera-
tion time series are scaled linearly by the annual self-consumption or feed-in rates on an
individual system or portfolio level. Here, the total feed-in energy is calculated directly
from the integral over the transfer time series EUZ. The PV generation time series are then
scaled down to the feed-in time series such that the total EUZ feed-in energy is reached. In
this way, the linear “PV-scaled” model for feed-in profiles is constructed as a basic reference
to compare the results of the prosumer model.

A scatter plot of the modelled PV power feed-in over the EUZ (Figure 3) illustrates an
improved concordance of the prosumer model with the EUZ feed-in compared to the “PV-
scaled” reference model. The latter exhibits a notable underestimation for high values of PV
power feed-in, which will be further discussed in Section 4. In contrast, the prosumer model
shows a better agreement with the EUZ over the full range of the specific feed-in values.

0.0 0.2 0.4 0.6 0.8

P̂EUZ

0.0

0.2

0.4

0.6

0.8

P̂
F

I

PV-scaled model

Prosumer model

Figure 3. Scatter plot of the aggregated specific feed-in as modelled time series vs. measured transfer
time series EUZ for the “PV-scaled” reference model and the prosumer model.

For a quantitative assessment, the root mean square error (RMSE) of the absolute
feed-in to the EUZ is calculated as follows:

RMSE =

√
1
T ∑

t
[PFI(t)− PEUZ(t)]

2 , (6)

where the time t runs over all day-time values with positive simulated PV power. These are
the times for which at least one modelled PV system is generating, i.e., the sun is above the
horizon. The number of these events is denoted by T. A relative RMSE (normalized by the
total nominal PV power Pnom) of 1.98% for the “PV-scaled” reference model and 1.89% for
the prosumer model is found (see Table 5). This means that the detailed self-consumption
modelling yields an improvement of the RMSE as follows:

RMSEref − RMSEpro

RMSEref
= 4.43% , (7)

where RMSEref/RMSEpro denotes the RMSE of the reference/prosumer model to the EUZ.

Table 5. RMSE between the aggregated modelled feed-in and the transfer time series EUZ for the
reference “PV-scaled” and the simulated prosumer model (absolute and relative to the total nominal
power) and relative improvement (Equation (7)).

Reference Model Prosumer Model Relative Improvement

Absolute 7.31 MW 6.99 MW 4.43%
Relative 1.98% 1.89% 4.43%
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Figure 4 depicts the modelled PV power feed-in to the EUZ in a so-called “type week”.
The average daily profiles of the feed-in and load are displayed separately for working
days (Monday to Friday), Saturdays and Sundays. The difference in feed-in between the
model and the EUZ is shown in the bottom panel. As PV generation evidently does not
depend on the day of the week, the profiles for the different type days are very similar in
the “PV-scaled” model. In contrast, consumption varies over the course of the week. This
is particularly visible here due to the large share of nonresidential prosumers in the SOL
validation portfolio (see Table 4). The significantly lower consumption on weekends results
in a higher PV power feed-in which is captured by the prosumer model. Compared to the
transfer time series EUZ a slight overestimation on weekends is observed in the prosumer
model. This effect is, however, smaller in magnitude than the underestimation observed
in the “PV-scaled” model. On workdays, the prosumer model shows significantly smaller
deviations from the transfer time series EUZ than does the “PV-scaled” model by taking
into account higher consumption during morning hours.
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0.25
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PV-scaled model Prosumer model EUZ Load

Mo-Fr Sat Sun

−0.01
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I
−
P̂

E
U

Z

Figure 4. (Top) Type week of specific feed-in in the “PV-scaled” reference model and the prosumer
model in comparison with the transfer time series EUZ and the specific load. (Bottom) Specific
feed-in difference between the two models and the EUZ in the type weeks above.

In summary, the evaluations confirmed that the prosumer model is capable of repre-
senting temporal patterns of measured PV power feed-in. In the studied situation with a
small self-consumption rate of less than 10% on average, the improvement by inclusion of
realistic consumption in the model is not very large but clearly visible.

4. Model Results and Discussion

The analysis of self-consumption was carried out on the full prosumer model system
(see Table 2). As before, all PV systems registered as “designed for self-consumption” were
chosen as prosumers, for all other systems full feed-in was assumed. The full model portfo-
lio was studied in comparison with the SOL subportfolio comprising all PV systems with
time-resolved measurements. This provides some insight into how far the measurement-
based knowledge about the SOL systems can be transferred to the full grid and which
further effects emerge. We analysed the self-consumption profiles according to the various
parameters affecting PV generation and consumption.

4.1. Variations of Self-Consumption over the Year

Electricity demand as well as PV generation change during the course of the year,
affecting total and relative self-consumption. This seasonal effect is displayed in Figure 5
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for the SOL subportfolio and for the full portfolio. The top panel shows monthly values
of PV generation split into feed-in and self-consumption; in the bottom panel, the cor-
responding self-consumption rates are displayed. In each month, the SOL subportfolio
exhibits higher self-consumption than does the full portfolio. Averaged of the whole year,
self-consumption rates amount to 12% for the SOL subportfolio compared to 9.5% for the
full portfolio. This can be attributed to the larger share of nonresidential buildings in the
SOL subportfolio where the higher electricity demand (see Figure 2) allows for potentially
higher self-consumption.
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Figure 5. Course of self-consumption over the year. (Top) Monthly average of daily specific PV genera-
tion split into feed-in (dark colours) and self-consumption (light colours) for the SOL (green)/complete
model (orange) portfolios. (Bottom) Corresponding self-consumption rates per month.

Higher self-consumption rates during the winter compared to the summer months are
observed in both portfolios, reaching more than 17% in the month of December with the least
sunlight and, hence, lowest PV generation. In the full portfolio, this is almost twice as high as
in the summer months with high PV generation. The seasonal variation is less distinct in the
SOL subportfolio where self-consumption rates during summer still reach 10–12%.

4.2. Variation of Self-Consumption with Different Parameters

For insight into the most relevant factors influencing the self-consumption in a port-
folio, we examined how its time course correlates with other quantities. This could help
identify suitable quantities for a parameterized model of self-consumption based on mea-
surement data.

In Figure 6, it can be seen how the total self-consumption relates to the correspond-
ing PV generation at each time step. With higher PV generation, higher values of self-
consumption are observed. For the SOL subportfolio, this increase splits into three distinct
branches of higher, medium and lower self-consumption for workdays, Saturdays and
Sundays, respectively. Additionally, the amount of self-consumption varies with the time
of the day inside each branch. At a given level of PV generation, self-consumption is higher
in the morning on workdays and Saturdays, whereas on Sundays, self-consumption is
higher in the afternoon. In the full model portfolio, the same branching is observed but the
differentiation between the days of the week is less pronounced. The trend towards higher
self-consumption in the afternoon on weekends appears even stronger, while on workdays,
the time of the day appears to have little influence. These effects can be expected from the
different load profiles (Figure 2), keeping in mind that the SOL subportfolio is dominated
by the nonresidentials whereas the situation is more balanced in the full model portfolio.
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Figure 6. Dependency of self-consumption on PV generation and time of day for the SOL (left) and
the complete model (right) portfolios. The scatter symbols show the specific self-consumption P̂SC

and PV generation P̂PV for each time step separated into workdays (blue circles), Saturdays (orange
squares) and Sundays (green diamonds). The colours are shaded by the time of the day from morning
(light) to evening (dark). The black lines indicate the relation between self-consumption and PV
generation as predicted by the linear “PV-scaled” reference model based on the modelled overall
self-consumption rates.

The increase of the total self-consumption with PV generation in both portfolios
exhibits a clearly nonlinear behaviour with a decreasing slope towards higher values of PV
generation. An intuitive explanation of this is that for an increasing number of prosumers,
the local PV generation exceeds the local demand, prohibiting a further increase of self-
consumption at this site. As a result, the “PV-scaled” reference model indicated by the linear
relation (black line) in Figure 6 will generally underestimate self-consumption in situations
of low PV generation and overestimate in situations of high PV generation. This was also
observable in the validation of both models against measured feed-in (see Figure 3).

From these observations, we draw three central conclusions. First, the assumption
that the two portfolios behave differently is strengthened. A feed-in estimate based on the
SOL subportfolio only will not adequately reproduce the effects of self-consumption in the
full model portfolio. Second, self-consumption varies significantly with the courses of day
and week, particularly in the SOL subportfolio. Hence, the day of the week and the time
of the day might be relevant quantities for a parametrization of a refined model for PV
self-consumption. Third, in a portfolio of PV/prosumer systems, the total self-consumption
does not scale linearly with the total PV generation. An appropriate model capturing this
nonlinear relation is very likely to generate more satisfactory estimates of self-consumption
and feed-in.

Another natural candidate for the parametrization of a self-consumption model is the
total electricity demand of all buildings with PV systems in the grid. In Figure 7, the same
data as in Figure 6 are shown with different colouring. Instead of day and time, the colour
spectrum represents the corresponding specific load P̂Load. An overall positive correlation
between self-consumption and load is observed for any given value of PV generation.
The separation into workdays and weekends appears implicit in this parameter, as the
latter exhibit lower load values. Similarly, the observed daily cycles in self-consumption
seem to be strongly related to different load levels.
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Figure 7. Dependency of self-consumption on PV generation and load for the SOL (left) and the
complete model (right) portfolios. The scatter symbols show the specific self-consumption P̂SC and
PV generation P̂PV for each time step coloured by the corresponding specific load P̂Load. The black
lines indicate the relation between self-consumption and PV generation as predicted by the linear
“PV-scaled” reference model based on the modelled overall self-consumption rates.

From the definition of self-consumption on an individual system level (Equation (1)),
an increase of the total self-consumption with the total PV generation and load, as observed
above, can be expected. The overall behaviour on a grid level is, however, not as trivial
as the distribution of the total energy generation among the individual PV systems, and
the distribution of the total load among the individual consumers and the share of pro-
sumers in the grid induce strong nonlinearities. As consequence, parameters relating the
total self-consumption to the total PV generation or the total demand necessarily have to
be calibrated to the specific PV/prosumer system portfolio.

Post-FIT Scenario

It can be expected that with increasing electricity consumption costs and decreasing FITs,
self-consumption will become increasingly attractive. In an extreme case, all PV systems
associated with a consumer might act as prosumers. If the prosumer systems in the model
portfolio form a representative subset of the full PV system portfolio, it can be expected that
the overall self-consumption rate increases with the ratio of installed nominal powers (of all PV
systems to the systems designed for self-consumption today, see Table 2) from 9.5% to 29.5%.
In a “post-FIT” scenario, we apply the 100% prosumer situation to the model system and
examine the effects on the net self-consumption rates. As we keep the PV portfolio constant
and do not consider additional technologies like battery storage here, this is not expected
to resemble the future reality but rather highlight the possible effects in a certain boundary
case. For the simulation of the full system, we find a self-consumption rate of 26.2%, which is
in good agreement with the estimate. For the SOL subportfolio, the situation is completely
different. The scaling by the installed nominal powers yields a self-consumption rate of 38.0%,
while in the simulation, we find 20.4%, indicating that the SOL systems currently designed for
self-consumption are not a representative subset of all SOL systems.

Figure 8 compares the time-dependent self-consumption rate P̂SC/P̂PV, for the present
state and the post-FIT scenario. The observed overall shape of decreasing self-consumption
rates with increasing PV generation is similar in either scenario and portfolio. In the “present”
scenario, the self-consumption rate decreases from slightly below 40% to a value between 10 and
20% with increasing PV generation in both portfolios, the SOL systems and the full model. In the
post-FIT scenario, almost 100% of the produced energy is taken up by self-consumption at low
PV generation. With increasing PV generation, the self-consumption rate initially drops faster in
the SOL subportfolio than in the full model but reaches a value slightly below 20% at maximum
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PV generation in both portfolios. In order to quantify the change in self-consumption behaviour,
we also show the ratio Q of the self-consumption rate in the present to the post-FIT scenario as
bin averages over the full range of PV generation. Compared to the simple estimate based on
the nominal PV power mentioned above, Q would be the real scaling factor to predict the future
self-consumption from the present state. 〈Q〉 decreases from 2.75 for low to around 1.5 for high
PV generation values in the SOL portfolio. In the full model, the trend is the same, but the
variation is much smaller with all values between 2.5 and 3. This confirms the observation that
the linear scaling of self-consumption rates (with the ratio of 3.1 of installed nominal powers) is
a viable approach in the full model portfolio but not in the SOL subportfolio. Again, we can
conclude that the measurement-based knowledge of the behaviour of the SOL subportfolio
cannot simply be extrapolated to the full portfolio.
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Figure 8. Dependency of the self-consumption rate on PV generation in a post-FIT scenario of 100%
prosumer systems compared with the present share for the SOL (left panel) and the complete model
(right panel) portfolios. The scatter dots show the instantaneous share of self-consumption on PV
generation P̂SC/P̂PV (left scale) for the present (blue) and post-FIT scenario (orange). The black lines
depict the average ratio Q between future and present self-consumption shares in the indicated
intervals (right scale). For a better visualisation, only data for working days are shown here.

5. Conclusions

In this paper, we introduced a stochastic bottom-up simulation model of PV generation,
self-consumption and feed-in for a portfolio of 118,650 PV prosumers. Although statistic
deviations at the individual system level are expected, this provides a realistic represen-
tation of the situation in a German transmission system and, thus, a valid description at
higher levels of aggregation can be assumed. The model builds on established methods for
satellite-derived solar irradiance calculations and PV simulations combined with synthetic
load profile generation for households and commercial buildings. In the model validation,
a deviation of less than 5% to annual meter readings was reached. Furthermore, a relative
RMSE of less than 2% (of the nominal power) was obtained in comparison with the ag-
gregated feed-in time series at the distribution grid level. Compared to a linear reference
model in which the time dependence is derived from the time course of PV generation only,
a relative improvement of more than 4% was observed.

The variation of self-consumption at different time scales was analysed as was the
relation to the grid total of PV generation and electric load. These quantities were identified
as candidates for the parametrization of a data-driven self-consumption model. Furthermore,
several observations strengthen the assumption that the time-dependent behaviour of a
grid-level PV/prosumer portfolio cannot simply be deduced from the currently available
measurements. In a post-FIT scenario of 100% prosumers as a limiting case, the overall
self-consumption rates that can be expected for different PV system portfolios were identified.
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Of course, a number of improvements to the model presented here are possible.
The use of real PV module orientations and the inclusion of representative industry load
profiles or different prosumer strategies could be fruitful and yield quantitatively more
precise results. Nevertheless, we are confident that our model system provides reasonable
insight into the problem of self-consumption in the present state. Furthermore, it establishes
a solid basis for the integration of additional technologies such as battery storage devices,
heat pumps or electric cars. In this way, the impact of future technologies and diversifying
usage strategies can be studied systematically in different scenarios.
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