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Abstract: The thermal stability of NASICON-type cathode materials for sodium-ion batteries was
studied using differential scanning calorimetry (DSC) and in situ high-temperature powder X-ray
diffraction (HTPXRD) applied to the electrodes in a pristine or charged state. Na3V2(PO4)3 and
Na4VMn(PO4)3 were analyzed for their peak temperatures and the exothermic effect values of
their decomposition processes, as well as the phase transformations that took place upon heating.
The obtained results indicate that Mn-substituted cathode material demonstrates much poorer
thermal stability in the charged state, although pristine samples of both materials exhibit similar
thermal behavior without any DSC peaks or temperature-induced phase transitions in the studied
temperature range. The in situ HTPXRD revealed the amorphization of desodiated Na4VMn(PO4)3-
based electrodes occurring at 150~250 ◦C.
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1. Introduction

The rapid development of advanced energy storage technology is an important chal-
lenge in the 21st century [1]. Lithium-ion batteries (LIBs) became the headliner among
other electrochemical systems (lead-acid, nickel-cadmium, nickel-metal hydride, etc.) since
their first commercialization in 1991 due to their high energy density, excellent cyclabil-
ity, absence of “memory effects”, low self-discharge rate and other features. As a result,
most of the devices built today, i.e., portable gadgets, electrical vehicles (EVs) and grid
energy storage systems, are operated by LIBs of different sizes and formats [2]. However,
further implementation of mass storage systems for energy storage faces an ineluctable
challenge that is linked to both lithium cost and its availability. Thus, in all likelihood, the
proven reserves of lithium will not be enough to meet the needs of the electric vehicle and
distributed energy industries in the coming decades [3].

Due to the low cost and widespread distribution of sodium, as well as its chemical
properties, which are similar to lithium, sodium-ion batteries (SIBs) have been introduced
as an alternative to LIBs, and they have attracted keen interest from battery researchers
and manufacturers [4]. Furthermore, the cost of SIBs is additionally reduced due to the
facts that aluminum can be used for both positive and negative current collectors and is
cheaper, lighter and more abundant than the copper used in the negative current collectors
of LIBs [5]. Thus, sodium-ion batteries (SIBs) are expected to become an alternative to
lithium-ion batteries (LIBs) in transportation and large-scale utility grid applications [6–8].
Safety issues are especially challenging in these cases, since the average capacity of the
systems vary between several MWh and GWh. The severity of battery failures depends
on various factors, including the battery’s state of charge, ambient conditions and the
battery’s mechanical and electrochemical design [9]. The reactivity of cathode materials at
different states of charge is one of the aspects affecting battery safety. On the other hand, the
common power capacity and diffusion rate of materials for SIBs are still among the main
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obstacles that prevent their widespread use [10,11]. Moreover, since the radius of sodium
(0.98 Å) is larger than that of lithium (0.69 Å), the large volume change caused by the
extraction and insertion of sodium ions between the electrodes results in severe structural
disturbances [12,13]. Thus, an extremely urgent problem is the search for materials that
can provide a high electrochemical capacity, a good diffusion rate of sodium cations, small
volume changes and high thermal stability [14].

Aiming to find reversible intercalation electrodes for rapid charge transfer, various
host materials have been explored as a potential cathode material in state-of-the-art SIB’s,
including transition metal oxides [8,15], polyanionic materials [16] and Prussian blue ana-
logues [17–19]. Among them, polyanionic materials with a NASICON-type structure attract
significant interest as SIB cathodes due to their robust three-dimensional (3D) framework
with large gap channels, which provides higher thermal and cycling stability than Prus-
sian blue analogues or layered oxides [20–29]. One of the first [30] and most extensively
studied NASICON-type cathode materials for SIBs is Na3V2(PO4)3 (NVP). It crystallizes
in the trigonal system, e.g., R3c [31]. NASICON structures consist of corner-sharing PO4
tetrahedra and VO6 octahedra with sodium cations in interstitial positions. Through strong
covalent bonds with phosphorus, all of the oxygen ions form PO4 polyanions, which pro-
vide improved stability for the 3D framework as compared with other types of cathode
materials. It is worth noting that the actual application of Na3V2(PO4)3 is always limited
by its low inherent electronic conductivity, which results in low specific capability, poor
cycling stability and poor rate performance. A number of efforts have been made to im-
prove NVP’s electrochemical performance through surface modifications, such as carbon
coating [32,33] and doping [34–39]. Carbon-coated Na3V2(PO4)3/C has been demonstrated
to have long-term stability and exceptional performance when used as a cathode [40].

In situ and operando X-ray diffraction are powerful methods to investigate crystal
structure transformations during heating or charging/discharging [41]. Thus, it was shown
by means of in situ high-temperature X-ray diffraction(HTXRD) that Prussian blue (PB)
analogues exhibit water release from their crystalline lattice, and further decomposition
is based on the release of cyanogen gas from the structures, leading to a transformation
of PB into cubic iron hexacyanoferrate and, finally, to the breakdown of the formed cubic
structure [42,43]. Dai et al. studied the impact of sintering temperatures on the capacity and
thermal behavior of honeycomb-ordered O3-type NaNi2/3Sb1/3O2 cathode materials [44].
It was shown that the sample prepared at 950 ◦C exhibited the smallest charge-transfer
resistance as well as the largest sodium ion diffusion coefficient, endowing this material
with a stable discharge capacity and a decent cycling performance. Meanwhile, this mate-
rial demonstrates excellent thermal stability up to 500 ◦C, as was found by means in situ
HTXRD. As for phosphate cathode materials, Na3V2(PO4)3 has excellent thermal stability
in its pristine and desodiated Na1V2(PO4)3 state and a temperature range of 25–450 ◦C, as
shown by means of in situ HTPXRD [45]. In situ HTPXRD patterns of NASICON-type ma-
terials indexed in an R3c space group show that the c parameter increases with an increase
in temperature, while the a parameter is almost temperature-independent, and, thus, the
thermal expansion occurs along the c axis [46,47]. According to our previous work [29], the
thermal decomposition effect of an Na3V2(PO4)3-based electrode charged up to 4.1 V is
~100 J g−1, which is nearly three times lower than that of a charged NaNi1/3Fe1/3Mn1/3O2-
based electrode. Cui et al. [48] studied the thermal runaway behavior of the 500-mAh
soft-packed symmetrical NVP//NVP and NVP//hard carbon batteries by means acceler-
ating the rate calorimetry (ARC). The results indicate that the NVP//NVP symmetrical
batteries have excellent prospects for application in special fields with high safety require-
ments. Moreover, the thermal stabilities of six kinds of electrolytes, charged NVPs and
their mixture were investigated by TG and ARC [49]. The results obtained in this work also
confirmed the high stability of the NVP-based cathodes.

The main drawback for the practical application of Na3V2(PO4)3 as a cathode material
is its modest energy density (~350 Wh·kg−1) based on the V4+/V3+ redox at an average
voltage of 3.4 V; therefore, great efforts of the scientific community are aimed at modifying
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the composition of the material to increase its working potential and/or reversible capacity.
The substitution of transition metal in the cathode materials of metal-ion batteries is a
common method of increasing their energy density. Different NASICON-type materials
with iso- or heterovalent substitutions of vanadium Na3+δV2−xMx(PO4)3 (M = Ti, Cr, Mn,
Fe, Co and Ni) were explored [22]. In general, the replacement of V3+ with trivalent cations
that are not electrochemically active or are not active at the typical working potentials
activates the V5+/V4+ redox couple, which increases the average operating voltage [50–52].
Substituting vanadium with divalent metal cations not only activates the V5+/V4+ re-
dox couple, but also causes an increase in the number of sodium ions in the NASICON
structure [53]. A number of works show that manganese substitution in NASICON-type
Na3+xV2−xMnx(PO4)3 (0 ≤ x ≤ 1) materials increases their average (dis)charge potential,
rate capability and capacity [54–59]. Replacement of smaller V3+ cations with larger Mn2+

enhances the sodium content in the initial material and increases the unit cell volume. As
in the case of Na3V2(PO4)3, only two Na+ ions are extracted from Na4VMn(PO4)3 in a
charge to 3.8 V. In contrast to Na1V2(PO4)3, further Na+ extraction from Na2VMn(PO4)3
is realized through the V5+/V4+ redox at 3.9 V, which enhances both voltage and capacity.
Moreover, the presence of Mn in the cation sublattice alters the phase transformation be-
havior and distribution of sodium cations over different positions at various stages of the
charge-discharge cycle [60–63]. However, as a cathode material with good performance,
the knowledge of the thermal stability of manganese-substituted NASICON-type materials
is still lacking.

In this study, we demonstrate the negative effect of manganese substitution on the
thermal stability of NASICON-type cathode materials for the first time. Na3V2(PO4)3 and
Na4VMn(PO4)3 were studied by means of DSC and HTXRD to examine their pristine and
two-charged states (3.8 V and 4.5 V vs. Na/Na+) and a temperature range of 25–450 ◦C.

2. Materials and Methods
2.1. Material Preparation

The Na4VMn(PO4)3 was prepared by dissolving manganese(II) acetylacetonate, vana-
dium (V) oxide and citric acid in deionized water in a stoichiometric ratio and stirring for
40 min at 70 ◦C. Then sodium carbonate and ammonium dihydrophosphate solution in
deionized water with a molar ratio of 4:3 were added drop-wise and stirred for 40 min,
followed by evaporation at 95 ◦C overnight. Vanadium (V) oxide, citric acid and sodium
dihydrophosphate were used to obtain the Na3V2(PO4)3 by the same procedure. After
the solid residue was ground in a ball-mill, it was annealed at 750 ◦C for 8 h in an inert
atmosphere.

To prepare the electrodes, all powders were mixed with Super P carbon (Timcal) and
poly(vinylidene fluoride) (PVDF, Solef 5130, Solvay) in a weight ratio of 93:1:6 and dissolved
in N–methyl–2–pyrrolidone (NMP). The resulting slurry was coated with aluminum foil.
The cast sheet was dried at 80 ◦C to remove the NMP and then roll-pressed and punched
into 10 or 16 mm diameter electrodes. Subsequently, the punched electrodes were dried at
120 ◦C under a vacuum and used for cell assembly.

2.2. Materials Characterization

Two-electrode cells were assembled using the Na3V2(PO4)3 and Na4VMn(PO4)3 as
the working electrodes, sodium metal (Sigma Aldrich) as the counter electrode and glass
fiber as the separator for differential scanning calorimetry studies. A quantity of 1 M of
NaPF6 solution (Kishida Chemical) in a 1:1 vol. mixture of ethylene carbonate/propylene
carbonate (EC/PC) was used as the electrolyte. Galvanostatic experiments were carried
out using an Elins P–20X8 potentiostat–galvanostat (ES8 software).

Using a Netzsch DSC 204 F1 Phoenix instrument, differential scanning calorimetry
was carried out within a 50–450 ◦C temperature range and with a heating rate of 5 ◦C min−1

in hermetically sealed high-pressure Cr–Ni stainless steel crucibles and in an argon at-
mosphere. Electrodes were extracted from fully charged “half-cells”, washed with DMC
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and dried under vacuum. The dried electrode powders were placed in the crucibles. The
crucibles with samples were hermetically sealed in a dry-argon glove box. To calculate
the magnitude of the heat effect, we used the area under the peak on the DSC curve after
subtracting the background (if any) using Netzsch Proteus software.

In situ high-temperature powder X-ray diffraction (HTPXRD) patterns were recorded
with a Bruker D8 ADVANCE diffractometer equipped with the energy-dispersive LYNX-
EYE position-sensitive detector within a 25–450 ◦C temperature range and with a heating
rate of 0.1 ◦C s−1 in a flowing argon atmosphere. The waiting time between heating and
measurement was 200 s, and the scan speed was 0.2◦ min−1 (Cu Kα1,2 radiation, 6.5–30◦,
40 kV, 40 mA).

Scanning Electron Microscopy (SEM) images were obtained with a JEOL JSM-6490LV
electron microscope (tungsten hairpin electron gun, 30 kV) equipped with an Everhart-
Thornley detector.

3. Results and Discussion
3.1. Structural and Morphological Aspects

Figure 1 shows the XRD patterns of the as-synthesized materials. It can be indexed in
the well-known NASICON unit cell with the R3c space group with the following parame-
ters: a = 8.7307(2) Å, c = 21.8203(7) Å, V = 1440.42(7) Å3 for Na3V2(PO4)3, a = 8.9727(1) Å,
c = 21.4500(4) Å and V = 1495.58(4) Å3 for Na4VMn(PO4)3. SEM images of the as-
synthesized Na3V2(PO4)3 and Na4VMn(PO4)3 cathode materials are presented in Figure 1.
As one can see, the morphology of the samples is quite similar; smaller submicron-sized
particles form larger aggregates of 5~10 µm.
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Figure 1. XRD patterns and SEM images of the as-synthesized Na3V2(PO4)3 (green) and
Na4VMn(PO4)3 (yellow) cathode materials. Theoretical peak positions and intensities are shown by
red and blue bars, correspondingly.

3.2. Electrochemical Properties

Detailed electrochemical and structural properties of the materials have been reported
previously [55,60,62,64] and, therefore, are not described in the present work. Briefly,
Na3V2(PO4)3 always exhibits a capacity of 100–120 mAh·g−1 (corresponding to reversible
(de)intercalation of 2 Na+ per formula unit), regardless of the upper limit of the potential.
In other words, it is impossible to extract more than two sodium cations from Na3V2(PO4)3
using electrochemical methods. The situation is different for Mn-substituted materials;
they also exhibit reversible (de)intercalation of two sodium cations upon charge-discharge
up to 3.8 V (vs. Na/Na+ hereinafter); however, if this limit is increased, additional Na+

can be extracted. As a result, the subsequent electrochemical properties of the material
change drastically. We decided to study, firstly, the effect of manganese substitution on the
stability of NASICON-type structures and, secondly, how thermal stability is affected by
the extraction of more than two sodium cations from the unit cell.
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To analyze the thermal stability of the materials in a charged state, all electrodes were
charged up to 3.8 V and 4.5 V potentials at C/10 current densities in a sodium half-cell.
Corresponding voltage curves are presented in Figure 2. As the figure illustrates, the
charging capacity of the Na3V2(PO4)3 essentially does not change with an increase in
the upper limit of the potential from 3.8 to 4.5 V (except for a small increase, apparently
associated with the formation of CEI). On the other hand, the Na4VMn(PO4)3 demonstrates
an increase in capacity from 100 to 150 mAh·g−1, which is in good agreement with the data
obtained in previous work [60] and summarized above.
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3.3. Differential Scanning Calorimetry

Figure 3 shows the DSC curves of the pristine powders of all of the samples. The
Na3V2(PO4)3 (NVP) exhibits two endothermic peaks at ~60 ◦C and ~175 ◦C, which in-
dicate α–NVP→ ββ′–NVP→ γ–NVP polymorph transformations [65]. In contrast, the
manganese-substituted material exhibits only one endothermic peak at ~55–65 ◦C, which
implies only a single polymorph transformation. These data allow us to recognize the
original phosphates as thermally stable materials, at least within the studied temperature
range.
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The DSC curves of the charged, washed and dried electrodes are presented in Figure 4.
The Na3V2(PO4)3, electrochemically desodiated at 3.8 V, shows an exothermic peak at
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415 ◦C (with an onset temperature of 347 ◦C) and an enthalpy of 78 J g−1. Charging the
Na3V2(PO4)3 up to a higher potential of 4.5 V decreased the onset temperature by 10 ◦C
(to 337 ◦C) and the peak temperature by 30 ◦C (to 385 ◦C.) The exothermic effect, in this
case, amounted to 151 J g−1, which was approximately two times higher than that for
the electrode charged up to 3.8 V (Table 1). However, as demonstrated in Figure 4, the
exothermic effect signals were“distributed” within the temperature range, which is most
probably a result of a surface reaction with PVDF or cathode–electrolyte interphase (CEI)
components [66], while the intensities of the peaks at ~400 ◦C were nearly equal. More
reactive CEI components can be formed due to the high charge potential (4.5 V) that nears
the stability limit of alkyl carbonate electrolytes for sodium-ion batteries.
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Table 1. Differential Scanning Calorimetry Data.

Sample Peak Temperature, ◦C Enthalpy, J g−1 HoE Factor

Na3V2(PO4)3
3.8 V 415 78 0.3
4.5 V 370, 385 151 0.45

Na4VMn(PO4)3
3.8 V 287 163 0.58
4.5 V 266, 283 239 0.47

In turn, the Na4−xVMn(PO4)3-based electrode shows a single, clearly distinguishable
exothermic peak at 287 ◦C with total enthalpy of 163 J g−1 when charged up to 3.8 V.
Charging up to a higher potential—4.5 V—led to an increase in the intensity of the de-
composition peak and, correspondingly, the value of total enthalpy grew up to 239 J g−1

(Table 1). In contrast to Na3−xV2(PO4)3, in the case of Na4-xVMn(PO4)3, not only the
“background” contribution of the surface reaction increased but also the intensity of the
main peak (Figure 4), which was likely associated with the decomposition of the charged
cathode material. It should be noted that in both cases, the charge up to 4.5 V provoked
the splitting of the main exothermic peak into two proximate peaks. The results obtained
indicate that Mn-substituted cathode material demonstrates much poorer thermal stability
in their charged states, although pristine samples of both materials exhibit similar thermal
behavior. Peak temperatures and thermal effect values for the cathode materials are shown
in Table 1.

It is interesting to compare Na3V2(PO4)3- and Na4VMn(PO4)3-based cathodes charged
to 3.8 and 4.5 V in terms of the “heat on energy” factor introduced in a recent work [29].
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The ratio of exothermic effect and the stored energy for the charged electrode material (both
cathode or anode) may be estimated as HoE = Qrel/Est, where Est is the specific energy
gained upon charge of the material, and Qrel is the heat released in DSC experiment (with
both values given in the same units, e.g., J·g−1). The values of the HoE factor calculated
for the studied materials are presented in Table 1. The data illustrates that Na3V2(PO4)3
charged to 3.8 V is the most efficient case from the point of view of “thermal efficiency”.
However, Na4VMn(PO4)3 demonstrates a lower HoE value when charged to 4.5 V, as
compared with charging to 3.8 V. This is a consequence of a rather large increase in capacity
and an average charging potential of above 3.8 V, in relation to the different heats released
in DSC experiments.

In order to identify possible reasons for the different thermal behaviors of the elec-
trodes, we analyzed the temperature-induced phase transformations of the initial and
charged materials using in situ HTPXRD.

3.4. In Situ High-Temperature Powder X-ray Diffraction

The in situ HTPXRD patterns of the pristine and charged materials obtained within
the 25–450 ◦C temperature range are shown in Figures 5 and 6, respectively. For the pristine
Na3V2(PO4)3 and Na4VMn(PO4)3 initial phosphates, no traces of thermal decomposition
or phase transitions were observed. It is worth noting that there was an increase in the
intensity of the peaks with increases in the temperature in an approximately reversible
manner due to following possible reasons: (a) reversible structural changes caused by
thermal expansion, (b) reversible structural changes caused by phase changing from C2/c
(α-NVP) to R3c (γ-NVP) and (c) reversible increasing crystallinity caused by thermal
expansion.

Both phosphates demonstrated a uniform shift of the positions of several reflections,
indicating unit cell transformation. More precisely, parameter a remained almost constant,
while parameter c grew with increasing temperatures. The shift of the positions of the
221 and 116 reflections can be seen in detail in Figure 5b; Figure 5c shows the anisotropic
changes of lattice parameters. It should be noted that during the electrochemical charge-
discharge [40,60], both parameters changed quite noticeably [67]. The a parameter declined
on the course of Na+ deintercalation for both Na3V2(PO4)3 and Na4VMn(PO4)3. The c
parameter of the Na3V2(PO4)3 contracted on the deintercalation of 2 Na+ cations [45]. The
c parameter of the Na4VMn(PO4)3 reduced on the charge to 3.8 V and rapidly evolved on
further charging [60]. Generally, it was the occupancy of the A1-site which was mainly
responsible for the elongation of the NASICON unit cell predominantly in c direction [68].

In the case of thermal expansion, its anisotropy has previously been shown for other
NASICON-type compounds [45–47,69–71]; Woodcock and Lightfoot suggest that it is
caused by the temperature-induced redistribution of the A cations (Li, Na, K, Mg, etc.)
between the A1 and A2 positions [72]. It cannot be the case for the room-temperature
Na4VMn(PO4)3 phase, since both positions are 100% occupied; however, high-temperature
polymorphs of the NASICON-type compounds mentioned above have larger numbers of
positions for Na atoms, so redistribution may take place [65]. The rate of thermal expansion
in this case may be mainly governed by the thermal expansion of the A+-O bond and the
radii of the constituent cations [68]. Still, the volume expansion of the Na3V2(PO4)3 and
Na4VMn(PO4)3 up to 450 ◦C is small and amounts to merely 1%.

Figure 6 illustrates HTPXRD patterns for the materials charged up to 3.8 V and
4.5 V cut-off potentials. Electrochemically desodiated Na3V2(PO4)3 demonstrates excel-
lent thermal stability that follows from the absence of secondary phase reflections. No
decrease in the intensity of the phase peaks, which could indicate amorphization of the
material, was observed. However, in the case of the electrode charged to 3.8 V, reflec-
tions of the sodiated phase appeared at 400–450 ◦C, indicating the start of the thermal
decomposition. The unit cell parameters of the reflections were close to the intermediate
Na2V2(PO4)3 composition [73]. It is possible that if the electrode is charged up to 3.8 V,
the Na3V2(PO4)3 → NaV2(PO4)3 phase transition is incomplete. The domains within the
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material which retain the structure of the initial or metastable Na2V2(PO4)3 phases can,
thus, act as the reaction centers of decomposition of the charged material. Residuals of the
initial Na3V2(PO4)3 phase at 3.8 V are discussed in a previous paper [45].
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HTPXRD data for the charged manganese-containing materials provided drastically
different results. The decomposition process starts earlier in Na4–xVMn(PO4)3—in the
temperature range of 150~200 ◦C. We observed no significant difference between the phase
transformations of the material charged to 3.8 and 4.5 V. The variation in the structure de-
composition temperature between in situ HTPXRD and DSC curves for Na4−xVMn(PO4)3
might be associated with different experimental conditions; DSC experiments are per-
formed under linear heating, whereas HTPXRD is carried out isothermally over ~4 h of
exposure time. Moreover, it is well-known that the cathode-electrolyte interphase (CEI) is
potential-sensitive, so charging up to 4.5 V triggers the formation of more reactive CEIs [74].
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Hence, surface reactions are most likely responsible for the increase in the enthalpy of the
decomposition of the phosphates charged up to 4.5 V. In contrast, powder X-ray diffraction
(PXRD) registers a diffraction pattern for the bulk material of a crystalline solid, which
results in a less prominent difference.

Energies 2023, 16, x FOR PEER REVIEW 9 of 14 
 

 

of the sodiated phase appeared at 400–450 °C, indicating the start of the thermal de-
composition. The unit cell parameters of the reflections were close to the intermediate 
Na2V2(PO4)3 composition [73]. It is possible that if the electrode is charged up to 3.8 V, the 
Na3V2(PO4)3→ NaV2(PO4)3 phase transition is incomplete. The domains within the mate-
rial which retain the structure of the initial or metastable Na2V2(PO4)3 phases can, thus, 
act as the reaction centers of decomposition of the charged material. Residuals of the ini-
tial Na3V2(PO4)3 phase at 3.8 V are discussed in a previous paper [45]. 

 
Figure 6. In situ HTPXRD patterns for the charged electrodes containing Na3V2(PO4)3 and 
Na4VMn(PO4)3 cathode materials ((a) 4.5 V and (b) 3.8 V). 

HTPXRD data for the charged manganese-containing materials provided drastically 
different results. The decomposition process starts earlier in Na4–xVMn(PO4)3—in the 
temperature range of 150~200 °C. We observed no significant difference between the 
phase transformations of the material charged to 3.8 and 4.5 V. The variation in the 
structure decomposition temperature between in situ HTPXRD and DSC curves for 
Na4−xVMn(PO4)3 might be associated with different experimental conditions; DSC ex-
periments are performed under linear heating, whereas HTPXRD is carried out isother-
mally over ~4 h of exposure time. Moreover, it is well-known that the cathode-electrolyte 
interphase (CEI) is potential-sensitive, so charging up to 4.5 V triggers the formation of 
more reactive CEIs [74]. Hence, surface reactions are most likely responsible for the in-

Figure 6. In situ HTPXRD patterns for the charged electrodes containing Na3V2(PO4)3 and
Na4VMn(PO4)3 cathode materials ((a) 4.5 V and (b) 3.8 V).

During decomposition, all the reflections vanish, which makes it impossible to perform
the phase analysis of decomposition products through PXRD.

The results obtained indicate that the substitution of vanadium for manganese ad-
versely affects the thermal stability of the NASICON-type materials in the charged state. A
similar trend is observed by the authors who studied the substitution of iron for manganese
in olivine-type LiMPO4 [75–78]. Several groups report that delithiated Li1−yFePO4 cathode
material is stable up to 450–500 ◦C, but Li1−yMnPO4 already starts to decompose at ~200 ◦C,
which is accompanied by the formation of Mn2P2O7 and oxygen release [75,76]. Kim et al.
studied the thermal stability of Li1−yFe1−xMnxPO4 solid solutions (x = 0.25, 0.5, 0.75) and
found that an increase in Mn content leads to a decrease in the decomposition temperature
from ~500 ◦C for x = 0.25 to ~300 ◦C for x = 0.75 [75]. It should be noted that in their
initial (lithiated) forms, LiMnPO4 and LiFePO4 show almost no difference in their thermal
stability as well. The authors of the above-mentioned works agree that the instability



Energies 2023, 16, 3051 10 of 13

of delithiated Mn-containing olivines can be explained by the distortion of the structure
caused by the Jahn–Teller effect, which is typical for Mn3+. We can also suggest that the
observed decrease in the thermal stability of the substituted Na3+xV2−xMnx(PO4)3 in its
charged state and with an increase in manganese content is associated with the structural
distortions introduced by Mn3+ cations as well [62].

4. Conclusions

In this work, we report on a systematic study of the thermal and phase transformation
behavior of Na3V2(PO4)3 and Na4VMn(PO4)3 cathode materials in their pristine and
charged states and in the temperature range of 25–450 ◦C. Pristine materials have excellent
thermal stability, which stems from the absence of exothermic effects and the formation
of secondary phases. Upon heating, the thermal expansion of the NASICON unit cell
proceeded mainly along the c axis in all studied phosphates. However, a distinct difference
in thermal behavior was observed for the electrodes charged to 3.8 and 4.5 V vs. Na/Na+,
compared to their pristine states. Desodiated Na3−xV2(PO4)3 also showed excellent thermal
stability in the studied temperature range of 25–450 ◦C, but manganese substitution led
to a decrease in the thermal stability of the charged material. According to DSC studies,
desodiated Na4−xVMn(PO4)3 demonstrates an almost twofold increase in decomposition
enthalpy and lower onset temperatures for decomposition. In situ HTPXRD revealed the
disappearance of the diffraction peaks of the desodiated Na4−xVMn(PO4)3 at ~200 ◦C.
Overall, the data obtained indicate that when tuning the composition of NASICON-type
phosphates for practical application, it is necessary to consider not only the values of the
potentials, capacity and energy density but also the changes in the thermal stability of
materials.
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