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Abstract: Carbonate reservoirs are a highly heterogeneous type of reservoir characterized by the
presence of a large amount of vugs and pores. During two-phase displacement, the two-phase
flow regime in the vugs might be gravity segregated. The distribution pattern of two-phase fluid
in the vugs would accelerate the water flow in downward and horizontal directions, meanwhile
decelerating in an upward direction, resulting in a different oil recovery ratio. This gives rise to the
question of whether the relative permeability should be modeled as a directional dependent in a
vugular porous medium since it is usually treated as an isotropic quantity. In this study, via both
experiment and numerical simulation, we demonstrate that the relative permeability of vugular
porous medium is dependent on the angle between the flow direction and the horizontal plane and
should be considered for oil recovery estimation for carbonate reservoirs. Using the transmissibility-
weighted upscaling method and a single-vug model, the relative permeability curves for different
flow directions are obtained by numerical simulation. A directional relative permeability model for a
vugular porous medium is also proposed.

Keywords: vugular porous medium; gravity segregation; oil recovery ratio; relative permeability;
directional dependency

1. Introduction

Carbonate reservoirs throughout the world represent over 50% of the world’s conven-
tional and unconventional hydrocarbon resources [1–3]. However, carbonate reservoirs
usually suffer from a low primary recovery factor [4,5]; therefore, secondary as well as
enhanced recovery techniques are frequently required to achieve an ideal ultimate recovery
ratio [6]. Accurate numerical modeling of multiphase flow in carbonate reservoirs is highly
beneficial to the exploitation of oil and gas from these reservoirs. However, the heteroge-
neous and multiscale nature of carbonate reservoirs has imposed several difficulties on
numerical simulation. Carbonate reservoirs are highly heterogeneous across all scales [7].
F.J. Lucia divided the pore space of carbonate reservoirs into interparticle and vuggy pore
space [8]. The interparticle pore space has a length scale of tens to hundreds of microns
(10−5–10−4 m). The vuggy pore space consists of a huge amount of vugs, which have
length scales ranging from millimeters to several meters (10−3–100 m), as shown in Figure 1.
The main difficulty for numerical simulation is the coexistence of Darcy flow in the porous
region and free flow in the vug region [9]. As shown by previous researchers, the presence
of a free-flow region in the surrounding porous region significantly alters the effective
permeability of the media, potentially by orders of magnitude. Another difficulty is the
large degree of uncertainty related to the shape and location of the interface between the
porous region and the vug region [10]. Due to these difficulties, numerical simulation of
fluid flow in carbonate reservoirs has always been a challenging problem.
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Figure 1. Outcrop pictures from Tahe carbonate oilfield, China, showing a large amount of isolated 
vugs of millimeters to decimeters in size embedded in the porous medium. 
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equations are used to model the free flow region in vugs. The two different governing 
equations are coupled at the vug interface using the Beavers-Joseph-Saffman boundary 
conditions [19,20]. DFVN was initially derived for single-phase flow. Later, Chen et al. 
[21,22], Huang et al. [23], and Xie et al. [24] introduced the coupled Cahn-Hilliard and 
Navier-Stokes equations in the free flow region to simulate two-phase flow in composite 
models consisting of both a free flow region and porous medium. DFVN provides a more 
realistic representation of carbonate reservoirs. However, due to the coupled numerical 
scheme, it is much more computationally expensive and thus is inappropriate for porous 
medium with a large amount of vugs [25], such as the outcrop of Tahe oilfield, China, 
shown in Figure 1. Furthermore, the accuracy of the DFVN model is reliant on having a 
detailed knowledge of the location and geometry of the interface, which is rarely available 
for underground reservoirs. Recently, Liu et al. [26,27] proposed a hybrid two-phase 
model where they proposed a simplified vug model to avoid the coupling of Darcy flow 
and free flow to achieve better computation efficiency. However, this simplified vug 
model still requires detailed information on the vug geometry. 

The third type of model is the equivalent continuum model (ECM). In this model, the 
vug and pore system is represented by homogeneous representative elementary volume 

Figure 1. Outcrop pictures from Tahe carbonate oilfield, China, showing a large amount of isolated
vugs of millimeters to decimeters in size embedded in the porous medium.

Three types of numerical models have been proposed in the literature to handle the
simulation of fluid flow in carbonate reservoirs. The first type of model is the triple (or
multiple) continuum model. In this model, the pore space in carbonate reservoirs is concep-
tualized as three (or multiple) superimposing and interacting continua, namely the matrix,
fracture, and vug. The mass exchange of fluid between different continuas in the same
grid block is calculated by a characteristic length between them. The characteristic lengths
are calculated analytically for several regular fracture-vug combinations. Liu et al. [11],
Camacho-Velázquez et al. [12], and Wu et al. [13] proposed the triple continuum model
for single-phase flow in carbonate reservoirs. Kang et al. [14] and Wu et al. [15] further
extended the model to simulate multiphase flow. The triple continuum model is computa-
tionally efficient. However, its accuracy is heavily reliant on the validity of the characteristic
length, which was only derived for regular fracture-vug combinations. In reality, the ge-
ometry of vugs and fractures in carbonate reservoirs are highly complex, thus limiting the
applicability of the triple-continuum model.

The second type of model is the discrete fracture-vug network model (DFVN) [16–18].
In this model, the fractures and vugs are explicitly modeled as distinct elements. Darcy’s
law is used to model fluid flow in matrices and fractures, while Navier-Stokes equations
are used to model the free flow region in vugs. The two different governing equations are
coupled at the vug interface using the Beavers-Joseph-Saffman boundary conditions [19,20].
DFVN was initially derived for single-phase flow. Later, Chen et al. [21,22], Huang et al. [23],
and Xie et al. [24] introduced the coupled Cahn-Hilliard and Navier-Stokes equations in
the free flow region to simulate two-phase flow in composite models consisting of both
a free flow region and porous medium. DFVN provides a more realistic representation
of carbonate reservoirs. However, due to the coupled numerical scheme, it is much more
computationally expensive and thus is inappropriate for porous medium with a large
amount of vugs [25], such as the outcrop of Tahe oilfield, China, shown in Figure 1.
Furthermore, the accuracy of the DFVN model is reliant on having a detailed knowledge
of the location and geometry of the interface, which is rarely available for underground
reservoirs. Recently, Liu et al. [26,27] proposed a hybrid two-phase model where they
proposed a simplified vug model to avoid the coupling of Darcy flow and free flow to
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achieve better computation efficiency. However, this simplified vug model still requires
detailed information on the vug geometry.

The third type of model is the equivalent continuum model (ECM). In this model, the
vug and pore system is represented by homogeneous representative elementary volume
(REV) with averaged parameters. Because of this averaging process, the ECM is well suited
to handle the simulation of problems with a large amount of vugs that have a large degree
of uncertainty. The key step during modeling with ECM is to determine the appropri-
ate equivalent parameter for the REVs. Much research has been devoted to this subject.
Arbogast et al. [28,29] simulated single-phase flow in a vugular porous medium on the
microscopic scale via a coupled Darcy-Stokes system. Then, by using the homogenization
theory, they proved analytically that the momentum conservation equation for the macro-
scopic equivalent medium is identical to the form of Darcy’s law. Huang et al. [30] obtained
the equivalent permeability tensor for a fractured vuggy porous medium by simulation
using the DFVN model. As an alternative approach, Popov et al. [10,31] and Qin et al. [32]
used the Stokes-Brinkmann equations instead of the coupled Darcy-Stokes system as the
microscopic scale model to obtain the equivalent permeability tensor. Golfier et al. [33]
proved that the momentum conservation equation for the macroscopic equivalent medium
resulting from this approach is also in the form of Darcy’s law. All of the above studies
are focused on obtaining the single-phase flow parameter, i.e., the permeability tensor. In
contrast, the appropriate method for obtaining the property of two-phase or multi-phase
flow, i.e., the relative permeability, has rarely been discussed in the literature. Pal [34] and
Li et al. [35] made no special adjustment for the relative permeability functions in their
ECM model for two-phase flow. Huang et al. [36] proposed an analytical method to obtain
equivalent relative permeability for ECM. In this method, water is assumed to displace oil
from fractures and vugs preferentially before it displaces oil from the matrix. The equiva-
lent relative permeability is a weighted average between the relative permeability of the
matrix and fracture-vug system. The resulting relative permeability is isotropic. Recently,
Wang et al. [37] presented an efficient two-phase ECM model for carbonate reservoirs where
they used flow-based upscaling techniques to obtain anisotropic relative permeability. How-
ever, in their model, only the fractures and matrix are included in the equivalent medium;
meanwhile, the empty vugs are modeled as constant pressure boundaries. Moreover, the
effect of gravity segregation was not explicitly considered in their upscaling technique.
As shown by plenty of experiments [38–43], gravity segregation of multiple phases inside
vugs caused by density difference is one of the most important mechanisms of multiphase
flow in carbonate reservoirs. Therefore, it is required to investigate the implication of this
mechanism on the relative permeability of the equivalent medium in the ECM model.

In this study, we demonstrate that the effect of gravity segregation of oil and water
inside vugs is essential for two-phase flow in a vugular porous medium, and the relative
permeability of the equivalent medium is dependent on the angle θ between the flow
direction and the horizontal plane. To focus on the effect of vugs, we designed a symmetric
single-vug model and conducted a physical experiment and numerical simulation with it.
The rest of the paper is organized as follows: in Section 2, we introduce the setup and results
of the physical experiment. In Section 3, we introduce and validate the numerical scheme
which we used to obtain relative permeability. In Section 4, we adopt the flow-based
upscaling approach to calculate the relative permeability curve of the single-vug model in
13 flow directions. Based on the upscaling results, a directional relative permeability model
is proposed for a vugular porous medium. We finally draw our conclusions in Section 5.

2. Displacement Experiment for Vugular Porous Media
2.1. Physical Model Setup and Fluid Characteristics

The schematic of the single-vug model in the x-z plane is shown in Figure 2. The
single-vug model consists of a 10 cm × 1 cm × 10 cm porous medium with a circular
vug located at the center. The diameter of the vug is 5 cm. This symmetric geometry
eliminates the effect of geometry on two-phase flow dynamics when the flow directions
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are different. The physical model is coated in transparent organic glass plates with two
wellbores (injection and production) located on the opposing side. Both wellbores are
connected to two branches of the pipeline with a valve attached to each of them. The
volume of a single wellbore, including the pipelines, is about 3.5 cm3. The porous medium
is made with 95% glass beads of diameter between 0.2–0.3 mm mixed with 5% epoxy as the
cementing material. After the glass beads and the epoxy mixture was filled into an organic
glass coating, the model was placed into an oven at 70 ◦C for 30 min until the epoxy was
completely dried. The wettability of the porous medium is controlled by the epoxy and
is slightly oil-wet. The ratio between vug volume and total pore volume (which does not
include the volume of the two wellbores) is about 0.43. A manufactured sample of the
physical model is shown in Figure 2c.
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Figure 2. Schematic of the single-vug model. (a) Frontal and (b) side cross-sectional view, and (c) a
manufactured sample of the physical model.

Distilled water is chosen as the water phase in the experiment, which has a density of
1.0 g/cm3 and a viscosity of 1 cp. A mixture of industrial white oil and kerosene is chosen
as the oil phase, which has a density of 0.84 g/cm3 and a viscosity of 18 cp, respectively.
To make a visual difference between the two phases, the oil phase was colored red with
Sudan III.

2.2. Experiment Setup and Procedure

The experiments were conducted at atmospheric pressure and room temperature
(25 ◦C). The setup during the experiment is shown in Figure 3, and the experimental
procedures are given as follows:

(1) Fully saturate the model with water, then inject oil from the top of the model until no
water is produced.

(2) Fully saturate the injection wellbore with water by opening valves V1 and V2 only.
(3) Inject water into the model at a constant rate of 4.5 mL/min by opening valve V1 and

one of the valves V3 or V4. This gives an average flow velocity (Darcy velocity) of
6.48 m/day. As shown in Figure 4, the macroscopic flow direction is across the two
sides of the wellbores. In this study, we denote the angle between this flow direction
and the horizontal plane as θ. For instance, θ equals to −60◦ in Figure 4. The injection
is continued until the water cut reaches 99%, which is usually achieved after 3–5 PV
(pore volume) of water is injected.

(4) During step (3), constantly record phase distribution within the model with a camera,
as well as the pressure drop across the model and liquid production.

(5) Change a new sample. Set θ equal to −90◦ (vertically downward), 0◦ (horizontal),
and 90◦ (vertically upward), respectively, and repeat step (1)–(4).
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2.3. Experiment Results

The volume of cumulative produced oil, the water cut of the production well, and
the pressure drop across the model for displacement experiments for three different flow
directions are plotted in Figure 5.
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2.3.1. Case 1: Vertically Upwards (θ = 90◦)

The oil saturation distribution during the displacement experiment with θ = 90◦ is
shown in Figure 6. At the beginning of water flooding, injected water flows preferentially
towards the vug before it enters the vug at 0.1 PVI (pore volume injected). Then, water
displaces the oil in the vug steadily upwards in a typical piston-like displacement. The
displacement efficiency in the vug is close to 100%. In the meantime, the waterfront in
the porous medium remained quasi-immobile since the vug region has much less flow
resistance as well as zero capillary pressure compared with the porous medium. Water
starts to flow out of the vug at a PVI of 0.6 when the water saturation in the vug is 100%,
after which the waterfront above and at both sides of the vug becomes mobile again. The
water breakthrough of the production well occurs at a PVI of 0.3; this is likely because
there is water channeling along the left and right edges of the model. The real water
breakthrough time is estimated to be PVI 0.65 from the recordings of the camera. After the
water breakthrough, water displaces oil in the top-left and top-right parts of the model at a
very slow rate, and the water cut of the production well stayed over 90% for the rest of the
experiment. The oil recovery ratio (volume of produced oil versus original oil in place) at
PVI 1.0 is 73.3%.
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2.3.2. Case 2: Horizontal (θ = 0◦)

The oil saturation distribution during the displacement experiment with θ = 0◦ is
shown in Figure 7. Similar to Case 1, water enters the vug at 0.1 PVI. As water flows into
the vug, it forms small water droplets. When the droplets gain enough volume, they slide
down to the bottom of the vug due to density difference. The oil-water interface inside
the vug is inclined at first, then eventually becomes horizontal. During this process, the
interface gradually moves upwards instead of moving along the flow direction. Between a
PVI of 0.2 and 0.35, the water is kept within the vug by the capillary force. However, water
starts to flow out of the vug at a PVI of 0.35 when the water saturation in the vug is only
slightly over 50%. The water breakthrough of the production well occurred at a PVI of 0.41.
After the water breakthrough of the production well, the waterfront advances below the
vug much faster than the waterfront above the vug, and a large amount of oil is left unswept
at the top-right of the model. This is because water cannot flow upwards from the vug
before it is completely saturated with water, but it is able to flow downwards. Meanwhile,
the oil-water interface in the vug moves upwards at a much lower rate before the water
breakthrough. Water completely saturates the vug at a PVI of 1.1, which is relatively later
than in Case 1. Before this, the water cut of the production well stayed below 90%. The oil
recovery ratio at PVI 1.0 is 69.9%, slightly lower than in Case 1.

2.3.3. Case 3: Vertically Downwards (θ = −90◦)

The oil saturation distribution during the displacement experiment with θ = −90◦ is
shown in Figure 8. Shortly after, water forms droplets and enters the vug; they fall down
to the bottom of the vug rapidly due to gravity. Water starts to flow out of the vug at a
PVI of 0.17 when the water saturation in the vug is merely 20%. Water breakthrough of
the production well is at a PVI of 0.25, significantly earlier than in both Cases 1 and 2.
After the water breakthrough, as water continuously flows out of the vug from the bottom,
the oil-water interface in the vug moves upwards at an extremely low rate. Oil can only
flow out the vug from two sides, creating two oil-saturated zones at the left-bottom and
right-bottom of the model, which serves as the main pathway for oil to flow out from the
vug to the production well. Water completely saturates the vug at an extremely late PVI of
4.7, before which the water cut of the production well slowly increases from 80% to 90%,



Energies 2023, 16, 3041 8 of 23

then fluctuates between 90% and 100%. The oil recovery ratio at PVI 1.0 is only 46.2%, far
less than in Cases 1 and 2.
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2.3.4. Discussion

As illustrated by the experimental results in the single-vug model, the dynamic of the
two-phase displacement process in vugular porous medium for different flow directions is
heavily affected by gravity segregation. The entire displacement process can be divided
into four phases, as depicted in Figure 9. Phase 1 is the period before the water enters the
vug. The displacement during phase 1 is controlled by the porous medium; therefore, the
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duration of phase 1 is almost identical for different flow directions. Phase 2 is the period
between the water entering and starting to flow out of the vug. During phase 2, the main
displacement process is the accumulation of water at the bottom of the vug. As shown by
Figures 6–8 this process is dominated by gravity segregation and the density difference
between oil and water and is irrelevant to the macroscopic flow direction. However, the
macroscopic flow direction controls the location where water is able to flow out of the vug.
When the flow is vertically downward, water is able to flow out of the vug as soon as it
slightly accumulates at the bottom of the vug. When the flow is vertically upwards, water
is only able to flow out of the vug after it completely saturates the vug. This results in an
obvious difference in the duration of phase 2 for different flow directions. Furthermore,
since the water breakthrough of the production well occurs after phase 2, the water cut
keeps near zero for the entire phase 2. Therefore, the duration of phase 2 is highly correlated
with the oil recovery ratio, as shown in Figure 5a. Phase 3 is the period between water
starting to flow out of the vug and complete filling of the vug. The duration of phase 3 is
controlled by the initial amount of oil at the beginning of phase 3 and the oil flow rate out of
the vug. The initial amount of oil increases with decreasing θ. Furthermore, when θ is less
than 0◦, the water at the bottom of the vug prevents oil from flowing out of the vug along
the flow direction. Because of this, oil can only flow out from the vug horizontally, where
the pressure gradient is extremely small. This results in a prolonged duration of phase
3 for θ < 0◦, while for θ = 90◦ the duration of phase 3 is approximately 0. Phase 4 is the
period between the water filling of the vug and the end of the experiment. In this phase, as
water preferentially flows through the vug, the remaining oil in the porous medium form
several zones with high oil saturation. Because of the unfavored mobility ratio, complete
oil displacement from the porous medium is extremely slow, and the water cut stayed over
90% for phase 4. To summarize, the dynamic of water displacing oil in vugular porous
medium and the oil recovery ratio is correlated with the macroscopic flow direction.
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3. Numerical Scheme
3.1. Mathematical Model

We use a pure Darcy-type solver as our numerical solver for two-phase flow in the
single-vug model. Krotkiewski et al. [44] conducted single-phase upscaling for carbonate
reservoirs. They compared the results obtained from a pure Darcy-type solver and a solver
based on the Stokes-Brinkmann equation and found that the difference between the results
of the two solvers is negligible if the permeability of the void space exceeds 104 times the per-
meability of the matrix. The above large permeability method is adopted and examined in
this study, as the permeability of the vug can be estimated by Kv = L2

y/12 = 8.3× 10−6 m2,
which is larger than 104 times the matrix permeability (about 2 × 10−11 m2).

An isothermal system consisting of oil and water phase in a vugular porous medium
is considered in this study. Both phases are considered immiscible to each other; therefore,
mass balance equations for both phases are given by:

φ
∂(ρβSβ)

∂t
= −∇ · (ρβνβ) + qβ (1)

where subscript β = o, w denotes the oil and water phase; φ is the porosity; ρβ is the density
of phase β; Sβ is the saturation of phase β; t is the time; qβ is the sink/source term of phase
β per unit volume; νβ is the Darcy velocity of phase β, given by Darcy’s law:

νβ = −
Kkrβ

µβ
∇ψβ (2)

where K is the absolute permeability, which we assume to be isotropic and homogeneous
for porous medium; krβ is the relative permeability of phase β; µβ is the viscosity of phase
β; ψβ is the flow potential of phase β, given by:

ψβ = Pβ − ρβgD (3)

where Pβ is the pressure of phase β, g is the gravitational acceleration, and D is the depth.
The mass balance Equation (1) needs to be supplemented by the following constitu-

tive relationships:
So + Sw = 1 (4)

Pcow(Sw) = Po − Pw (5)

where Pcow is the capillary pressure between the oil and water phases.
The mass balance Equation (1) is discretized in space via the finite volume method

and discretized in time via a backward, first-order, finite difference method. The relative
permeability term in Equation (2) is dealt with a first-order upwind scheme. The discretized
mass balance equation is then solved by the Newton-Raphson iteration method fully
implicitly. For the details of the finite volume method and Newton-Raphson iteration
method, the readers are referred to references [15,26].

3.2. Model Discretization

The flow domain of the single-vug model is discretized as n × n structural grids, as
shown in Figure 10, where n denotes the number of grids on each side of the model. Each
grid has a size of 10/n × 1 × 10/n (in centimeters) and is indexed by subscript i and j.
For each grid, if the distance between its center and the center of the model is less than
the vug radius, the grid is labeled as a vug grid. The vug grids have a permeability of
104 times the permeability of the porous medium and have a porosity of 1.0. These vug
grids also have zero capillary pressure, straight line relative permeability, as shown in
Figure 11, and zero residual oil, as well as irreducible water saturation. In addition, the two
wellbores are also discretized as n × 1 grids, which have parameters identical to the vug
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grids. Fluid is injected from the bottom of the injection wellbore and is produced from the
top of the production wellbore. The other boundaries within the model are all set as no-flow
boundaries. Figure 10 shows the case where the flow direction in the model is horizontal.
The model can be rotated in the x-z plane by any degree of θ, where −90◦ ≤ θ ≤ 90◦.
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3.3. Model Validation

In this section, we provide two numerical examples to validate the numerical method
and the discretization scheme. The first numerical example is single-phase flow in a single-
vug model in the x-y plane where the vug diameter is 6 cm instead of 5 cm. Huang et al. [30]
performed upscaling for this particular single-vug model and obtained the upscaled per-
meability tensor. The upscaled permeability tensor is diagonal due to the symmetric nature
of the model and has K11 = K22 = 1.7904Km, where Km is the permeability of the porous
medium. We simulated steady-state single-phase fluid flow in this model, neglecting
gravity, and set n to be 25, 40, 50, 60, 80, and 100, respectively. The porous medium has a
permeability of Km = 10mD. Oil is injected at a constant rate and is produced at constant
pressure. After the steady state is established, the upscaled permeability is calculated by
using Darcy’s law. The upscaled permeability calculated by our numerical simulation
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method is given in Figure 12. It is shown that our simulation gives a relatively accurate
estimation of upscaled permeability and thus examines its validity. The difference between
our result and the result in reference might be attributed to the fact that the smooth vug
boundary cannot be precisely represented by our discretization scheme. This is partially
compensated by using a sufficiently large n. However, using a larger n would also result in
more computation time. To compromise between these two effects, we choose n = 50 in the
remainder of this study.
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result obtained by Huang et al. [30] based on homogenization theory.

The second numerical example is the simulation of the displacement experiment of
Case 2 in Section 2.3.2 (θ = 0◦). The following Corey-Brooks type model is adopted for the
capillary pressure and relative permeability of the porous medium:

Pcow = PD(
So − Sor

1− Sor
)
− 1

λd (6)

kro = kro(Swi)(1− S∗w)
2[1− (S∗w)

1+ 2
λ ] (7)

krw = krw(Sor)(S∗w)
3+ 2

λ (8)

S∗w =
Sw − Swi

1− Sor − Swi
(9)

where PD is the pore entry pressure; Sor is the residual oil saturation; λd is equal to 1.6; Swi
is the irreducible water saturation; S∗w is the dimensionless water saturation; λ is a shape
factor between 2.0 and 4.0. The boundary and initial conditions are set identically to the
conditions in the physical experiment. The fitted parameters are given in Table 1. The
volume of cumulative produced oil and the pressure drop between two wells obtained in
physical experiment and numerical simulation are given in Figure 13. The oil saturation
distribution during displacement is shown in Figure 14.
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Table 1. Parameters for the simulation of experiment Case 2.

Parameter Description Value Unit

K Absolute permeability 2.4 × 10−11 m2

φ Porosity 0.315 -
Swi Irreducible water saturation 0.358 -

kro(Swi) Oil phase relative permeability at irreducible water saturation 1.0 -
Sor Residual oil saturation 0.15 -

krw(Sor) Water phase relative permeability at residual oil saturation 0.4 -
λ Shape factor for Brooks-Corey relative permeability model Equations (7)–(9) 3.0 -

PD Pore entry pressure 0.6 KPa
ρo Oil density 840 kg/m3

µo Oil viscosity 18.0 mpa·s
ρw Water density 1000 kg/m3

µw Water viscosity 1.0 mpa·s
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A dimensional analysis of gravity force, viscous force, and capillary force during
the experiment can be taken briefly. We adopt the following two dimensionless numbers,
gravity number Gr and capillary number Ca, derived by Zhou et al. [45]:

Gr =
gravity f orce
viscous f orce

=
∆ρgKzLxLy

Qµo
(10)

Ca =
capillary f orce
viscous f orce

=
P∗c KzLxLy

QµoLz
(11)

where ∆ρ is the density difference between two phases; Kz is the average permeability in
the vertical direction, which is set equal to the permeability of the porous medium; Q is the
volumetric flow rate; µo is the oil phase viscosity; Lx, Ly and Lz are the length of the model
in respective directions, as shown in Figure 2. P∗c in Equation (11) is given by:

P∗c =

∫ 1−Sor
Swi

Pc(Sw)dS

1− Sor − Swi
(12)

Substituting the parameters in Table 1 into Equations (10) and (11) yields Gr = 0.03
and Ca = 0.42. It means that the viscous force in the porous medium region of the model is
the dominating force, which is over two times the magnitude of the capillary force. In the
meantime, the effect of gravity force can be neglected in the porous medium region. There-
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fore, the characteristic of two-phase flow and fluid distribution with different displacement
directions can be attributed to the gravity segregation in the vug.
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4. Directional Dependent Relative Permeability

To study the relative permeability of the vugular porous medium, the two-phase
displacement process in the single-vug model is simulated by the numerical scheme in
Section 3. Adopting the flow-based upscaling approach [46–48], the relative permeability
curves for different flow directions are calculated, and a directional relative permeability
model is proposed.
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4.1. Numerical Simulation

Using the large permeability numerical scheme in Section 3, the displacement process
in the single-vug model is simulated for 13 different values of θ (−90◦, −75◦, −60◦, −45◦,
−30◦, −15◦, 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦) using 2600 grids (n = 50). The parameters
used in the numerical simulation are summarized in Table 2. Water is injected into the
model for 3 × 105 s; the total injected volume of water is 230 times the pore volume.

Table 2. Parameters used in numerical simulation for the single-vug model.

Parameter Description Value Unit

K Absolute permeability 1.0 × 10−11 m2

φ Porosity 0.3 -
Swi Irreducible water saturation 0.2 -

kro(Swi) Oil phase relative permeability at irreducible water saturation 1.0 -
Sor Residual oil saturation 0.2 -

krw(Sor) Water phase relative permeability at residual oil saturation 0.6 -
λ Shape factor for Brooks-Corey relative permeability model Equations (7)–(9) 3.0 -

PD Pore entry pressure 0 KPa
ρo Oil density 800 kg/m3

µo Oil viscosity 5.884 mpa·s
ρw Water density 1000 kg/m3

µw Water viscosity 1.0 mpa·s
Q Injection rate 2.0 ml/min
Gr Gravity number 0.1 -
Ca Capillary number 0.0 -

The oil recovery ratio and water cut of production well for five different θ are plotted
in Figure 15. The oil saturation distributions are plotted in Figure 16. It can be seen that the
differences between the results for different flow directions in the single-vug model are as
obvious as that of the physical experiment. For the cases with flow direction θ > 0◦, the
recovery ratio is much higher, and the water breakthrough time is much later than that of
θ < 0◦. For the cases with flow directions θ < 0◦, water breakthrough occurs at significantly
lower PVI (less than 0.2), and the water cut of production well rapidly increases to over 80%
after breakthrough. For the case of θ = −90◦, the recovery ratio at the end of the simulation
is only 39.4%, suggesting that there is a large amount of oil trapped inside the vug. In
comparison, for the case of θ = 0◦, the recovery ratio at the end of the simulation is 88.0%.
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4.2. Transmissibility Weighted Upscaling

Adopting Darcy’s law for the single-vug model, the relative permeability of the single-
vug model can be calculated by:

Krβ =
QβµβL

AK∆ψβ

(13)

The parameters in Equation (13), except for the viscosity µβ, denote quantities evalu-
ated for the single-vug model and are calculated by the following equations.
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The volumetric flow rate of phase β out of the single-vug model Qβ is given by:

Qβ =
n

∑
j=1

Qβ,(n,j) (14)

where Qβ,(n,j) is the volumetric flow rate of phase β out of the grid with index (n, j), as
shown in Figure 10.

The cross-sectional area of the model A is given by:

A =
n

∑
j=1

A(n,j) (15)

where A(n,j) is the cross-sectional area of the grid (n, j).
The permeability K is obtained via the single-phase upscaling method described in

Section 3.3, which is 1.475 times the permeability of the porous medium.
The transmissibility weighted method was developed specifically to handle cases

where there is a significant effect of gravity [49–52]. Therefore, it is selected as the calculation
method for flow potential difference. The flow potential difference of phase β ∆ψβ is
evaluated between the center of the model and the production wellbore, and transmissibility
weighted averaged between each row j:

∆ψβ =

n
∑

j=1
T(n/2,j)(ψβ,(n/2,j) − ψβ,(n+1,j))

n
∑

j=1
T(n/2,j)

(16)

where T(n/2,j) is the transmissibility of grid (n/2, j), ψβ,(n/2,j) is the flow potential of phase
β in grid (n/2, j), and ψβ,(n+1,j) is the flow potential of phase β in production wellbore grid
(n + 1, j). L is then half of the model length.

The corresponding water saturation in the model is given by:

Sw =

1,n
∑
i,j

Sw,(i,j)V(i,j)φ(i,j)

1,n
∑
i,j

V(i,j)φ(i,j)

(17)

where Sw,(i,j) is the water saturation in grid (i, j), V(i,j) and φ(i,j) are the volume and porosity
of grid (i, j), respectively.

For each case with different flow directions θ, the single-vug model is numerically
simulated. The simulation results for each grid (i, j) are obtained and substituted into
Equations (13)–(17), yielding the upscaled relative permeability curves of the single-vug model.

4.3. Directional Relative Permeability Model

The upscaled relative permeability curves for θ = −90◦, −45◦, 0◦, 45◦, and 90◦ are
plotted in Figure 17. Figure 17 shows that the relative permeability curves corresponding to
a larger θ are heavily shifted towards the direction of a larger water saturation, indicating
a higher sweep efficiency and a later water breakthrough as suggested by numerical
simulation. Figure 18 shows the upscaled relative permeability at four dimensionless water
saturations (S∗w = 0.2, 0.4, 0.6, and 0.8) for different θ in polar coordinates. If the relative
permeability is an isotropic quantity, the relative permeability for different θ at any given
water saturation should locate on the same circle. For the single-vug model, the oil phase
relative permeability increases with an increasing θ for the same saturation, whereas the
opposite is true for the water phase. Given the results in Figures 17 and 18, it can be
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concluded that the relative permeability of the single-vug model exhibits a strong degree
of dependency on the fluid flow direction.
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From Figure 17, we can see that at any water saturation, the relative permeability
values are bound between the relative permeability in the upward direction, Kup

rβ and

the relative permeability in the downward direction, Kdown
rβ . Based on this observation, a

directional relative permeability model is proposed for a vugular porous medium, which is
a sine function modified by a shape factor A. For this model to be valid, we assume that the
entire relative permeability curve for direction θ = −90◦, 0◦, and 90◦ are known, and the
relative permeability of both phases are monotonic in the range of θ ∈ [−90◦, 90◦] at any
water saturation, then the relative permeability in any direction θ can be obtained by the
following equations:

Krβ(S∗w, θ) = Kdown
rβ + (Kup

rβ − Kdown
rβ )(

1 + sin θ

2
)

A
(18)

where:

A = log0.5(
Khor

rβ − Kdown
rβ

Kup
rβ − Kdown

rβ

) (19)

and Khor
rβ denote the relative permeability in the horizontal direction. The effect of the

shape factor A on Equation (18) is shown in Figure 19, where we assume Kup
rβ = 0.8 and

Kdown
rβ = 0.2.
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Figure 19. The effect of shape factor A in the directional relative permeability model Equation (18).

According to the model, if the relative permeability curves for fluid flow in vertically
downward, horizontal, and vertically upward directions (which can be determined either
by physical experiment or numerical simulation) were known, the relative permeability
curves in any other direction could be predicted by the proposed model. To validate this
directional relative permeability model, the relative permeability of the single-vug model
at several dimensionless water saturations (S∗w = 0.2, 0.4, 0.6, and 0.8) are predicted and
compared to the relative permeability calculated by the upscaling method in Section 4.2.
Due to symmetry, only the half curves for the water phase and oil phase are given in
Figures 20 and 21, respectively. It can be seen that the proposed model is able to accurately
predict the relative permeability value in different directions for the single-vug model.
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5. Conclusions

In this study, via both experimental and numerical simulation, we have demonstrated
that the relative permeability is directionally dependent and should not be modeled as
an isotropic quantity for a vugular porous medium. A symmetric single-vug model was
designed, and the physical experiments of its two-phase displacement were carried out in
three different flow directions, θ = −90◦ (vertically downward), 0◦ (horizontal), and 90◦

(vertically upward). The results of physical experiments have shown that the two-phase
flow regime is gravity segregated in the vug; the distribution pattern of two-phase fluid
accelerates the water flow in downward and horizontal directions, meanwhile decelerating
in an upward direction. The dynamic of the two-phase displacement process in the vugular
porous medium and the oil recovery ratio was heavily affected by the fluid flow directions.

The large permeability method and a Darcy-type solver were adopted for the numerical
simulation of the single-vug models with different directions of displacement. The simulation
results of pressure drop, cumulative oil production, and the oil saturation distribution agreed
well with that of the experiment. The directional dependence of the two-phase displacement
in the single-vug model was also addressed by the numerical simulation.

The transmissibility-weighted upscaling method was adopted to obtain the relative
permeability curves of the single-vug model for different flow directions based on sim-
ulation results. The resulting relative permeability curves showed a strong degree of
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dependency on the fluid flow directions. Based on the upscaled relative permeability
curves, a directional relative permeability model was proposed for the vugular porous
medium. With the proposed model, the relative permeability for any flow direction could
be predicted if the relative permeability values for the three specific directions (vertically
downward, horizontal, and vertically upward) were measured.
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