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Abstract: Greenhouse gas emissions, including carbon dioxide and non-CO2 gases, are mainly
generated by human activities such as the burning of fossil fuels, deforestation, and agriculture.
These emissions disrupt the natural balance of the global ecosystem and contribute to climate change.
However, by investing in renewable energy, we can help mitigate these problems by reducing
greenhouse gas emissions and promoting a more sustainable future. This research utilized a panel
data model to explore the impact of carbon dioxide and non-CO2 greenhouse gas emissions on global
investments in renewable energy. The study analyzed data from 63 countries over the period from
1990 to 2021. Firstly, the study established a relationship between greenhouse gas emissions and
clean energy investments across all countries. The findings indicated that carbon dioxide had a
positive effect on clean energy investments, while non-CO2 greenhouse gas emissions had a negative
impact on all three types of clean energy investments. However, the impact of flood damage as a
representative of climate change on renewable energy investment was uncertain. Secondly, the study
employed panel data with random effects to examine the relationship between countries with lower
or higher average carbon dioxide emissions and their investments in solar, wind, and geothermal
energy. The results revealed that non-CO2 greenhouse gas emissions had a positive impact on
investments only in wind power in less polluted countries. On the other hand, flood damage and
carbon dioxide emissions were the primary deciding factors for investments in each type of clean
energy in more polluted countries.

Keywords: CO2 emissions; clean energy investment; non-CO2 greenhouse gas emissions; climate
change; panel data regression

1. Introduction

Over the last ten years, global carbon dioxide (CO2) emissions have increased from
25,688 million metric tons in 2003 to 36,310 million metric tons in 2021 [1]. Simultane-
ously, non-CO2 emissions grew by approximately 20% between 2005 and 2020 worldwide,
from 10,506 million metric tons of CO2 equivalent to 12.619 million metric tons of CO2,
respectively, which could remarkably affect the internal equilibrium process of worldwide
ecosystems [2]. In this respect, investments in renewable energy have been made in or-
der to mitigate climate problems [3]. Thus, an analysis of the impacts of greenhouse gas
(GHG) emissions, both CO2 and non-CO2, on the share of clean energy investment is of
great importance.

GHG emissions have increased continuously because of human activity and non-
renewable energy combustion [2] and have created potential hazards for natural systems [4].
Extreme weather, for example, caused nearly 80% of the large-scale power blackouts from
2003 to 2012 [5], ranging from USD 20 to USD 55 billion per year in the United States [6].
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Moreover, disasters induced by GHG emissions influence various areas such as resource
management, economic improvement, and population growth [7]. Some unforeseen risks
may also affect environmental quality and energy consumption [8–10], the fluctuations
and functioning of the energy market [10–19], the stock market [13,20–23], the world trade
network [24], and unemployment and recession [25–28]. Consequently, policymakers tend
to reduce environmental damage through the development of renewable energy [29].

Potentially 90% of global warming was caused by anthropogenic GHG emissions
in 2007, according to the Intergovernmental Panel on Climate Change [30]. According
to the World Bank [31] and Environmental Protection Agency [32], Figure 1 shows the
contribution of CO2 and other GHG emissions in the world in 2021. Two-thirds of the
GHG emissions are related to carbon dioxide (CO2) [33,34], the most outstanding gas in
the atmosphere [35]. CO2 emissions are only emitted from the burning of fossil fuels (i.e.,
crude oil, coal, natural gas, and petroleum products) [36]. Meanwhile, among other GHGs,
nitrogen oxide (N2O), methane (CH4), water vapor (H2O), and F-gases are the greatest
and longest-lasting on earth [35]. They are released from numerous sources, including
the combustion of non-renewable energies, the processing and usage of chemicals, land
use modifications, manufacturing processes, and livestock capital [37]. Both CO2 and non-
CO2 GHG emissions are legally responsible for climate change policies in many countries
around the world. Modelers can make plans to include CO2 emissions, non-CO2 emissions,
or both in their models. However, non-CO2 greenhouse gas emissions are rarely considered
sufficiently, which may lead to misleading results in implementing the best climate change
policies [38] and differential impacts of policies in some countries depending on how non-
CO2 GHG emissions are taken into consideration [39]. The effect of wind investment on
lowering CO2 emissions, for example, has not been proven to be positive when excluding
non-CO2 emissions [40]. Therefore, this paper focuses on the impacts of CO2 and non-CO2
GHG emissions on renewable energy investment.
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The advantages of clean energy, such as fewer emissions and lower energy input
requirements [41,42] are reflected in renewable energy investment dramatically all over
the world. It is also expected to be the fastest growing energy source between now and
2030 [43]. Based on a Bloomberg New Energy Finance report [44], Figure 2 exhibits the total
clean energy investment between 2004 and 2021 across the globe. From 2008 onward,
clean energy investment became more essential, most probably because of climate change
and its different levels of environmental losses [45]. The total investment in clean energy
accounted for USD 543 billion in 2010, reaching USD 755 billion in 2021 (almost a 40%
increase). Since global trends indicate that the use of solar, wind, and geothermal energy
is effective in avoiding GHG emissions [46], determining the effects of GHG emissions
on renewable energy investment has become an important issue. When discussing the
impacts of CO2 and other GHGs on renewable energy investment, GHGs are the reason for
global warming. The greater the GHG emissions, the greater the environmental protection
awareness internationally, leading to an increase in clean energy consumption [39].
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According to the recent trend in renewable energy investment and GHG emissions,
several questions arise from this article:

• Are there differences in the effects of CO2 and non-CO2 GHG emissions on clean
energy investment between different kinds of clean energy?;

• Do floods, which are becoming more frequent in many countries because of climate
change, impact solar, wind, and geothermal energy investment similarly?;

• Do countries with greater and lesser CO2 and non-CO2 GHG emissions respond
similarly to solar, wind, and geothermal investment?

Herein, we utilized the panel data regression model involving 63 countries and using
annual data from 1990 to 2021 to provide reliable and reasonable answers to the questions
above. The panel regression technique has been commonly used in many fields of energy
economics [47–51]. The empirical analysis involved the estimation of random effects
models, whereas the Hausman test was employed for selecting the appropriate panel model
and was found to be significant at p ≤ 0.10. A collinearity test was applied to examine the
linear function of independent variables compared to other variables. A normality test
and correlation test are also considered to investigate the relationship between variables.
The biggest advantage of the panel data regression approach is that it comes with a panel
dataset that includes numerous observations of several individuals over a long period of
time [49,50], thereby revealing a range of differences in the analysis of CO2 and non-CO2
GHG emissions impacts on renewable energy investment. As a result, the use of a panel
data regression method is particularly necessary for this paper because the impacts of
non-CO2 and CO2 GHG emissions on renewable energy investment may differ in different
countries and different energy sectors such as wind, solar, and geothermal energies. The
existing research shows that many publications have suggested that only CO2 emissions
should be considered when studying the impact of greenhouse gas (GHG) emissions on
renewable energy investment. However, this study considers both CO2 and non-CO2 GHG
emissions and demonstrates that the results vary significantly when non-CO2 emissions
are included. Therefore, this paper addresses the gap in knowledge regarding the influence
of different types of GHG emissions on a clean energy investment.

This paper is structured as follows: Section 2 briefly summarizes the related literature
and the trends of CO2 and non-CO2 GHG emissions, as well as solar, wind, and geothermal
investments, which are especially discussed. Data sources and variables are interpreted,
and the details of the econometric methodology are provided in Section 3. In Section 4, the
empirical results are explained. Finally, the paper is concluded in Section 5 and provides
corresponding policy implications.
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2. Literature Review

After the 1980s, which coincided with industrial development, CO2 emissions have
been accelerated, and non-CO2 GHG emissions continue to grow in both developing and
developed countries [52]. Figure 3 compares the average CO2 and non-CO2 emissions
between 1990 and 2021, according to the World Bank [31]. As can be seen from the figure,
countries with a large population (e.g., India and China) have greater CO2 emissions,
whereas countries such as Brazil, Indonesia, Australia, Qatar, the Philippines, Bangladesh,
Mexico, and Vietnam reported a share of 40–90% non-CO2 emissions in 2021. This indi-
cates that non-CO2 GHG emissions have risen, probably because of less coal usage and
higher renewable energy investment [53]. As large amounts of greenhouse gas emissions
have influenced economic [2,13,54,55], energy [56,57], and environmental issues [58,59],
modelers can develop plans for different climate change policies [39], depending on which
types of GHG emissions are used.
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A large number of studies addressed only CO2 emissions, such as [60–63]. However,
overlooking non-CO2 GHG emissions may result in misleading impacts and false results.
Studies from China, for instance, focus on CO2 emission levels, and data are published with
different selection processes. For example, the authors of [38] showed that the impacts of
climate change policy differ with and without non-CO2 GHG emissions. They discovered
that, without non-CO2 GHG emissions, China experiences a large volume reduction in
real GDP. Other previous studies [64–67] also estimated that cost savings, for example, can
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reach up to 70% when additional gases are included. Some studies only examined various
gases, such as CO2, CH4, and N2O in [66] and CO2 and CH4 in [65,68]. Many reviewed all
GHG emissions, including [38,64,68–72]. This paper focused on both CO2 and non-CO2
GHG emissions to provide more accurate impacts of GHG emissions. The main objective of
this paper is to examine how CO2 emissions and other GHG emissions impact renewable
energy investment.

Since renewable energy usage is considered an efficient plan to overcome GHG emis-
sion problems [73–75], many researchers have accomplished research on their relationships.
For instance, [45,76–78] emphasize that CO2 emissions positively contribute to the con-
sumption of renewable energy. Another study [79] came to a similar conclusion through
the implementation of solar energy to minimize SO2, NOx, and CO2 GHG emissions.
Meanwhile, some scientists [40,42] thought that the effects of GHG emissions on wind in-
vestment were ambiguous. One possible reason is that they considered only CO2 emissions
in their calculations. In comparison, others discovered a positive relationship between
wind investment and CO2 emissions [80]. According to [37,81–83], GHG emissions also re-
sponded positively to geothermal energy investment and other variable energy. Therefore,
in the analysis of how CO2 and non-CO2 GHG emissions impact clean energy investment,
the main idea is that GHG effects and climate change consequences such as flooding are
conducive to such investment [84].

Investment in renewable energy has been followed in many countries, including
Australia [71], South Korea [38], the European Union [85], New Zealand [86], China [87],
Croatia [88], Poland [89], and other regions [90]. Based on IEA reports [43], Figure 4
illustrates the installed capacities of wind, solar, and geothermal energy between 1990 and
2021 on a globe scale. According to International Energy Agency reports, renewable energy
investment has increased dramatically and is expected to be the fastest growing energy
resource from now until 2030. From the datapoint in REN21 [91], a record value of USD 71
billion was invested in solar photovoltaic and wind power, where the share of geothermal
and other renewable energy was 4.8% in the United States, 6% in France, 3.2% in Japan,
and 16%, 6.5%, 1.7%, and 5.6%, respectively, in Canada, Italy, the United Kingdom, and
Germany. By that time, nearly 500 GW had been invested in solar and wind, whereas the
installed capacities for geothermal energy were lower at about 15 GW globally in 2018.
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The mitigation of CO2 emissions through renewable energy investment is well ac-
cepted by some researchers. For instance, in some previous studies [75,92–95], it was
assumed that the share of clean energy could play an important role in making good
decisions in energy policy. Meanwhile, [53], consistent with [96], surveyed the correlation
between carbon dioxide emissions and clean energy use and suggested that clean energy
is productive in dealing with GHG emissions. However, there has been no study in the
literature on whether the effect of non-CO2 GHG emissions on clean energy investment is
influenced by clean energy development.

From the existing literature, we found that many recent publications advocated only
CO2 emission levels to study how GHG emissions affect renewable energy investment.
Here, the present study focuses on both CO2 and non-CO2 GHG emissions, with the results
diverging when non-CO2 emission levels were included. In this context, this paper fills the
gap on how different types of GHG emissions influence clean energy investment separately.

3. Method and Data Description

In this section, the proposed model for discovering the impacts of CO2 and non-CO2
GHG emissions on clean energy investment is presented using panel data analysis. Data
and variables are also demonstrated in this section.

3.1. Model

The use of panel data has become increasingly common for analyzing and understand-
ing research problems [50]. Here, the influence of CO2 emissions on energy consumption is
estimated using the panel data regression approach developed by [2]. They found that CO2
emissions are, in the long run, the cause of energy consumption. Panel data regression also
appears in [97], which investigated the impact factors of energy-related CO2 emissions. The
results indicated that reducing CO2 emissions by improving a country’s energy structure
can boost renewable energy growth. The panel data model has many advantages as it
comes with multidimensional characteristics due to the large number of observations in
a panel dataset. One of its main features is its special heterogeneity using two models: a
fixed effect model that reduces the bias of omitted variables and a random-effect model [98].
Moreover, non-observable time and region-specific intercepts can be captured through this
model [52]. Although omitted variables are not observed in the dataset, the dependent
variable can be affected by such variables. Consequently, the panel data manages problems
with relevant omitted variables [49].

For selecting the appropriate panel model, the Hausman test can be used in the
model. However, the empirical analysis was tested using the fixed-effect and random-
effects models. Equations (1)–(3) include the dependent variables Solarit, Windit, and
Geothermalit, respectively, which represent the amount of energy produced by solar, wind,
and geothermal sources at a given location (i) and time period (t). The right-hand side of
the equation contains several independent variables, represented from β1 to β11, which
are coefficients that determine the effect of each variable on the dependent variable. B0
represents the constant or intercept term of the model,

The independent variables include several factors that could affect energy production,
including NonCO2it (a measure of non-CO2 emissions), Floodnit (the number of floods that
occurred in the region), Floodlit (the level of floods in the region), Policyit (government
policies related to energy and climate), Popuit (the population of the region), Rentit (rental
rates), GDPit (the gross domestic product of the region), Tradeit (the level of trade), Indusit
(industrial production), Energyit (total energy consumption), and CO2it (level of CO2
emissions).

Overall, these equations provide a way to analyze the factors that influence renewable
energy production in a given region and can help policymakers and industry leaders make
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informed decisions about how to increase renewable energy generation. The panel data
model is as follows:

Solarit = β0 +β1NonCO2it + β2Floodnit + β3Floodlit + β4Policyit + β5Popuit
+β6Rentit + β7GDPit + β8Tradeit + β9 Indusit
+β10Energyit + β11CO2it + εit

(1)

Windit = β0 + β1NonCO2it + β2Floodnit + β3Floodlit + β4Policyit + β5Popuit
+β6Rentit + β7GDPit + β8Tradeit + β9 Indusit + β10Energyit + β11CO2it
+εit

(2)

Geotermalit
= β0 + β1NonCO2it + β2Floodnit + β3Floodlit + β4Policyit + β5Popuit
+β6Rentit + β7GDPit + β8Tradeit + β9 Indusit
+β10Energyit + β11CO2it + εit

(3)

Figure 5 presents the model for the panel data regression based on the relationships
between dependent and independent variables. The dependent variables are the left-
hand side variables in every model, including Solarit, Windit, and Geothermalit, which
represent renewable energy investments. Installed solar, wind, and geothermal capacities
are representative of clean energy investment-based gigWatts. The variable i represents the
country; it ranges from 1 to N, covering 63 countries, and t shows the time period, ranging
from 1 to T, from 1990 to 2021. Independent variables and control variables are selected
on the right-hand side. Independent variables such as CO2 and non-CO2 are related to
GHG emissions (million tons), whereas Flood (n is an equal number and l is the total
loss by flood) is a climate change indicator [99]. The control variables include Rent (total
natural resource rents equals % of GDP), Policy (renewable energy policy), GDP (economic
development; constant 2010 USD), Popu (total population), Trade (merchandise trade; %
of GDP), Energy (renewable energy consumption), and Indus (industrial structure). εit
represents the error terms. Therefore, considering the effects of CO2 and non-CO2 GHG
emissions on wind, solar, and geothermal energy investment, the panel data are shown in
Equations (1)–(3).
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3.2. Database and Variables

This study investigated the impacts of GHG emissions (both CO2 and non-CO2) on
clean energy investment using panel data ranging from 1990 to 2021. Table 1 shows
the details related to the research factors, including the number of observations (Obs),
average (Mean), deviation (Deviation), and minimum and maximum (Min and Max). Some
countries use database sources released directly by official sources, such as national GHG
emission inventories in Australia [72] and South Africa [52], or global datasets like those
of the World Bank and the Global Trade Analysis Project (GTAP) database [32]. We used
the GTAP database for non-CO2 GHG emissions and the World Bank database [31] for
receiving CO2 emission data; the base year was 1990, with 63 countries up until 2021.
Data for solar, wind, and geothermal energy investment are gathered from BP or the
Statistical Review of World Energy [100]. Since capacity is defined as the most accurate proxy
for energy investment [101,102], we also used a capacity factor to measure renewable
energy investment. The number of flood events and the total loss from floods are based
on an international disaster database, referring to [103]. The International Energy Agency
provided the national public policy data (Policy) for renewable energy in selected countries.
We also account for policy in our analysis based on [102]. For Population which present the
population indexes of a country, we used the World Bank dataset, which includes GDP and
Trade. As Energy is reflected in the structure of renewable energy usage [104] and Rent is
the expenditure of natural sources [105], we applied a series of observations measured by
BP [100].

Table 1. Descriptive statistics of the variables.

Variable Observation Mean Standard
Deviation Min Max

Dependent variable

Solar 1991 0.034 0.166 0 3.064
Wind 1090 0.054 0.208 0 3.290

Geothermal 550 0.042 0.064 0 0.317

Independent variable

CO2 GHG emissions 1890 5.986 4.882 0.030 31.779
Non-CO2 GHG emissions 1536 0.057 0.136 0.002 1.204

Climate change variable

Flood-n 964 0.849 1.015 0.001 9.316
Flood-l 746 0.139 0.422 0 6.453

Control variables

Policy 480 0.167 0.325 0.001 2.973
Population 2016 0.811 2.162 0.003 14.124

Rent 1908 3.830 6.253 0 36.707
GDP 1989 0.250 0.190 0.006 1.115
Trade 2016 0.597 0.348 0 1.921

Industry 1848 27.727 7.733 6.094 58.902
Energy 1663 0.200 0.664 0 8.523

4. Analysis Results
4.1. Preliminary Analysis

The authors of [106] tested for selecting an appropriate model, either fixed-effect or
random-effect, as shown in Table 2. The value of the Hausman test indicates that the
random effect model is a better choice for the analysis than the fixed-effect model. The
F-test is used to select the best model (panel or cross section). As the coefficient is less than
0.10, the panel data is chosen.
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Table 2. Hausman test and F-test results.

Test Type
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The results of the collinearity test, measured by the variance inflation factor (VIF), are
given in Table 3. The VIF regression test provides a factor of multicollinearity among the
independent variables. If the VIF coefficient is less than 10, then there is no evidence of any
collinearity between variables [107].

Table 3. VIF regression collinearity test.

Variable VIF 1/VIF Variable VIF 1/VIF

CO2 5.44 0.184 Rent 1.87 0.533
Non-CO2 8.04 0.124 Energy 2.78 0.360

Population 7.73 0.129 Flood-n 1.93 0.518
Industry 5.37 0.186 Flood-l 1.82 0.550

GDP 3.60 277 Policy 1.28 0.784
Trade 3.41 0.293

Mean VIF 4.30

The proposed method is solved using Stata software.
Table 4 shows the results of the correlation test between all variables (two by two in a

matrix environment). The main diagonal of the matrix is equal to 1.000, which approves the
correlation of every variable with itself. The amounts closer to 1.000 show greater and more
positive correlations. There is no correlation when the obtained value is close to zero. The
significant point is the positive and high correlations between non-CO2 GHG emissions
and solar energy, the number of deaths due to floods, and the occurrence of floods that were
observed, which are equal to 0.535, 0.398, and 0.306 at a 99% significance level, respectively.

Table 4. Results of the correlation matrix of the variables.

Solar Non-CO2 Flood-n Flood-l Policy Population Rent GDP Trade Industry Energy CO2

Solar 1.000
Non-
CO2

0.535 1.000

Flood-n 0.149 0.398 1.000
Flood-l 0.066 0.306 0.327 1.000
Policy −0.038 0.032 0.139 0.119 1.000

Population 0.373 0.701 0.556 0.605 0.228 1.000
Rent −0.082 −0.001 0.045 −0.004 −0.037 −0.007 1.000
GDP 0.065 −0.013 −0.201 −0.231 0.04 −0.199 −0.151 1.000
Trade −0.108 0.214 −0.043 −0.117 −0.192 −0.205 0.050 0.133 1.000

Industry 0.045 0.158 0.257 0.168 −0.069 0.234 0.456 −0.037 0.209 1.000
Energy 0.825 0.643 0.181 0.085 0.113 0.373 −0.105 0.103 0.155 −0.073 1.000

CO2 0.064 0.208 −0.164 −0.155 −0.046 −0.088 0.021 0.758 0.079 0.182 0.116 1.000

From the first results, we found that the proposed model, panel data, was the best
method for our estimation. Additionally, the random-effect method should be used to
achieve the best regression estimation when performing the Hausman test. In addition,
according to the results in Table 4, there was no heterogeneity, variance, or correlation
between variables. No omitted variables were observed in the model.

4.2. The Effects of CO2 and Non-CO2 GHG Emissions on Solar Investment

The results of panel data estimation are shown in Table 5. First, the impacts of CO2
and non-CO2 GHG emissions on solar investment were analyzed in the panel random
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effects model. Table 5 shows that CO2 emissions have a positive relationship with solar
energy investment at the 10% level, whereas non-CO2 GHG emissions have a negative
relationship with this type of clean energy. The results indicate that only CO2 emissions
increase investment in solar energy, whereas other GHG emissions have negative impacts
on solar investment. This finding agrees with the previous literature, which shows that
among various GHG emissions, only CO2 encourages governments to invest in solar
energy [79]. The reason may be that countries with huge amounts of GHG emissions,
taking CO2 emissions into consideration, made the most profit in the reduction of GHG
effects through solar energy investment [108]. Another study [109] also discovered that
the growth of solar investment in a country depends on the effects of CO2 emissions on
solar energy. In other words, the greater the CO2 and GHG emissions, the greater the
implemented solar investment. However, in countries with less investment in solar energy
because of the high cost of solar technology compared with that of traditional energy, CO2
and GHG emissions effects on solar energy are insignificant [110].

Table 5. The estimated results.

Variable
Solar Wind Geothermal

Coefficient p-Value Coefficient p-Value Coefficient p-Value

CO2 0.022 0.003 0.006 0.809 −0.006 0.474
Non-CO2 −0.392 0.042 −0.397 0.050 −0.059 0.048
Flood-n −0.001 0.699 0.001 0.893 0.009 0.043
Flood-l −0.009 0.040 0.002 0.874 −0.007 0.744
Policy 0.082 0.002 0.070 0.021 0.049 0.100

Population 0.003 0.352 0.024 0.305 −0.015 0.002
Rent −0.004 0.060 0.017 0.000 −0.001 0.929
GDP −0.514 0.046 0.371 0.294 −0.390 0.045
Trade −0.068 0.054 0.117 0.049 −0.033 0.008

Industry 0.007 0.061 0.008 0.020 0.001 0.567
Energy 0.275 0.000 0.259 0.000 0.016 0.022
-CONS −0.148 0.160 −0.122 0.460 0.083 0.286

Observation 1087 1087 1087
R2 90.12 89.42 71.80

Wald Test 0.000 0.000 0.000
Norm of Residuals 0.836 0.565 0.610

Leamer Test 6.14 0.000 11.79 0.000 58.88 0.000
Hausman Test 0.000 1.000 2.96 0.991 21.18 0.2185
Breusch–pagan

Test 0.12 0.726 0.00 0.949 1.64 0.200

Wooldridge Test 1.314 0.253 0.770 0.386 0.654 0.420
Ramsey RESET

test 0.86 0.462 0.21 0.891 0.654 0.420

Among the control variables, Flood_l tended to decrease the solar investment in
countries with greater solar investment. One possible reason may be that the rain and
flood cause the failure of photovoltaic and power systems [6,107,111–113]. The United
States, for example, has incurred USD 20–55 billion in costs due to extreme weather-related
power outages [114]. The combination of rain and strong winds, resulting in terrible floods,
can significantly threaten solar equipment. This can lead to a loss of confidence in solar
investment due to climate change problems, as proven in [115,116], leading to reduced
solar investments.

The coefficients of Trade and Rent are negative, which are both statistically insignificant
at the 10% level, resulting in decreased solar investments in all countries (both those
with higher and lower solar investments). Policy, Energy, and Industry were statistically
significant at the 10% level and had positive impacts on solar energy investment. In this
regard, some scholars have found that policies on clean energy play an important role in
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promoting solar investment [102,117]. The authors of [118] indicated that energy policies
are conducted in countries with large investments in solar energy, resulting in effective solar
usage [119]. Meanwhile, the link between Rent and solar investment is the opposite. The
coefficient of Rent is statistically insignificant, implying that the cost of natural resources in
countries with lower solar investments is greater than that in countries with higher shares
of solar investments. This may be due to the lack of solar technology in the first group
of countries, as we mentioned. Meanwhile, the GDP variable is negative and statistically
insignificant at the 10% level. Additionally, it appears that Trade is statistically insignificant
and has a negative impact on solar investment. Promoting solar investment through trade
has not been studied in the literature.

4.3. The Effects of CO2 and Non-CO2 Emissions on Wind Investments

We similarly applied panel data estimation to discover the impacts of non-CO2 GHG
and CO2 emissions on wind energy investments. The empirical results are shown in the
middle part of Table 5.

As can be seen from the panel random effect model, the effect of non-CO2 GHG
emissions on wind investment is negative and statistically insignificant at the 10% level,
whereas the impact of CO2 emissions on wind investment is close to that of solar energy.
The authors of [120,121], investigated and concluded that no evidence confirmed that wind
investment is an effective way to reduce GHG emissions. As a result, policymakers do not
consider reducing GHG emissions by investing in wind energy.

The effects of Policy, Energy, and Industry on wind investments are positive and
statistically significant at the 10% level. The link between policy and wind investment is
similar to the findings of [102]. About the Energy variable, it seems that the vast amount
of renewable energy usage spurs wind energy investment just in countries with higher
wind investments. When faced with the structure of the industries, it seems that countries
with developed industries try to invest in wind technology, which affects GHG emissions
reduction. The results show that Rent and Trade produce similar effects on wind investment.
Both variables had negative impacts on wind investment. The reason may be similar to
that of solar investment.

4.4. Effects of CO2 and Non-CO2 Emissions on Geothermal Investment

In the last part of Table 5, we present the findings on the effects of CO2 and non-CO2
GHG emissions on geo-thermal investment. We looked into panel regression estimation
to evaluate how CO2 and non-CO2 GHG emissions affect geothermal energy investments
in detail.

From Table 5, the coefficients of non-CO2 GHG emissions and CO2 emissions were
negative and statistically insignificant at the 10% level, which differed from the effects of
GHG emissions on solar and wind investments. The reason is associated with the impacts
of climate change and its consequences, which countries can promote by investing in other
renewable energy sources. As Flood, as a factor in climate change, has a negative impact
on geothermal energy investments, the reason is similar to that of lower solar investment.
According to the existing literature, extreme weather inhibits geothermal investments. As
we can see, Policy and Energy had positive effects on geothermal energy investments. They
were statistically significant at the 10% significance level. In fact, uncertainties in energy
policies closely influence renewable energy investment levels [120]. Other control variables,
such as Population, GDP, and Trade, had negative impacts on geothermal investments.
Table 6 shows the results, extracted from the random-effect estimation in a panel data
model for solar, wind, and geothermal energy investment. The positive sign indicates a
positive relationship between two variables in a model, while the negative sign indicates a
negative relationship. The multiplication sign indicates that two variables have no effect
on each other in any given model.
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Table 6. Overview of the results.

Group Model 1 (Solar) Model 2 (Wind) Model 3 (Geothermal)

CO2 + + +
Non-CO2 − − −

Flood_l − + −
GDP − + −
Popu × × −
Rent − − ×

Energy + + +
Trade − − −
Policy + + +

Industry + + ×

4.5. Effects of CO2 and Non-CO2 Emissions on Renewable Energy Investments between Countries

We conducted analyses for selecting countries to investigate the relationship between
CO2 and non-CO2 GHG emissions on clean energy. Appendix A categorizes countries into
two groups based on their level of pollution: “Less-Polluted” and “More-Polluted.” The
criterion for grouping the countries is the average of CO2 emissions from 1990 to 2021.
The countries listed in the “Less-Polluted” group have a lower average of CO2 emissions
during this period, while the countries in the “More-Polluted” group have a higher average
of CO2 emissions.

The random-effects model was utilized for our analysis. The results of the panel data
estimation for selected countries are as follows in Sections 4.6–4.8.

4.6. Effects of CO2 and Non-CO2 Emissions on Solar Investment in Selected Countries

In Table 7, the effects of CO2 and non-CO2 GHG emissions on solar investment have
been evaluated separately for two groups of countries. The average CO2 emission was
chosen to divide countries into less and more polluted regions. According to the results,
non-CO2 GHG emissions led to fewer investments in the solar sector in less polluted
countries, which is statistically significant at a 10% level. The climate change variable,
Flood, shows similar results. Policy also leads to fewer investments in solar energy in
the above countries. The reason may be related to the lack of technology or even the
inadequate distribution of solar irradiation in such regions of the world. Population
and Trade have positive impacts on solar energy investment. The larger the population
demands, the greater the amount of renewable energy usage, leading to fewer polluting
emissions through solar investments in the mentioned sectors. As Trade is defined based
on [122], as the proportion of trade to GDP, trade is a reason for energy consumption,
whether in the short or long run; thus, the relationship between solar investment and trade
is positive.

The findings for the second group of countries, the more polluted sectors, indicate
that non-CO2 GHG emissions do not influence solar investments. However, Flood and
Energy consumption spur solar investment, implying that renewable energy consumption
is the possible reason for the high solar investments just in countries with huge amounts of
investment in the solar sector.

4.7. Effects of CO2 and Non-CO2 GHG Emissions on Wind Investments in Selected Countries

In Table 8, the effects of GHG emissions on wind energy investments are evaluated
separately for these two groups. As in the previous section, average CO2 emissions were
used to separate more polluted countries from others. Non-CO2 GHG emissions and
other emissions show differentiated influences on wind investments. For the first group
(more polluted countries), CO2 emissions do not affect wind investments, whereas non-
CO2 emissions have a positive impact on wind investments in less polluted regions. In
addition, Policy, Flood, and Rent are the main factors for less investment in the second
group. Population and Energy result in more investments in wind power.
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Table 7. Estimation results for the solar energy sector in more polluted and less polluted countries.

Variable
Less Polluted Countries More Polluted Countries

Coefficient p-Value Coefficient p-Value

CO2 −0.001 0.857 −0.024 0.408
Non-CO2 −0.097 0.029 −0.612 0.311
Flood-n −0.005 0.054 −0.012 0.002
Flood-l −0.007 0.031 0.046 0.343
Policy −0.033 0.024 −0.040 0.207

Population 0.009 0.000 0.010 0.831
Rent 0.0002 0.709 0.010 0.200
GDP 0.092 0.542 0.403 0.243
Trade 0.036 0.020 −0.114 0.397

Industry −0.001 0.035 −0.001 0.766
Energy 0.049 0.215 0.350 0.000
-CONS 0.006 0.499 0.228 0.283

Observation 546 541
R2 91.76 99.70

Wald Test 22,220.88 0.000 19,875.31 0.000

Table 8. Investment estimation results for the wind energy sector by group of polluted and less
polluted countries.

Variable
Less Polluted Countries More Polluted Countries

Coefficient p-Value Coefficient p-Value

CO2 −0.021 0.046 −0.045 0.312
Non-CO2 0.159 0.009 −0.67 0.595
Flood-n −0.004 0.001 −0.008 0.661
Flood-l −0.003 0.110 −0.035 0.662
Policy −0.014 0.000 −0.015 0.834

Population 0.066 0.000 2.039 0.000
Rent −0.005 0.001 0.012 0.173
GDP 0.200 0.148 0.579 0.444
Trade −0.009 0.541 −0.808 0.042

Industry 0.003 0.007 0.007 0.454
Energy 0.104 0.000 0.060 0.101
-CONS −0.278 0.000 −9.932 0.000

Observation 546 541
R2 90.81 73.58

F-Test 137.47 0.000 141.88 0.000

4.8. Effects of CO2 and Non-CO2 Emissions on Geothermal Investments in Selected Countries

Table 9 shows the results when considering the effects of GHG emissions on geother-
mal investments. In the first group of countries, the more polluted sectors’ non-CO2 GHG
emissions negatively influence geothermal investments. Non-CO2 emissions are not the
cause of increasing geothermal investments. Whereas, in the second group of countries,
non-CO2 GHG emissions positively influence geothermal energy investments. One point
that must be emphasized is that Flood does not affect geothermal energy too much, unlike
wind and solar power. The possible reason may be that extreme weather and climate
change damage and decrease the use of geothermal energy in less polluted countries. Our
results show that GDP is conducive to geothermal investments, which is in line with the
results in [123]. Thus, economic development can increase investments in countries with a
lower share of CO2 pollution. Likewise, Trade and Energy usage had the same effects on
geothermal energy as GDP, leading to increased investments. Therefore, faced with GHG
emissions, decision-makers may consider reducing non-CO2 GHG emissions by investing
in geothermal energy in less polluted countries.
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Table 9. Estimation results for the geothermal energy sector in more and less polluted countries.

Less Polluted Countries More Polluted Countries

Coefficient p-Value Coefficient p-Value

CO2 −0.122 0.000 0.006 0.019
Non-CO2 0.415 0.000 −0.083 0.025
Flood_N 0.003 0.077 0.0003− 0.398
Flood_L 0.002 0.886 −0.002 0.232
Policy 0.026 0.040 0.001 0.565

Population −0.003 0.341 0.007 0.018
Rent −0.0002 0.898 −0.001 0.037
GDP 1.499 0.000 0.035 0.152
Trade 0.065 0.000 0.042 0.061

Industry −0.001 0.300 −0.0001 0.749
Energy 0.240 0.000 0.0002 0.630
-CONS 0.169 0.000 −0.072 0.005

Observation 546 541
R2 96.14 96.09

F-Test 1194.94 000.0 55.169 000.0

5. Conclusions and Policy Suggestions
5.1. Conclusions

This study examined the effect of CO2 and non-CO2 emissions on clean energy invest-
ments using the panel data regression technique with random effects across 63 countries
from 1990 to 2021. This paper also studied whether countries with greater and lower renew-
able energy investments respond similarly to GHG emission effects. Therefore, the panel
data model was applied to the parameter results for countries with large and low carbon
dioxide emissions. We investigated the influence of CO2 and non-CO2 GHG emissions on
three types of energy (mainly solar, wind, and geothermal). In this study, we also tried
to answer some questions as follows: (1) do countries with greater and lesser CO2 and
non-CO2 GHG emissions respond similarly to clean energy investments? (2) are there
differences in the effects of CO2 and other GHG emissions on clean energy investments
between different kinds of clean energy? (3) do the effects of CO2 and non-CO2 emissions
on clean energy investments exhibit heterogeneity between different regions? and (4) does
Flood as a representative of climate change that shows extreme temperatures, have a pos-
itive impact on renewable energy investment? To provide reasonable answers to these
questions, the panel data regression model with random effects was used. According to the
empirical results, we arrived at various main conclusions. We found that CO2 emissions
have a positive effect on solar, wind, and geothermal investments in all countries. In fact,
the amount of CO2 emissions is considered a pattern for investing in three types of energy
across the globe. The reason may be that the CO2 emission dataset is released directly by
official sources, while for choosing the best policy to reduce GHG emissions, non-CO2
emissions are of great significance, as excluding non-CO2 GHG emissions may lead to
misleading results.

Non-CO2 GHG emissions had negative impacts on solar and geothermal energy
investments. The effects of these emissions on wind energy differed across countries.
The average CO2 emissions are accounted for to divide countries into two groups. The
first group included countries with low carbon dioxide emissions, and the second group
comprised regions with huge amounts of carbon emissions. The estimation results indicated
that non-CO2 GHG emissions did not impact solar, wind, and geothermal investments
in more polluted countries compared with those in less polluted regions. Meanwhile,
the relationship between wind energy and geothermal investments and non-CO2 GHG
emissions was positive in the second group of countries. The reason may be that non-CO2
emissions were the cause of pollutants in these types of countries.
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Regarding the climate change variable Flood, there was uncertainty about how it
could increase renewable energy investments. The relationship between Flood and solar,
and geothermal energy was negative, but positive for wind investments. A review of the
related literature also approved the same results. When it comes to controlling variables,
Energy consumption, Industry level, and Policy all had positive impacts on the three types
of clean energy.

We also found that for countries that experience high levels of environmental pollution
or CO2 emission levels, Flood and CO2 emission levels are the most important factors in
deciding whether to invest in solar, wind, or geothermal energy. Development growth is
an effective way to increase wind power investment, which is supported by the literature.
Trade was also investigated as an effective method of increasing solar and geothermal
investments in less polluted countries.

5.2. Policy Suggestions

According to the empirical results of this study, some policy recommendations and
suggestions to improve environmental quality through clean energy investments can be
drawn as follows.

First, the results show that non-CO2 GHG emissions have a significant positive correla-
tion with decreasing solar energy investments in less polluted countries. This suggest that
such regions should focus more on clean energy, given that the main source of pollution in
these countries is comprised of non-CO2 GHG emissions. As policy has a positive effect
on renewable energy investment, authorities can apply effective energy policies, such as
subsidies, to encourage countries to invest in renewable energy investments.

Moreover, non-CO2 emissions had positive effects on wind and geothermal invest-
ments in less polluted countries. Thus, governments should continue to implement policies
on clean energy and encourage investors to conduct differentiated clean energy plans based
on the different environments of countries.

Furthermore, from an economic perspective, a higher portion of economic growth is
deemed beneficial for lowering CO2 emissions in less polluted countries through greater
investments in wind power. Hence, developed nations should expand clean energy equip-
ment to achieve CO2 emission reductions.

Finally, all countries should pay more attention to the positive relationship between
CO2 emissions and clean energy investment and the negative relationship between non-
CO2 GHG emissions and clean energy. Although CO2 emissions are considered agents
determining the amounts of investments in renewable energy, we found that non-CO2
emissions are of great importance. The least polluted nations may enjoy lower carbon
emissions by reducing the scale of import trades, whereas the most polluted nations should
expand their energy policies. This may aid policymakers in achieving more environmentally
friendly economic decisions. It seems that reaching the substantial investment levels needed
to successfully manage the transition into a renewable energy future in less polluted
regions is a topic worthy of discussion. In this respect, energy policies can help them reach
greenhouse gas emission reduction goals.

The research only focused on the influence of CO2 and non-CO2 emissions on three spe-
cific forms of clean energy, namely solar, wind, and geothermal. It did not take other types
of clean energy, like hydropower and bioenergy, into account. In upcoming studies, the
effects of emissions from these other types of clean energy could be explored. Additionally,
the study did not examine how technological advancements impact investments in clean
energy. Future research could investigate this relationship. Additionally, socio-economic
factors such as education, income, and population growth were not considered in the study.
Including these factors in future research could provide a more comprehensive analysis of
the factors that determine investments in clean energy. In forthcoming studies, we intend
to employ advanced machine learning techniques to examine the intricate relationship
between climate change variables and the progress towards renewable energy adoption.
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Appendix A

Table A1. Country List.

Less Polluted (The Average CO2 from 1990 to 2021) More Polluted (The Average CO2 from 1990 to 2021)

Brazil Mexico Romania United Arab
Emirates USA Germany United

Kingdom

El Salvador Pakistan Honduras Ethiopia South Korea China Switzerland

Jordan Bulgaria Nicaragua Belarus New Zealand Japan India

Egypt Portugal Croatia Bangladesh Canada Spain South Africa

Ireland Italy Iceland Hong Kong Australia France Denmark

Poland Romania Iran Morocco Germany Belgium Sweden

Argentina Costa Rica Netherlands Italy Poland Czech Republic Austria

Thailand Vietnam Slovakia Sri Lanka Norway Belgium Finland

Turkey Argentina Uruguay Slovenia

The Philippines Hungary Kenya
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