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Abstract: Accurate localization of partial discharge in GIS equipment remains a key focus of daily
maintenance for substations, which can be achieved through advanced detection and location tech-
niques, as well as regular maintenance and testing of the equipment. However, there is currently
an issue with low accuracy in the localization algorithm. Aiming at the problems of low precision
and local optimization of the swarm intelligence algorithm in partial discharge localization system
of GIS equipment, this paper proposes a 3D localization algorithm based on a time difference of
arrival (TDOA) model of the improved artificial fish swarm algorithm (IAFSA). By introducing the
investigation behaviour of the artificial bee colony(ABC) algorithm into the artificial fish swarms
algorithm (AFSA), this algorithm is more efficient to jump out of the local extremum, enhance the
optimization performance, improve the global search ability and overcome the premature conver-
gence. Furthermore, more precise positioning can be achieved with dynamic parameters. The results
of the testing function show that IAFSA is significantly superior to AFSA and particle swarm op-
timization (PSO) in terms of positioning accuracy and stability. When applied to partial discharge
localization experiments, the maximum relative positioning error is less than 2.5%. This validates that
the proposed method in this paper can achieve high-precision partial discharge localization, has good
engineering application value, and provides strong support for the safe operation of GIS equipment.

Keywords: AFSA; GIS equipment; partial discharge; precise localization

1. Introduction

Gas-insulated switchgear (GIS) is widely used in electric power systems due to its
advantages of small floor space, high reliability, long maintenance cycle, immunity from
environmental pollution and high altitude [1,2]. In recent years, GIS equipment failure
has occurred frequently. GIS equipment failure will not only cause complete shutdown or
partial power failure of the substation, but also cause power loss, increase maintenance cost,
affect PD reliability of the power grid, and pose a significant threat to the safe operation
of the power grid [3]. When PD occurs inside GIS, electromagnetic wave signals are
generated, radiating to the surrounding area. Moreover, electromagnetic wave signals
have the characteristics of anti-electromagnetic solid interference and strong directionality,
which provides a theoretical basis for the localization of PD [4]. The localization algorithm
plays a crucial role in the localization of partial discharge [5–7].

There are several mature online monitoring techniques for partial discharge, such
as the ultra-high-frequency detection method [8] and the ultrasonic detection method [9].
However, ultrasonic signals attenuate quickly during propagation in GIS and are suscepti-
ble to equipment vibration interference, making ultrasonic detection generally unsuitable
for partial discharge in GIS [10]. The ultra-high-frequency detection method has strong anti-
interference ability, high sensitivity, and is not affected by mechanical vibration, making it
the main means of partial discharge online monitoring currently [11].
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The methods for UHF-based partial discharge localization for GIS equipment usually
include time of arrival (TOA), time difference of arrival (TDOA), and received signal
strength (RSS). Ahmad Hafiz Mohd Hashim et al. [12] proposed a method for locating
partial discharges (PD) in oil-filled equipment using acoustic emission (AE) and fuzzy logic.
The method involves pre-processing data with discrete wavelet transform (DWT), analysing
it with time of arrival (TOA), and applying fuzzy logic Mamdani (FLM) and Takagi–Sugeno
(FLTS) methods to determine the distance between the PD and AE sensors. Ephraim Tersoo
Iorkyase et al. [13] proposed a cost-effective radio fingerprinting technique. This technique
uses the received signal strength (RSS) extracted from PD measurements gathered using RF
sensors. The results demonstrated that the neural network produced superior performance
as a result of its robustness against noise. The TDOA method based on UHF is the most
widely used method for partial discharge localization in GIS equipment [14–16].

During the PD source localization process, the TDOA method is first used to establish
a non-linear system of equations based on the different time delays of the electromagnetic
wave signals arriving at the receiving antennas. The non-linear system is then iteratively
solved using non-linear optimization methods to obtain the accurate location of the PD
source. The methods for finding the optimal solution in solving the equations include
PSO [17], least squares method [18], genetic algorithm [19] and other methods. Traditional
algorithms are computationally complex and require careful selection of the initial values.
When the initial values are not properly chosen, the localization result may not converge or
even diverge.

The traditional PD source localization algorithm often fails to provide the correct
position of the PD, so some researchers have improved it using intelligent algorithms.
Meka et al. [20] adjusted the inertia weight of PSO effectively by using 49 and 9 simple
IF-THEN fuzzy rules to improve the global optimal solution, weaken the local conver-
gence problem and improve accuracy when estimating the PD source position. Xiaoxing
Zhang et al. [21] proposed a PD location method based on the Taylor–genetic algorithm.
The Taylor expansion method is used to solve hyperbolic equations, and the genetic al-
gorithm is utilized to search for the optimal initial point. The results show that using the
genetic algorithm to find an appropriate initial point greatly enhances the feasibility of the
Taylor algorithm. Junyi Cai et al. [22] proposed a hybrid DE-PSO algorithm by combining
the advantages of the differential evolution (DE) algorithm and the particle swarm opti-
mization (PSO) algorithm, which can maintain great diversity even at the later stages of the
calculation. The simulation and experimental results showed that the proposed algorithm
has excellent performance with high accuracy and strong robustness, and it can meet the
needs of field applications. Sourav Dhara et al. [23] proposed a near-field-based approach
for localization of PD sources with the help of a TDOA scheme. The result indicates the
superiority of the proposed near-field-based approach. Agostino Forestiero [24] proposed
a heuristic method that utilizes swarm intelligence techniques to construct a recommender
engine in an IoT environment. The method represents smart objects using real-valued vec-
tors obtained through the Doc2Vec model and employs a bio-inspired model, the flocking
model, to perform simple and local operations autonomously to achieve global intelligent
organization. A similarity rule based on the assigned vectors is designed to cluster similar
agents. The intelligent positioning allows for easy identification of similar smart objects,
thus enabling fast and effective selection operations. Experimental results demonstrate that
the proposed method improves clustering quality and relevance performance by about 50%.
Agostino Forestiero et al. [25] proposed a multi-agent-based approach for spatial sorting
and discovery of resource information provided by Grid. The behaviour of these agents
is inspired by ant colonies, and they can replicate or simply relocate resource descriptors.
By setting parameters similar to the ant pheromone mechanism, the balance between these
two objectives can be adjusted. The balance can be either static or dynamic. In the latter
case, a “epidemic” mechanism is used to convey the value of this parameter to the hosts
and agents of the Grid. Simulation analysis confirms the effectiveness of the reorganization
and discovery protocols as well as the aforementioned virus adjustment mechanism.
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The traditional AFSA algorithm optimizes and solves problems through four be-
haviours, but it is prone to getting stuck in local optimal solutions. Although it can obtain
an approximate global optimal solution, its search horizon and step size are fixed, which
can lead to premature convergence and reduce global optimization ability. To address these
issues and leverage the characteristics of AFSA, an AFSA algorithm with adaptive parame-
ters to improve the search horizon and step size is proposed. Increasing the search horizon
and step size in the early stage of the algorithm can help it quickly discover potential
optimal or better solutions and avoid getting stuck in local optimal solutions. As the search
progresses, the algorithm gradually reduces the size of the search horizon and step size to
finely search the search space, further improving the convergence performance and search
accuracy of the algorithm. This adaptive strategy can improve the search efficiency and
accuracy of the algorithm, avoid it becoming stuck in local optimal solutions, and ensure
that the algorithm searches for the optimal solution in the global scope. Optimization
improvements in algorithms can enhance the accuracy of partial discharge localization
when applied.

Therefore, we conducted research on intelligent algorithms for partial discharge local-
ization and proposed a three-dimensional localization algorithm based on a TDOA model
using an IAFSA algorithm. The main steps include the following: Firstly, it is necessary
to construct a mathematical model of the GIS physical entity and partial discharge for
subsequent calculations. We acquire and pre-process partial discharge ultra-high-frequency
electromagnetic wave data using an oscilloscope. Secondly, we use the generalized cross-
correlation algorithm to calculate the delay of partial discharge and obtain the delay data
of each receiving antenna. Thirdly, we input the delay data into the IAFSA to solve the
localization of the partial discharge source. The main contributions are as follows:

(1) The algorithm introduces exploration behaviour based on the traditional artificial
bee colony algorithm, making the algorithm more globally optimal and avoiding
becoming stuck in local optimal solutions by introducing new random factors.

(2) The algorithm uses dynamic parameters to adjust the value of parameters according
to the search process to more accurately locate the partial discharge source.

(3) We build an experimental platform and conduct on-site experiments to verify the
practical application effectiveness of our algorithm in engineering.

2. Principle of PD Localization
2.1. Mathematical Model

For the localization problem of the local PD, the TDOA is often used to obtain non-
linear equations. However, direct solving has high requirements for the iterative conver-
gence of the equations. Due to the influence of various interference noises, measurement
error, and other factors, there is no solution or multiple solutions, so this paper transforms
the problem of solving equations into an optimization problem. The main principle of
electromagnetic wave positioning [26] is as follows:

(1) collect the electromagnetic wave signals with a four-channel sensor;
(2) convert these signals into the time delay signals by the TDOA algorithm;
(3) substitute these signals into a mathematical model of electromagnetic wave posi-

tioning to solve the location of the partial discharge points. The GIS equipment is
equivalent to a cylinder, and the spatial Cartesian coordinate system is established as
shown in Figure 1.

Where, P(xp, yp, zp) is the partial discharge point, and Si(xi, yi, zi, ) (i = 1, 2, 3, 4)
represent the sensors. S1 is used as a reference sensor. According to Figure 1, the relative
distance difference between S2, S3, S4 and S1 to P can be expressed as:

∆li1 =
√
(xi − xp)

2 + (yi − yp)
2 + (zi − zp)

2 −
√
(x1 − xp)

2 + (y1 − yp)
2 + (z1 − zp)

2 (1)

where i = 2, 3, 4.
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Figure 1. Localization model of GIS equipment.

The time delay between an electromagnetic wave received by Si and S1 is labelled
as τi1(i = 2, 3, 4). Therefore, ∆li1 ≈ τi1v, and v is the speed of the electromagnetic wave.
Subsequently, the following fitness function f can be obtained

f (xp, yp, zp) = ∑4
i=2 (∆li1 − τi1v) (2)

Equation (2) is a non-linear equation, and it is difficult to be solved directly. To sim-
plify the calculation, it can be equivalent to an optimization problem with constraints,
expressed as 

min f (xp, yp, zp)
−r ≤ xp ≤ r
0 ≤ yp ≤ l
0 ≤ zp ≤ 2r

(3)

where l and r represent the length and radius of the GIS equipment, respectively.

2.2. Calculation of the Time Delay Based on the TDOA

Assuming that the partial discharge source transmits a high-frequency (HF) signal
at time T0, S1 and S2 receive the signal after T1 and T2, respectively, as shown in Figure 2.
Therefore, the time difference between them can be calculated as:

τ21 = T2 − T1 (4)

Compared with simulation, the time difference is difficult to calculated directly by
Equation (4) in the actual project, mainly for the following reasons:

(1) The HF signal contains a lot of environmental noises, and it is difficult to distinguish
the starting point of the signal directly.

(2) In terms of the signal transmission speed and distance between the sensors, the time
difference is at the nanosecond level and the calculation accuracy is thus required to
be high. Therefore, in practical applications, it is necessary to find more effective time
delay calculation methods to ensure the accuracy of PD location.
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Figure 2. Schematic diagram of the time delay calculation.

2.3. Generalized Cross-Correlation

Cross-correlation (CC) [27,28] is a method to compare the similarity of two functions
or signals in the time domain, which can estimate the time delay using the correlation
functions of two independently received signals, x1(t) and x2(t).{

x1(t) = s(t) + n1(t)
x2(t) = s(t− D) + n2(t)

(5)

where s(t) represents the target source signal. n1(t) and n2(t) stand for two independent
background noises. D is the relative time delay of signal x1(t) and x2(t), which can be
positive or negative.

Figure 3 shows the flow of generalized cross-correlation algorithm (GCC). x1(t) and
x2(t) are two different input signals, such as the partial discharge signals measured by
two sensors at different locations. H1(f) and H2(f) are filter functions. The correlator is to
calculate the CC function between the two pre-processed signals y1(t) and y2(t). The time
value corresponding to the peak value of the CC function is the time delay estimation.
In fact, the GCC is the Fourier transforms weighted by the cross power spectrum of the
input signal.

According to the Wiener–Khinchin’s theorem, the CC function and its cross power
spectrum are Fourier transform pairs of each other:

Rx1x2(τ) = F−1[Gx1x2(ω)] (6)

Ry1y2(τ) = F−1[Gy1y2(ω)
]

(7)

y1(t) and y2(t) are the filtering results of x1(t) and x2(t). Such that:
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Ry1y2(τ) = F−1[Gy1y2(ω)
]

= F−1[Gx1x2(ω)H1(ω)H∗2 (ω)]
(8)

where (H1(ω)H∗2 (ω) is the weighted coefficient, which affects the accuracy of the time
delay estimation. This paper adopts the Hassab–Boucher (HB) weighting method, and the
weighting function is |Gx1x2 |(Gx1x1 Gx2x2)

−1 . HB weighting has an inhibitory effect on the
periodic component of the signal, and the effect of low SNR is the same as the direct CC
method; therefore, the estimation accuracy is higher.

By obtaining the time delay, we can use optimization algorithms, such as IAFSA, to
solve for the coordinates of the partial discharge source.

Figure 3. Flowchart of generalized cross-correlation algorithm.

3. Improved AFSA

The AFSA [29–32] is an artificial intelligence algorithm realized by simulating the
group behaviour of natural organisms. It adopts a bottom-up approach and a behaviour-
based artificial intelligence method. The idea is that, for example, in water fish tend to find
the highest concentrations of food and flock towards them. Therefore, by simulating the
daily behaviour of fish, it is possible to find the location with the highest food concentration,
namely, the optimal solution.

3.1. Adaptive Vision Field and Step Length
3.1.1. Adaptive Vision Field

AFSA has the advantages of a good global parallel ability, simple structure, and fast
convergence speed in the early stages. However, it also has the disadvantages of slower
convergence speeds in the late stages and can easily fall into a local optimum. When
applied to PD localization, the accuracy is low. Concerning its slow convergence speed in
the later stages, this paper adopts adaptive parameters, with smaller adaptive parameters
in the later iteration process to not only enhances convergence speed, but to also improve
the optimization accuracy.

In the traditional AFSA, the vision field and step length of artificial fish are fixed when
they perform praying, swarming and following, which decreases the search accuracy and
affects the convergence speed. The specific performance is as follows: the larger the field of
vision, the stronger the global search ability with a faster convergence speed, while when
the field of vision is smaller, the local search ability becomes stronger. The larger the step
length, the faster the convergence speed, but there may be an oscillation phenomenon.
However, as the step length becomes smaller, the convergence speed tends to slow, but with
higher accuracy. Figure 4 shows the schematic diagram of the vision field Visualk and step
length Stepk. When the food concentration at position fa in the vision field is greater than
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that at the current position fm, the artificial fish will step forward to fnext. Otherwise, the
fish will search for other locations, such as fb and fc.

Figure 4. Vision field and step length of artificial fish.

Therefore, in the early stages the convergence speed and search-ability of the global
optimal solution are improved by enlarging the vision field and step length. In the middle
stage, the vision field and step length are gradually reduced to find the local optimal
solution. In the late stage, the vision field and step length are reduced to a minimum,
and the search is focussed in the remaining small area. The improved updated formula of
the vision field could be expressed as:

Visualk = (
1
k
+

1
k + 1

)Visualk (9)

where k is the number of the current iteration.
When fish choose a behaviour, they usually choose the pray behaviour. Considering

this characteristic, we only need to adjust the related mechanism of the pray behaviour.
The fish obtain a reasonable vision field in the early stage, and this decreases with the
optimization iterations. As a result, the dynamic changing of the vision field based on the
number of iterations is helpful to carry out an accurate local search in the neighbourhood
of the optimal solution. The adaptive change of the vision field makes the algorithm have a
faster optimization speed and ensures the accuracy of the final optimal solution.
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3.1.2. Adaptive Step Length

In the traditional AFSA, the individual fish moves forward with a fixed step length,
often leading the later iterative solution to fall into a local optimum which is difficult
to jump out. To avoid such a situation and to balance the stability and efficiency of the
algorithm, this paper adopts an adaptive step length, expressed as:

Stepk = (
1
k
− 1

k + 1
)Stepk (10)

where k is the number of the current iteration.
The improved pray behaviour based on an adaptive step length ensures the optimal

individual fish can participate in the next iteration, and the sub-optimal individual fish
can participate in the next iteration with a certain probability. The updated sub-optimal
individual fish makes the fish jump out from the local optimum to select the next round of
behaviour, and finally achieve the global optimal solution.

3.2. Behaviour Description of the IAFSA
3.2.1. Improved Pray Behaviour

When praying, the current position and food concentration of the fish are labelled as
fm and Fm, respectively. Furthermore, within the perceptual range of the fish, a random
point is selected and marked as fn with the food concentration Fn. When Fn > Fm, the fish
advances one step towards fn. Otherwise, the state fn is randomly re-selected for the
subsequent judgment. After repeating trynumber times, if the updated condition is still not
met, the investigation behaviour is carried out.

The update formula for the pray behaviour is expressed as:

fnext =


fm + Rand · Stepk ·

fn− fm
‖ fn− fm‖ Fn ≥ Fm

Investigational Behavior Fn < Fm

(11)

where Rand is a random number of (0,1) and || fn − fm|| is the distance between fn and fm.
fnext represents the the next position of the fish.

3.2.2. Improved Swarm Behaviour

When swarming, within the perceptual range of the fish, there are n f partners and the
centre position of these partners is fc with the food concentration Fc. Fc/n f > δFm indicates
that there is more food at fc and its surroundings are not crowded, then the fish moves one
step towards fc. Otherwise, the pray behaviour is carried out. The update formula for the
swarm behaviour is:

fnext =


fm + Rand · Stepk ·

fc− fm
‖ fc− fm‖

Fc
n f
≥ δFm

Pray Behavior Fc
n f

< δFm

(12)

where δ represents the crowding factor, and n f is the fish partners.

3.2.3. Improved Follow Behaviour

When following, once a fish has found that food is abundant around its partner, it will
follow the optimal partner fmax with the food concentration Fmax and move closer to fmax.
If Fmax /n f > δFm, then there is a higher food concentration at Fmax and its surroundings are
not crowded, and the fish advances one step towards fmax. Otherwise, the pray behaviour
is executed.
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The update formula for the follow behaviour can be expressed as:

fnext =


fm + Rand · Stepk ·

fmax− fm
‖ fmax− fm‖

Fmax
n f
≥ δFm

Pray Behavior Fmax
n f

< δFm

(13)

where fmax is the position coordinate of the partner with the optimal state.

3.2.4. Improved Investigation Behaviour

Although AFSA has a fast convergence in the initial optimization stage, it is easy
to fall into a local optimum. Concerning this problem, this paper introduces a detection
mechanism of the ABC algorithm into the AFSA [33–35]. In the fish population, the fish
with the poorest fitness value is defined as the detecting fish, and its position is reassigned
to realize the re-optimal search in the search space. The random behaviour of the AFSA is
replaced by the detection behaviour, and the higher local optimization ability of the ABC
detection mechanism is used to make up for the shortages of the AFSA. As a result, the fish
swarm can accelerate the convergence in the optimization process, are better able to jump
out of the local optimum, and avoid the premature problem. The calculation formula for
the investigation behaviour is:

fnext = fbest + Rand · ( fm − fbest) (14)

where fbest is the coordinate of the corresponding fish in the bulletin board.

3.3. Flow of the IAFSA

As is shown in Figure 5 , the main steps for locating the PD using the IAFSA are as
follows:

Step 1: Coordinated values and arrival delay of the four sensors are input;
Step 2: The initialization parameters, including the maximum number of iterations

Kmax, the population size N, the initial position of each fish (the coordinate value of the PD
source), the initial vision field Visual1, the initial step length Step1, the crowding factor δ,
and the number of repetitions trynumber are set;

Step 3: The fitness value of each individual of the initial fish swarm is calculated, and
the optimal fitness value in the bulletin board is recorded;

Step 4: The adaptive Visualk and Stepk is calculated according to the number of
iterations;

Step 5: The swarm and follow behaviours are executed; furthermore, the pray or
investigation behaviours are performed according to the food concentration condition;

Step 6: The fitness values of the pray, follow, investigation and swarm behaviour are
compared with the fitness values of the bulletin board to replace or retain the fitness values
of the bulletin board;

Step 7: The iteration according to Kmax or the convergence condition are stopped or
repeated;

Step 8: The position coordinates of the PD source are output.
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Figure 5. Flowchart of the IAFSA.
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4. IAFSA Simulation Test
Standard Test Function and Simulation Test

In order to evaluate the performance of the IAFSA, 12 standard test functions were
selected to carry out 50 experiments, and the results were compared with those of the AFSA
and PSO. The experimental results less than 10−8 are represented by 0. The experimental
environment used MATLAB 2018a, Windows 11, and an Intel(R) Core(TM) i5-12500H @
3.1 GHz CPU with 16 GB of RAM. Table 1 shows the selected test functions, where Dim
denotes the number of variables. These functions are derived from the CEC benchmark
function [36], covering unimodal functions (F1–F4), multimodal functions (F5–F8), and fixed
dimensional multimodal functions (F9–F12), all of which have minimum values. We set the
PSO population size m = 50, maximum number of iterations kmax = 100, particle position
range xi ∈ [0, 255], velocity range vi ∈ [−10, 10], individual learning factor c1 ∈ [0.5, 2.5],
and social learning factor c2 ∈ [0.5, 2.5]. The main simulation parameters of the AFSA
and IAFSA were set as Kmax = 100, N = 100, Visual1 = 0.5, Step1 = 0.25, δ = 0.618, and
trynumber = 100.

Table 1. Benchmark function.

Test Function Type Dim Range fmin

F1(x) = ∑n
i=1 x2

i US 30 [−100, 100] 0

F2(x) = ∑n
i=1 |xi|+ ∏n

i=1 |xi| US 30 [−10, 10] 0

F3(x) = ∑n
i=1(|xi + 0.5|)2 US 30 [−100, 100] 0

F4(x) = ∑n
i=1 ix4

i + random[0, 1) US 30 [−128, 128] 0

F5(x) = −20exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e UN 30 [−32, 32] 0

F6(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos( xi√
i
) + 1 UN 30 [−600, 600] 0

F7(x) = π
n (10sin(πy1) + ∑n−1

i=1 (yi − 1)2(1 + 10sin2(πyi+1)) + (yn − 1)2) UN 30 [−50, 50] 0

+∑n
i=1 u(xi, 10, 100, 4)

F8(x) = 0.1(sin2(3πx1) + ∑n
i=1(xi − 1)2(1 + sin2(3πxi + 1)) + (xn − 1)2 UN 30 [−50, 50] 0

(1 + sin2(2πxn))) + ∑n
i+1 u(xi, 5, 100, 4)

F9(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 FDM 2 [−5, 5] −1.0316

F10(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)2 + 10(1− 1

8π )cosx1 + 10 FDM 2 [−5, 5] 0.398

F11(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)) FDM 2 [−2, 2] 3

×(30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2))

F12(x) = 20 + x2
1 + x2

2 − 10cos(2πx1)− 10cos(2πx2) FDM 2 [−5.12, 5.12] 0

From Table 2, the mean value solved by the IAFSA is very close to the real value, while
those solved by the AFSA and PSO deviate far from the real value because a few particles
fall into the local optimum. In terms of the variance, the results solved by the IAFSA are
close to zero, indicating that the results are stable. In contrast, the results of the AFSA and
PSO are slightly more prominent. Clearly, the stability of the IAFSA is stronger than the
AFSA or PSO.

To further investigate the performance of the IAFSA in standard function testing, we
randomly selected an optimization process and studied the iterative process of the three
algorithms. As shown in Figure 6, the optimization process used the standard test function
F12. From the figure, it can be seen that the PSO algorithm was trapped in a local optimum
near the fitness value of one and hovered around the local optimum value from the fifth
generation to the fiftieth generation. Even in the final stage of optimization, the PSO algo-
rithm failed to find the local optimum value, producing a large error. Although the AFSA
did not fall into a local optimum, it only found the optimal value at the thirtieth generation,
and there was still errors present compared to the optimal value. In contrast, the IAFSA
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found the optimal value at the tenth generation and did not fall into a local optimum. This
demonstrates that the IAFSA not only has the excellent ability to escape from local optima,
but also has a fast convergence speed and a high convergence accuracy. In conclusion,
the experimental results show that the IAFSA is an optimization algorithm with superior
optimization performance, high stability, and a strong global convergence ability.

Table 2. Result of the benchmark function test (each function was executed 50 times).

Function Mean (PSO) Std (PSO) Mean (AFSA) Std (AFSA) Mean (IAFSA) Std (IAFSA)

f1 7.23× 10−5 6.30× 10−5 8.53× 10−5 7.28× 10−5 0 0
f2 0.23241 8.23× 10−2 0.21362 7.59× 10−2 0 0
f3 5.61222 0.73845 3.58941 0.58127 0 0
f4 0.69190 0.21219 0.82459 0.35841 0.00069 0.00055
f5 2.10830 0.27572 2.00581 0.22584 0 0
f6 0.00105 0.00168 0.02584 0.01265 0 0
f7 4.41429 1.81612 1.58412 0.75614 0.03541 0.01594
f8 0.50179 0.24452 0.25841 0.15847 0 0
f9 −1.0316 0 −1.0316 0 −1.0316 0
f10 0.39789 0 0.39789 0 0.39766 3.58× 10−2

f11 3 0 3 0 3 0
f12 0.216845 0.143549 0.207093 0.141906 0.000432 0

The bolded content in the table indicates the best experimental results.

Figure 6. Convergence curve of test function F12.

5. IAFSA for Simulation in the PD Location

To verify the practical effect of the IAFSA, a series of tests on the PD location were
carried out on a 220 kV three-phase double-winding oil-immersed transformer by referring
to the test data in [37]. As show in Figure 7, the dimensions of the transformer are:
5000 × 2500 × 3000 mm. The coordinates of the four sensors are S1 (3530,200,1620), S2
(1080,200,680), S3 (2310,200,430), and S4 (4340,200,680), with the coordinate unit in mm.
The positions P of the PD sourced are shown in Table 3:
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Figure 7. PD localization diagram.

Table 3. Standard test functions.

PD Source Coordinate/mm Measured Delay/ns

1 (1120,560,1300) −9.07, −4.88, 4.12
2 (1120,520,2160) −5.12, −2.01, 5.33
3 (2750,550,1300) 4.05, 0.40, 4.10
4 (3920,830,2150) 11.63, 7.71, 3.75
5 (4610,360,1480) 12.96, 7.55, −1.44

The main parameters of PSO, AFSA and IAFSA are shown in Table 4.

Table 4. Parameter settings of each algorithm for simulation.

Algorithm Kmax N Step1 Visual1 δ trynumber ω c1 = c2

PSO 60 80 —— —— —— —— 0.6 2
AFSA 60 80 10 5 0.618 30 —— ——
IAFSA 60 80 10 5 0.618 30 —— ——

If P (x,y,z) and P (xi,yi,zi) are respectively represent the actual and calculated positions
of the PD source, the distance error ∆r is defined as

∆r =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 (15)

In order to more clearly evaluate the performance of the positioning algorithm, this
paper uses relative error as the evaluation index. The relative error refers to the difference
between the actual positioning result and the furthest true position, calculated with the
furthest true position as the reference. The specific calculation formula is as follows:

δr =
|∆r|
Ddia

(16)

where Ddia is the distance between the two furthest points.
The smaller the relative error, the more accurate the positioning result. In practical

applications, a relative error of less than 5% is considered a desirable positioning effect.
By analysing and comparing the experimental data, the performance of different positioning
algorithms can be evaluated, providing references for practical applications.

Through a series of simulated field tests, some conclusions could be achieved as follows:
The localization results of the IAFSA are global with location errors significantly

less than the AFSA and PSO, as well as slightly less than the complex domain Newton
iteration-grid search method (CDNIGS). Meanwhile, the localization results of the PSO,
AFSA, and CDNIGS often fall into local optima, leading to abrupt extremum and decreased
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positioning accuracy. However, the IAFSA has a relative error less than 1.6% and avoids
falling into the local optimum. Obviously, the IAFSA has better location result stability.

Influence of Different Time Delay Errors

The theoretical delay τc1 of the discharge signal reaching each sensor can be calculated
based on the coordinates of each sensor and PD power source, and the speed of electro-
magnetic waves c, while the measured delay τi1 can be calculated according to the starting
time of the first wave. Then the delay measurement error ∆τi1 can be calculated as:

∆τi1 = τi1 − τc1 (17)

According to Equation (15), the experimental data of PD source No.5 in Table 5 was
selected to calculate the theoretical delay.

Table 5. Localizationresults and errors for the simulation.

PD Source
CDNIGS 1 PSO AFSA IAFSA

Coordinate ∆r δr Coordinate ∆r δr Coordinate ∆r δr Coordinate ∆r δr
(mm) (mm) (%) (mm) (mm) (%) (mm) (mm) (%) (mm) (mm) (%)

1 (1040,650,1230) 140 2.2 (1160,760,1562) 332 5.2 (1195,583,1230) 106 1.7 (1053,609,1337) 91 1.4
2 (1180,200,2080) 340 5.4 (1391,531,2232) 281 4.4 (696,491,2067) 435 6.8 (1088,513,2068) 98 1.5
3 (2700,600,1310) 70 1.1 (2631,532,1192) 162 2.6 (2780,455,1662) 378 5.9 (2829,593,1261) 98 1.5
4 (3960,790,2300) 160 2.5 (3521,752,1826) 527 8.3 (3891,751,2300) 172 2.7 (3838,783,2195) 105 1.6
5 (4810,200,1580) 280 4.4 (4032,421,1509) 582 9.2 (4874,400,2043) 623 9.8 (4623,350,1565) 86 1.4

1 The position results of the CDNIGS in Table 5 are all from the literature [37]. The bolded content in the table
indicates the best experimental results.

Furthermore, the delay errors are artificially added into the theoretical delay to study
the influence of different delay errors on the location results. Specific simulation results are
shown in Table 6:

From Table 6, when ∆τil = 0 ns, the relative location errors of the three algorithms
are all within 1%, and that of the IAFSA is 0.2%. When ∆τil = 0.2 ns, the relative error of
the IAFSA becomes 0.5%. Although the location accuracy of the PSO and AFSA is not as
high as that of the IAFSA, their relative errors are still less than 1.3%. When ∆τil = 0.4 ns,
the PSO and AFSA fall into the local optimum, and the relative error of the IAFSA is 0.6%.
When 0.6 ns < ∆τil < 0.8 ns, the PSO and AFSA are trapped in the local optimum with
relative errors greater than 4.5%, and exceeds 5% when ∆τil = 1 ns. However the maximum
relative error of the IAFSA is no more than 1.3%.

With an increase in the delay error, the relative error of the three algorithms also
increases. The location results of the PSO and AFSA both show extreme values, but the
relative location error of the IAFSA always remains below 1.3%, and there is no extreme
value. The delay error partially impacts the location accuracy of the IAFSA. However,
within ∆τil of 1 ns, the IAFSA shows strong robustness, and performs better than the PSO
and AFSA in location accuracy.

Table 6. Location results with the different delay errors.

∆τil/ns PSO AFSA IAFSA

Coordinate ∆r δr Coordinate ∆r δr Coordinate ∆r δr
(mm) (mm) (%) (mm) (mm) (%) (mm) (mm) (%)

0 (4658,330,1482) 57 0.9 (4630,399,1493) 45 0.7 (4615,368,1484) 10 0.2
0.2 (4647,426,1502) 79 1.2 (4666,301,1507) 85 1.3 (4628,385,1491) 33 0.5
0.4 (4745,552,1555) 247 3.9 (4657,438,1507) 95 1.5 (4627,392,1491) 38 0.6
0.6 (4466,126,1407) 284 4.5 (4782,586,1574) 299 4.7 (4634,403,1494) 52 0.8
0.8 (4680,473,1520) 139 2.2 (4610,49,1481) 311 4.9 (4642,416,1499) 67 1.1
1.0 (4543,692,1455) 340 5.4 (4420,621,1400) 333 5.2 (4585,279,1468) 85 1.3

The bolded content in the table indicates the best experimental results.
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6. IAFSA for Laboratory PD Location
Field Experiment

To further verify the effectiveness of the IAFSA, we carried out PD localization ex-
periments in the laboratory. A schematic diagram of PD location is shown in Figure 8.
The experimental system consists of GIS, a PD generator, four identical high-frequency
sensors, and an oscilloscope. The GIS box is made of stainless steel with a good elec-
tromagnetic shielding performance with a length of 3000 mm and a radius of 300 mm,
as shown in Figure 9. The coordinates of the four high-frequency sensors are S1 (0,450,600),
S2 (300,1650,300), S3 (300,1950,300), and S4 (0,2250,600) mm, and S1 is the reference sensor.
The power–frequency high-voltage control platform is used to apply high voltage (10 kV) to
a PD defective model to generate a PD signal. The sensor used in the experiment was a mi-
crowave antenna. A front RF amplifier was internally designed. Before signal transmission,
the RF was amplified to improve the signal-to-noise ratio. The gain of the amplifier was
set at 10 dB. A high-pass filter was built into the channel to filter out interference signals.
The detection frequency band of the sensor was 100 to 1500 MHz. An oscilloscope was
used to collect the resultant signals. The system adopts the dsox4154a-type digital storage
oscilloscope of the Keysight Technologies company. The four channels of the oscilloscope
can be simultaneously acquired. When the four channels are synchronized, the acquisition
frequency of each channel can reach 1.5 GHz, and the acquisition rate is 5 GS per second.
When measuring, the oscilloscope can be directly connected to the PC terminal, and the
collected waveform data is stored on the PC terminal to facilitate subsequent analysis.

Figure 8. Schematic diagram of the localization-based position system.
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Figure 9. Layout and localization diagram.

The curves of the four waveforms in Figure 10 correspond to the local discharge signals
received by the four sensors in Figure 8, and the local discharge signals were received by
the sensors at −8 ns. These waveforms were obtained by shifting the oscilloscope up and
down to more intuitively observe the time delay of the signals received by the sensors
located at different positions. The horizontal axis in the figure represents time, with each
small grid representing 20 ns, while the vertical axis represents the voltage amplitude,
with each small grid representing 200 mV.

Figure 10. Actual PD signals.

After collecting the waveform data by the four-channel oscilloscope, the time delay
was calculated by the GCC algorithm. The Hassab–Boucher (HB) weighting method was
adopted with the weighting function of|Gx1x2 |(Gx1x1 Gx2x2)

−1, suppressing the periodic
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component of the signal. At low SNR values, the effect is similar to that of the direct
cross-correlation method, and the estimation accuracy is high. Figure 11 is the time delay
calculation results of the field experiment. The data collected by S3 and S1 in the first
experiment was selected and the time delay τ31 calculated. The peak position in Figure 11
is 2.31 ns, implying that the time delay is 2.31 ns. The other time delays were obtained by
this method.

Figure 11. Time delay obtained the by HB weighting method.

The theoretical delays, measured delays and delay errors of the five PD sources are
shown in Table 7.

In Table 7, the minimum and maximum delay errors are 0.03 and 0.51 ns, respectively.
This indicates that the time delay accuracy obtained by the GCC with the HB weighted
method can be used for PD localization.

Table 7. Theoretical time delay, measured time delay, and time delay errors of the five PD sources.

PD Coordinate of PD Theoretical Delay Measured Delay Delay Error
Source (mm) (ns) (ns) (ns)

1 (0,900,400) 1.07, 2.01, 2.91 1.14, 2.31, 2.94 0.07, 0.30, 0.03
2 (0,1350,500) −1.45, −0.69, 0.00 −1.51, −0.83, 0.21 −0.06, −0.14, 0.21
3 (100,900,300) 0.75, 1.73, 2.79 1.01, 1.70, 2.84 0.26, −0.03, 0.05
4 (100,1050,300) −0.15, 0.81, 1.88 −0.22, 0.96, 1.92 −0.07, 0.15, 0.04
5 (100,1350,300) −1.98, −1.07, 0.00 −2.41, −0.56, 0.26 −0.43, 0.51, 0.26

Using the measured time delay, the localization calculation can be carried out. To com-
pare the location effects, the parameters of the PSO, AFSA and IAFSA are set in Table 8.

Table 8. Parameter settings of each algorithm for laboratory.

Algorithm Kmax N Step1 Visual1 δ trynumber ω c1 = c2

PSO 60 80 —— —— —— —— 0.6 2
AFSA 60 80 8 6 0.618 30 —— ——
IAFSA 60 80 8 6 0.618 30 —— ——

The position results and errors of the three algorithms are shown in Table 9. From
Table 9, we can reach the following conclusions. Firstly, when the delay error is small,
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the localization results of the three algorithms are relatively stable, and there are no extreme
values or local optima. However, when the delay error is large, the localization results of the
PSO and AFSA both fall into local optima and exhibit extreme values, while the positioning
error of the IAFSA is controlled within 2.4%, and the localization results are relatively
stable. Secondly, in terms of the comprehensive localization error, the localization effect of
the IAFSA is superior to that of the AFSA and PSO. The IAFSA can achieve strong globality
and stability in localization, with relative positioning errors all within 2.4%, meeting the
requirements of precise on-site positioning.

Table 9. Localization results and errors from laboratory experiments.

PD Source PSO AFSA IAFSA

Coordinate ∆r δr Coordinate ∆r δr Coordinate ∆r δr
(mm) (mm) (%) (mm) (mm) (%) (mm) (mm) (%)

1 (137,905,540) 196 6.4 (78,902,457) 97 3.1 (49,905,404) 49 1.6
2 (8,1362,590) 92 3.0 (36,1350,456) 57 1.8 (13,1345,557) 59 1.9
3 (105,864,200) 105 3.4 (36,878,190) 128 4.1 (135,904,343) 56 1.8
4 (72,1044,253) 54 1.7 (84,1046,271) 32 1.0 (89,1046,275) 26 0.8
5 (255,1717,392) 409 13.2 (296,1664,126) 409 13.2 (72,1348,230) 74 2.4

The bolded content in the table indicates the best experimental results.

7. Conclusions

The traditional AFSA has the disadvantages of a slow convergence speed and can easy
fall into a local optimum in the late stage; therefore, the optimal solution cannot meet the
actual engineering requirements when the AFSA is applied in PD localization. In this paper,
a 3D TDOA localization algorithm based on the IAFSA is proposed. Firstly, the detection
behaviour of the ABC is introduced into the AFSA, improving its ability to jump out of
local extremum and global search, overcoming the premature phenomenon. Secondly,
the adaptive vision field and step length are adopted. In the early stage of the search,
the search-ability of the global optimal solution and convergence speed are improved by
increasing the vision field and step length. In the middle stage, the vision field and step
length are gradually reduced to find the local optimal solution. In the late stage, the vision
field and step length are reduced to a minimum, and the search focuses in the remaining
small area with greatly improved optimization accuracy. Finally, the IAFSA is applied to
PD localization. Simulation and field experiment results show that the IAFSA has a better
localization performance than the AFSA or PSO.

Compared with popular algorithms such as neural networks and deep learning, the
IAFSA does not require a large amount of data to train the model; it does not require
powerful computing resources to run, unlike neural networks and deep learning; and it
has low hardware requirements, running on portable devices such as embedded systems
making it highly practical. Regarding future research directions, one potential avenue is
the use of high-speed AD acquisition chips to replace oscilloscopes and store acquired data
on embedded platforms, such as FPGAs. Another possibility is to combine the position-
ing system with a smart inspection robot for GIS substations using 5G communication,
in order to achieve fully automated and intelligent localization of partial discharge sources
in substations.
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Abbreviations
The following abbreviations are used in this manuscript:

TDOA Time difference of arrival
IAFSA Improved artificial fish swarm algorithm
ABC Artificial bee colony
AFSA Artificial fish swarms algorithm
PSO Particle swarm optimization
GIS Gas-insulated switchgear
PD Partial discharge
TOA Time of arrival
AOA Angle of arrival
RSS Received signal strength
TR Time reversal
RSS Received signal strength
WPT Wavelet packet transform
UHF Ultra-high frequency
HF High-frequency
CC Cross-correlation
GCC Generalized cross-correlation
HB Hassab–Boucher
CDNIGS Complex domain Newton iteration-grid search method
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