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Abstract: Synchronous stability in power systems is of essential importance for system safety and
operation. For the phase-locked loop (PLL)-based synchronous stability in power electronic-based
power systems, which has recently stimulated interest in researchers in the field of electrical power
engineering, but is still controversial, this paper divides the topic into two aspects, including the
PLL device stability and the system stability. It is found that the PLL device is always stable and
the error between the PLL output angle θpll and the terminal voltage angle θt is always finite.
Therefore, the synchronization of power electronic-based power systems should be understood as the
output synchronization between the electrical rotation vectors (θt or θpll) from each item of grid-tied
equipment, rather than the synchronization of the PLL device itself. In addition, it is found that θpll

plays an active role in the system synchronization dynamics not only in electromagnetic timescales
but also electromechanical timescales and it could be selected as a dominant observable. In this
paper, the concept of synchronous stability is well clarified. These findings are well supported by
theoretical analyses and MATLAB/Simulink simulations, and thus could provide insights on the
synchronous stability mechanism.

Keywords: power electronic-based power system stability; renewable energy; converter; phase-
locked loop; synchronous stability

1. Introduction

With the increase in electricity demand and global targets for carbon neutrality, it
becomes necessary to accelerate the construction of power electronic-based power systems
(or renewable-dominated new-type power systems) [1]. In recent years, a large number
of renewable equipment, including doubly fed induction generators, permanent magnet
synchronous generators (PMSGs), and photovoltaics, have been connected to the power
grid through power electronic inverters. Most of them are voltage source converters (VSCs)
by using the mature technique of phase-locked loop (PLL) [2]. Accordingly, the power
system dynamic performance has been greatly changed due to these new devices. This also
alters all aspects of power systems, including analysis, relaying, control, and operation.
Until now, we, human beings, have not yet fully utilized them [1,2].

As the alternating current transmission technique is still unchanged, it is quite nat-
ural to see that the synchronous stability, which is also called rotor-angle stability in the
traditional power systems, plays a similar, important role in the system integrity and
stability [3,4]. Indeed, the transient synchronous stability of power electronic-based power
systems under large disturbances has become a very hot topic recently [5,6]. Most previ-
ous studies focused on the simple model of a PLL-based VSC single-machine infinite-bus
system, and usually considered only one PLL controller in the system [7–14]. Various
methods, including the time-domain simulation, phase portrait, energy function (or Lya-
punov function), equal area criterion, bifurcation analysis, etc., have been borrowed and
developed [11–14]. In addition, a variety of transient synchronous stability enhancement
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methods have also been proposed [14–16]. Very recently there have been some advance-
ments by considering outer controller effects [17,18] and multiple-VSC systems [19]. At the
same time, the impact of virtual inertia control on the dynamic system behavior has at-
tracted the attention of researchers, and it has been found that it not only efficiently supports
the system frequency but also affects the synchronous stability characteristics [20,21].

Although the synchronous stability in power electronic-based power systems has been
widely studied in electric power engineering, there are still several key problems remaining
to be answered. On the one hand, usually the model is very restricted to the simple
model of a PLL-based VSC single-machine infinite-bus system with all outer controllers
ignored. The objective is to simply concentrate on the PLL effect in synchronization.
It is far away from realistic large-scale systems in engineering. So far, it seems that only
synchronous stability within the electromagnetic timescale has been reported. On the
other hand, for the concept and understanding of the synchronous stability, some phrases,
e.g., “the PLL instability issues” [9], “the PLL fails to track the main grid fundamental
frequency” [7], “incapability of PLL to remain synchronized to the grid” [22], “instability
of PLL to accurately track the phase angle of the voltage” [23,24], “instability in PLLs
of grid-following inverters in weak grids” [25], etc., have been scattered throughout the
literature, making the concept of synchronous stability obscure. It is unclear whether the
synchronous stability is either the PLL device stability (between the PLL input and output)
or system stability (between the grid-tied devices). Additionally, until now, the system
dominant variable in the synchronous stability has been unclear [26].

Faced with these interesting, unsolved, basic problems, this paper attempts to clarify
the key concept of synchronous stability in power electronic-based power systems. The re-
mainder of this paper is structured as follows. Section 2 gives the structural decomposition
of power electronic-based power systems. In Section 3, the stability and dynamic response
of PLL controller are analyzed by linearization. In Section 4, the stability of PLL-based VSC
system is analyzed from three aspects: the steady-state stability, small-signal stability, and
large-signal stability. In Section 5, the effectiveness of the theoretical analysis is verified
and supplemented by MATLAB/Simulink simulation. Section 6 gives our understanding
of the concept of synchronous stability. Finally, our conclusions and discussions are given
in Section 7.

2. Structural Decomposition of Power Electronic-Based Power Systems

At present, three are three typical types of renewable energy device connected to the
power grid, including the PMSGs and doubly fed induction generators for the wind power,
and photovoltaics for the solar power. Although there are some differences in their control
structures, all of them use the PLL technique to realize synchronization with the grid. Their
synchronization mechanism is similar. Therefore, in this paper we will take the PMSG
single-machine infinite-bus system as an example, to clarify the concept of synchronous
stability in power electronic-based power systems, without losing generality.

2.1. PMSG Single-Machine Infinite-Bus System

Figure 1 shows the topology of the PMSG single-machine infinite-bus system, in-
cluding both the machine-side (left) and grid-side (right) controllers, which are separated
completely, but connected by a DC-link capacitor C in the middle of the figure. On the
left, the machine-side converter (MSC) adopts the zero d axis current control, including
the rotor speed control (RSC), the alternating current control (ACC), and the additional
inertia control (AIC). The q axis current reference isqre f of the stator is given by the outputs
of the RSC and AIC, and the d axis current reference isdre f of the stator is set to 0. According
to the current references, the ACC generates the modulation voltages esd and esq. After
the coordinate transformation of the dq reference frame to the abc reference frame, the
trigger signals are generated by the pulse width modulation (PWM). To be simple, for the
slower electromechanical controls, the pitch angle control and the maximum power point
tracking control of the PMSG are ignored. On the right of Figure 1, the grid-side converter
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(GSC) is connected to the infinite-bus (with a constant voltage amplitude Ug and a con-
stant frequency ωg) through the filter inductance L f and line inductance Lg. The control
part of the GSC is divided into the DC-link voltage control (DVC), the terminal voltage
control (TVC), the ACC, and the PLL. The DVC gives the d axis current reference idre f by
controlling the capacitor voltage Udc, and the TVC gives the q axis current reference iqre f by
controlling the terminal voltage Ut. According to the current references, the ACC generates
the modulation voltages ed and eq. After the coordinate transformation of the dq reference
frame to the abc reference frame, the trigger signals are also generated by the PWM. Here,
eabc and utabc are used to denote the VSC arm output voltage and the VSC terminal voltage,
respectively. eabc is also widely termed as the internal potential in the literature. In the grid
connection control, the PLL technique is crucial, as it provides the dq-reference frame for
the control of the GSC and makes the grid-tied synchronization possible.

2.2. PLL-Based VSC Single-Machine Infinite-Bus System

In the absence of inertia control, the PMSG simply outputs power from the MSC to
GSC, and then to the grid, by the DC-link capacitor, and the MSC does not respond any
faults from the grid. The MSC and GSC are separated. Hence, it is quite natural to consider
the GSC dynamics only. In this respect, the whole system can be simplified into a PLL-based
VSC single-machine infinite-bus system, as illustrated by the large dashed-line frame in
Figure 1. Hence, Pm = constant. Nevertheless, if the inertia control is incorporated, this
dynamical separation might be unavailable and both MSC and GSC should be considered
together. In addition, as the PLL dynamics is much slower than that of the ACC, it is usually
assumed that the output currents instantaneously track their references, namely, id = idre f
and iq = iqre f [17]. Under these simplifications, the VSC can be treated as a controlled
current source, and the whole system is schematically shown in Figure 2a.
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Figure 1. Schematic show of the PMSG single-machine infinite-bus system.

Next, if all outer controllers including the usual DVC and TVC are ignored, only the
PLL dynamics should be studied. This is possible, under some certain situations, such
as low voltage ride through, where all current commands are fixed (idre f = constant and
iqre f = constant) [11]. The corresponding simplified system is schematically shown in
Figure 2b. Note that this model has been widely studied in the synchronous stability
research, due to its simplicity and importance [5–14].

2.3. PLL Controller

The PLL controller is also a closed-loop control system which tracks the phase of the
input signal. Taking a close look at the PLL, it is composed of the phase detector (PD), the
loop filter (LF), and the voltage-controlled oscillator (VCO). The second-order synchronous-
reference-frame phase-locked loop (SRF-PLL) has been widely used in academic research
and engineering applications [27,28]. Unless otherwise specified, the PLL in the paper
refers to the SRF-PLL. The control structure is shown in Figure 3a. To be simpler, it can
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be converted into the phase model within the xy common reference frame, as shown in
Figure 3b. In addition, Figure 3c shows the linearized phase model of the PLL.
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Figure 2. (a,b) Schematic shows of the PLL-based VSC single-machine infinite-bus system with and
without outer controllers, respectively. In addition, all inner current controllers have been neglected.

Figure 3. (a–c) Schematic shows of the control diagram of PLL, phase model, and linearized phase
model, respectively.

To be clear, Figure 4 shows the coordinate relations between the abc stationary reference
frame, the dq rotating reference frame, and the xy common reference frame, and the
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associated angles. The control goal of the PLL is to make the terminal voltage Ut on the d
axis, namely utq = 0, utd = Ut, or θpll = θt.

Figure 4. Schematic shows of the three-phase stationary abc, and the rotating dq and xy reference
frames. The associated angles are also added. In the steady state, θpll = θt.

2.4. Hierarchical Structure and Their Connections

So far, focusing on the synchronous stability problem, this paper has divided the
original system into three different levels from macroscopic to microscopic views, namely,
the levels of the PMSG single-machine infinite-bus system (Level I), the PLL-based VSC
single-machine infinite-bus system (Level II), and the PLL controller (Level III). All three
levels exhibit a clear hierarchical structure. Only if the inner level is stable can the outer
level be stable. Otherwise, the system will be unstable. Basically, from a power system point
of view, levels I and II have system-level stability problems, whereas level III has only a
device-level stability problem. Level II has been adequately studied in the literature [5–14].

The most inner level III of the PLL device may have a stability problem as it is also a
closed-loop system. In particular, this paper is interested in whether the PLL output angle
θpll can always track the terminal voltage angle θt, or, if not, can this loss of synchronization
further induce system-level instability on level II. Comparing levels II in Figure 2b and III
in Figure 3, it is found that they are similar and both are second-order dynamical systems.
However, level III is determined by the input signal θt, whereas level II is not. With the
standard language of dynamical systems, level III for the PLL device is a non-autonomous
system, and level II for the PLL-based VSC system is an autonomous one. Moreover, this
paper is interested in the synchronous stability of level I and its relation with that of level
II, which are seldom studied.

3. Stability and Response Analyses of PLL Controller
3.1. Small-Signal Stability Analysis

This section deals with the PLL device in Figure 3. When the PLL is in a synchronous
state, the transient error ∆θ (∆θ = θt − θpll) is tiny (close to zero) and the PD can be consid-
ered as linear. Therefore, a line with slope K can be used to approximate the characteristics
of the PD. The system can be linearized and simplified with its control block diagram
presented in Figure 3c; K = Ut. Under this situation, the closed-loop transfer function of
the PLL (with θt as input and θpll as output) can be obtained as follows:

G(s) =
θpll(s)
θt(s)

=
Kkp,plls + Kki,pll

s2 + Kkp,plls + Kki,pll
, (1)

which can be further expressed in the standard form as

G(s) =
2ξωns + ω2

n
s2 + 2ξωns + ω2

n
, (2)
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where ωn =
√

Kki,pll and ξ =
Kkp,pll

2
√

Kki,pll
denote the natural frequency and the damping

ratio, respectively.
Based on the facts that the system small-signal stability is determined by the character-

istic equation: s2 + 2ξωns + ω2
n, and the controller parameters are always greater than zero,

kp,pll > 0 and ki,pll > 0, and K > 0, it is easy to obtain that the PLL device should always
be small-signal stable.

3.2. Dynamic Response Analysis

Next, this section studies the dynamic responses of the PLL device under different
disturbances θt and calculates their errors ∆θ (∆θ = θt − θpll). According to the control
diagram in Figure 3c, the error transfer function of the PLL can be expressed as

G′(s) =
∆θ(s)
θt(s)

=
s2

s2 + 2ξωns + ω2
n

. (3)

Accordingly, the steady-state errors under three typical input signals can be analyzed
as follows.

1. When the input signal is a phase step, i.e.,

θt(s) =
θ0

s
, (4)

where θ0 denotes the difference before and after the phase step. The error response in
the complex-frequency domain is obtained,

∆θ(s) =
sθ0

s2 + 2ξωns + ω2
n

, (5)

and the corresponding error in the time domain is

∆θ(t) = θ0e−ξωnt

(
cos ωn

√
1− ξ2t− ξ√

1− ξ2
sin ωn

√
1− ξ2t

)
. (6)

Clearly when t→ ∞, the steady-state error vanishes.
2. When the input signal is a frequency step, i.e.,

θt(s) =
ω0

s2 , (7)

where ω0 denotes the difference before and after the frequency step. Correspondingly,
the error response in the complex-frequency domain is obtained,

∆θ(s) =
ω0

s2 + 2ξωns + ω2
n

, (8)

and that in the time domain is

∆θ(t) = ω0e−ξωnt sin ωn
√

1− ξ2t
ωn
√

1− ξ2
. (9)

Clearly when t→ ∞, the steady-state error vanishes again.
3. When the input signal is a frequency ramp, i.e.,

θt(s) =
R0

s3 , (10)
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where R0 represents the slope of the change in frequency. Correspondingly, the error
response in the complex-frequency domain is

∆θ(s) =
R0

s(s2 + 2ξωns + ω2
n)

, (11)

and that in the time domain is

∆θ(t) =
R0

ω2
n
− R0

ω2
n

e−ξωnt

(
cos ωn

√
1− ξ2t +

ξ√
1− ξ2

sin ωn

√
1− ξ2t

)
, (12)

Under this situation, when t→ ∞, the steady-state error is finite and equals R0
ω2

n
.

The steady-state errors of the PLL under these three typical disturbances are sum-
marized in Table 1, which clearly shows that the errors are always finite for different
disturbances, i.e., θpll ≈ θt. This indicates that the PLL can always work perfectly and its
output angle θpll can track the terminal voltage angle θt well.

Table 1. Summary of steady-state error of the PLL device for different inputs θt.

Phase Step Frequency Step Frequency Ramp

∆θ 0 0 R0
ω2

n

Here it is necessary to address that these analytical results only give preliminary
insights for the synchronous stability mechanism. In actuality, the PLL device on level III is
only one component within the whole system of level I. Its output angle θpll is controlled
by its input θt, but θpll also provides the control reference frame and influences the VSC
output, such as the internal potential or the controlled current source output, which can
further influence the dynamical process of θt with the network interaction. Therefore,
θt → θpll → θt works as a larger close-loop in this coupled system. Thus, there is no given
fixed form of θt, as we have provided. The result of perfect synchronization of the PLL
controller should be further checked in system-level numerical simulations.

4. Stability Analyses of PLL-Based VSC System

Here, the PLL-based VSC system in Figure 2b is studied. There are three types of
synchronous stability, namely, the steady-state stability, small-signal stability, and large-
signal stability. These are similar to those in the traditional power systems [4]. The steady-
state stability means that there is an operating point after disturbances. The existence of an
operating point is essential for system operation. Under the steady-state stable condition,
small-signal stability and large-signal stability should be further considered. Small-signal
stability refers to the system stability under small perturbations, and the system can be
dealt with linear system theory. Alternatively, the large-signal stability means that the
system stability under large perturbations and the system non-linearity under different
perturbations has to be considered; typically it is associated with the determination and
computation of a basin of attraction for the post-fault state [17].

4.1. Steady-State Analysis

For the electromagnetic power output Pe from the VSC, it satisfies

Pe = utdid + utqiq = Utidre f , (13)

based on the facts that utq = 0, utd = Ut, and id = idre f in the steady state.
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At the same time, due to the power transmission constraints on the network, Pe should
be determined by

Pe =
UtUg

ωgLg
sin θpll , (14)

as θpll = θt in the steady state.
Combining (13) and (14), it can be observed that

idre f =
Ug

ωgLg
sin θpll , (15)

and, therefore,

idre f ≤
Ug

ωgLg
. (16)

This clearly indicates that there is a limit for the active current output. This result is
identical to that in [7].

4.2. Small-Signal Stability Analysis

The PLL-based VSC system is determined by both the PLL differential dynamic equations:{
θ̇pll = ωpll
ω̇pll = kp,pll u̇tq + ki,pllutq

, (17)

and the algebraic equation for the relation between the terminal voltage and the infinite-
bus voltage:

utq = −Ug sin θpll + idre f

(
ωpll + ωg

)
Lg, (18)

where the dynamic frequency effect of the transmission-line inductance is included.
Linearizing them around the operating point, we have the following state equations[

p∆θpll
p∆ωpll

]
=

[
0 1

−ki,pllUg cos θpll0
1−kp,pll idre f Lg

ki,pll idre f Lg−kp,pllUg cos θpll0
1−kp,pll idre f Lg

][
∆θpll
∆ωpll

]
, (19)

where cos θpll0 is a constant, depending on the state.
On the basis of linear system theory, the following small-signal stability conditions

are obtained:

kp,pll <
1

idre f Lg
and ki,pll <

Ug cos θpll0

idre f Lg
kp,pll . (20)

Accordingly, Figure 5 shows the parameter distribution for its small-signal stability
with the variations of kp,pll and ki,pll . Compared with the whole parameter space for the
small-disturbance stability of the PLL device, here the parameter choice becomes much
restricted.

4.3. Large-Signal Stability Analysis

In the above analysis, substituting the algebraic Equation (18) into the differential
Equation (17), the following non-linear differential equation for the PLL-based VSC system
can be obtained:

Mθ̈pll = Pm − Pe + Dθ̇pll , (21)

where 
M = 1− kp,pll idre f Lg
Pm = ki,pllωgidre f Lg
Pe = ki,pllUg sin θpll
D = ki,pll idre f Lg − kp,pllUg cos θpll

. (22)
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Here, M, Pm, Pe, and D denote the equivalent inertia, equivalent input electromechani-
cal power, equivalent output electromagnetic power, and equivalent damping coefficient,
respectively. Clearly it is similar to the second-order swing equation of the SG; hence, it
has been termed as the generalized swing equation [11], to emphasize its centrality in the
synchronous stability problem. It has also been found that the basin boundary of the stable
equilibrium point can show either a close-loop or a fish-like pattern, depending on different
system parameters [11]. In addition, this equation has been extensively and intensively
studied by different theoretical methods, such as the classical equal area criterion (EAC),
energy function method, La Salle’s invariance principle, etc. [11,13,29]. The EAC judges the
system stability by analyzing the acceleration and deceleration area of the system before
and after faults. The energy function method gives the strict stability criterion of the system
by constructing a Lyapunov function. The La Salle’s invariance principle is the extension of
the Lyapunov’s second method, with the aim to find the stable boundary of system. All of
them are difficult to analyze the stability of higher-order systems.

﹣

﹣

﹣

﹣

Figure 5. Parameter distribution for small-signal stability in the PLL-based VSC system.

5. Simulation Results

In order to validate the above theoretic analyses, broad simulations with MAT-
LAB/Simulink have been performed, based on the models of the PLL-based VSC system in
Figure 2 and the PMSG system in Figure 1. Some results are presented below.

5.1. PLL-Based VSC Single-Machine Infinite-Bus System

To be generic, the voltage outer loop controllers are included, as shown in Figure 2a.
All detailed parameters are given in Appendix A. Two cases are listed as follows:

Case I: set the fault as the voltage Ug dips 0.2 p.u. at t = 0.1 s;
Case II: set the fault as the voltage Ug dips 0.4 p.u. at t = 0.1 s.

The simulation results of θt and θpll for Case I are shown in Figure 6a, where the
system is stable after a short transient process, whereas for Case II in Figure 6b, the system
becomes unstable and both θt and θpll go to infinity. To be clearer, Figure 6c,d exhibits the
phase difference ∆θ between θpll and θt for these two cases. Obviously θt ≈ θpll in the
whole dynamic process, i.e., θpll always tracks θt well.

Compared with the large divergence of both θpll and θt to infinity in Figure 6b, the
mismatch between θpll and θt in Figure 6d is tiny and ignorable. Therefore, the PLL device
does not show any inherent desynchronization between θpll and θt. This is consistent with
our previous theoretical analyses. Thus, the synchronization or desynchronization should
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be considered as the relation between the VSC (or renewable) device and the grid, which
should be determined by either θpll or θt, but not the relation between θpll and θt.
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Figure 6. (a,b) Plots of θt and θpll in the PLL-based VSC single-machine infinite-bus system for
Cases I and II, respectively. (c,d) Plots of the corresponding ∆θ (∆θ = θt − θpll). Clearly there is no
desynchronization between θpll and θt for either a stable or an unstable system, and both can lose
synchronization with the grid simultaneously.

In addition, the simulation results show that the phase dynamics is within a hundred
milliseconds and belongs to the electromagnetic timescale. The discontinuity of θt is also
observable; for instance, a significant jump happens at 0.38 s in Figure 6b,d. This might
come from the fact that as θt is calculated by θt = arctan utq

utd
+ θpll and utd may change from

positive to negative, this makes the value of arctan utq
utd

switch from π
2 to −π

2 and results in
a sharp jump of θt. In contrast, θpll is always continuous. In this respect, θpll might be more
properly chosen as a system variable, compared to θt.

5.2. PMSG Single-Machine Infinite-Bus System

For the PMSG single-machine infinite-bus system with the inertia control, two similar
cases are studied with their control parameters in Appendix A:

Case I: set the fault as the voltage Ug dips 0.3 p.u. at t = 0.1 s;
Case II: set the fault as the voltage Ug dips 0.74 p.u. at t = 0.1 s.

Compared with the findings in Figure 6, the basic conclusions are the same. For the
moderate voltage dip in Figure 7a,c, the system becomes stable after a short transient.
In contrast, if a deep voltage dip is studied, both θpll and θt reach infinity simultaneously
in Figure 7b. Meanwhile, their angle difference remains finite, as shown in Figure 7d.
On the other hand, one can find that now the θpll dynamics is in second order and belongs
to the electromechanical timescale, as the inertial control is considered here. Clearly the
inertial control gives a close connection between the GSC and the MSC and makes the
slower electromechanical dynamics of the PLL possible. In addition, the multi-timescale
characteristics for both stable and unstable cases is obvious, as shown the rapid fluctuations
in the short electromagnetic timescale window immediately after the fault at t = 0.1 s
in Figure 7c,d.
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Figure 7. (a,b) Plots of θt and θpll in the PMSG single-machine infinite-bus system for Cases I and II,
respectively. (c,d) Plots of the corresponding ∆θ. Clearly again there is no loss of synchronization
between θpll and θt, and both can lose synchronization with the grid simultaneously.

6. Understanding of the Concept of Synchronous Stability
6.1. Relationship between PLL Device Stability and System Stability

According to the above studies for the three different levels of structure, including
the PLL device, the PLL-based VSC single-machine system, and the PMSG single-machine
system, it is found that the stability of larger system is always determined by that of smaller
system, and only if smaller system is stable, the larger system can be stable. Therefore,
the stability of the PLL device determines that of the whole system. Luckily, the PLL is
always stable and θpll always tracks θt regardless of small or large disturbance. These
findings are well supported by our small-signal stability and response analyses and broad
numerical simulations. As a result, the problem of stability (or instability) of the PLL device
does not exist. For the stability in power electronic-based power systems, the PLL device
self-stability can be completely ignored and the system-level stability should be focused on.
The divergence of either θpll or θt, for the synchronization between the renewable energy
device and the grid, can be viewed as the system dominant instability characteristics, as
shown in Figures 6 and 7.

6.2. Synchronous Stability in Electromagnetic and Electromechanical timescales

Through comparisons of the simulation results of the VSC system and the PMSG sys-
tem with the inertial control, it is found that the synchronous stability of power electronic-
based power systems can exhibit multi-timescale characteristics. In particular, due to the
participation of the inertial control, both θpll and θt can show electromechanical timescale
dynamics. Again, both θpll and θt play a dominant role in the system desynchronization
characteristics. They both go to infinity simultaneously when the system is unstable. With
these comparisons, it is also known that only in the absence of inertial control can the PMSG
system show electromagnetic scale dynamics and be well described by the simple VSC sys-
tem. However, if the inertial control is considered, the slower electromechanical timescale
dynamics from the MSC becomes dominant. Thus, the usual synchronous stability con-
cept, which largely focused on the grid-tied converter system within the electromagnetic
timescale dynamics, should be extended under certain situations.

6.3. Dominant Variable for Synchronous Stability

As θt is the direct indication for synchronous stability for PLL-based VSC or PLL-based
renewable device, it might be ideal for the observable for synchronous stability. However, as
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it is found that both θpll and θt play an active role in the system synchronization dynamics
and they are synchronous in step in transient processes, this paper prefers to use θpll as the
system dominant variable in large-disturbance analysis. The main reason is as follows. θpll
is the integrator output from ωpll (ωpll = d(θpll)/dt ) and thus θpll is always continuous
and can be easily treated as a state variable. Nevertheless, θt usually needs to be calculated
through the network by the algebraic relation, and thus θt can show discontinuity, as shown
in Figure 6d.

On the other hand, the internal potential angle θe for the converter arm voltage
output has also been widely used as the dominant variable for synchronous stability in
the literature [30,31], playing a similar role with the rotor-angle of the SG. Similarly, the
internal potential is behind the filter inductance and looks like a potential after a certain
transient inductance of the SG topologically. This might be right for small-signal stability
analysis, but not for large-signal stability analysis. The main reason is as follows. The
internal potential can be viewed as the converter output by the inner current controllers.
However, due to the current controller fast dynamics, they are usually removed in the
system analysis, by setting id = idre f and iq = iqre f . Thus, θe should be related with the
terminal voltage and the grid by the transmission-line algebraic restriction. Again, similar
to θt, θe is not a system state variable.

Based on these analyses, the PLL output angle θpll should serve as a dominant variable
for the synchronous stability in power electronic-based power systems.

6.4. Relationship between PLL Output Angle and Rotor-Angle of SG

It is well-known that in the synchronous stability of the SG in traditional power
systems, its rotor-angle for the spatial position of rotor is of key importance. Here, the
PLL output angle θpll shows the spatial position of the PLL controller in Figure 4 similarly.
In addition, similar to the rotor-angle as the integral of rotor speed, here the θpll is the
integrator output from ωpll and, thus, it cannot change discontinuously. After making these
connections, the relation between the natural physical synchronization of the SG on the
rotor and the controller synchronization of the grid-tied converter on the PLL becomes clear.
The θpll here can play a similar role as the rotor angle of SG in traditional power systems.

7. Conclusions and Discussion

In conclusion, this paper has clarified the concept of synchronous stability in the power
electronic-based power systems by dividing the complex systems into three levels including
the PLL device, the PLL-based VSC single-machine infinite-bus system, and the PMSG
single-machine infinite-bus system. Correspondingly, the synchronous stability problem is
divided into two sub-problems including the PLL device stability and the system stability.
The main findings are as follows:

1. The PLL device is always stable and the steady-state error between the PLL output
angle and the terminal voltage angle is finite. Therefore, the synchronization of power
electronic-based power systems should be understood as the output synchronization
between the electrical rotation vectors from each grid-tied equipment, rather than the
synchronization of the PLL device itself.

2. The PLL output angle θpll plays an active role in the system synchronization dynamics
and can work as a dominant observable in transient processes.

All these findings are significant and helpful for improved cognition of stability in
power electronic-based power systems.

Some discussions of synchronous stability in power electronic-based power systems
are also given as follows:

1. For synchronous stability, it is not the capability of PLL to remain synchronized
to the grid, but the capability of PLL-based VSC (or renewable device) to remain
synchronized to the grid. The synchronization stability is a system-level problem.
Thus, the phrases for the PLL synchronization stability (or loss of synchronization)
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scattered in the literature should be more properly expressed and understood as the
PLL-based VSC (or PLL-based renewable device) synchronization stability. It should
be pointed out that the relation between θpll and θt has never been seriously studied
in all previous studies, to the best knowledge of the authors. In this paper, the
dynamic response of θpll is theoretically analyzed by linearization under three typical
disturbances of θt. Due to the non-linearity of PLL and diversity of faults, the dynamic
response analysis under large disturbances relies on numerical simulations mostly.

2. It is found that the PLL output angle θpll can show not only electromagnetic but also
electromechanical dynamics by broad simulations. Hence, it is expected that the usual
concept of synchronous stability should be extended to larger systems.
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Nomenclature

ϕpll The phase-locked loop (PLL) output angle in the three-phase stationary abc
reference frame

θpll The PLL output angle in the xy common reference frame
θt The terminal voltage angle
θe The internal potential angle
θi The controlled current source output angle
ωg, ωpll The xy common reference frame frequency and the PLL output frequency
Lg, L f The line and filter inductances
Ut, Ug The terminal voltage and infinite-bus voltage
utd, utq The terminal voltage in the d and q coordinate
id, iq The grid-side converter (GSC) output currents in the d and q coordinate
idre f , iqre f The GSC output current references in the d and q coordinate
∆θ The difference between the terminal voltage angle and the PLL output angle
kp,pll , ki,pll The proportional and integral (PI) parameters of PLL

Appendix A

Tables A1 and A2 show the parameters of the VSC and the PMSG systems, respectively.

Table A1. Parameter setting in the VSC single-machine infinite-bus system.

Category Symbol Variable Numerical Value

Rated Parameter
Sbase Rated Capacity 2 MVA
Vbase Nominal Voltage 690 V
fbase Rated Frequency 50 Hz

Circuit Parameter
L f Filter Inductance 0.1 p.u.
Lg Line Inductance 0.5 p.u.
C Capacitor 0.1 p.u.

Controller Parameter

kp,dvc/ki,dvc PI Parameters of the DVC 3.5/140
kp,tvc/ki,tvc PI Parameters of the TVC 1/100
kp,acc/ki,acc PI Parameters of the ACC 0.3/160
kp,pll/ki,pll PI Parameters of the PLL 50/2000
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Table A2. Parameter setting in the PMSG single-machine infinite-bus system.

Category Symbol Variable Numerical Value

Rated Parameter
Sbase Rated Capacity 2 MVA
Vbase Nominal Voltage 690 V
fbase Rated Frequency 50 Hz

Circuit Parameter

L f Filter Inductance 0.1 p.u.
Lg Line Inductance 0.3 p.u.
C Capacitor 0.1 p.u.
Ls Stator Inductance 0.4 p.u.

Controller Parameter of GSC

kp,dvc/ki,dvc PI Parameters of the DVC 3.5/140
kp,tvc/ki,tvc PI Parameters of the TVC 1/100
kp,acc/ki,acc PI Parameters of the ACC 0.3/160
kp,pll/ki,pll PI Parameters of the PLL 50/2000

Controller Parameter of MSC
kp,rsc/ki,rsc PI Parameters of the RSC 3/20
kp,acc/ki,acc PI Parameters of the ACC 0.3/160
Kaic/Taic Parameters of the AIC 20/1
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