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Abstract: The packet loss during transmission of load control commands can lead to regulation errors
in the smart grid and increase the cost of utility agencies due to the purchase of additional automatic
generation control (AGC) services. In this paper, a two-layer cooperative communication network
between the utility company and relays is presented. The utility company rents the relay to assist
with the downlink transmission to improve the reliability of communication and reduce the data
transmission cost due to packet loss. Furthermore, the uncertainty of channel gain is considered, and
a two-tier game model is established. A distributed robust power control algorithm based on the
continuous convex approximation method is proposed to obtain the optimal relay power allocation
and price. Through the simulation analysis of the proposed scheme and the two comparison schemes,
the cost of the utility company was reduced by 6% and 21%, and the standard deviation of income
value between the relays was reduced by 40% and 48%, respectively.

Keywords: communication network; cooperative relay; two-layer game; smart grid

1. Introduction

Smart grids, as typical cyber–physical systems, comprise energy management systems
and demand-side communication systems [1]. Bidirectional communications between the
electricity utility and customers enable engagement in demand response. Communica-
tion is important to the precision and effectiveness of demand response [2]. In general,
smart grids are built on layered communication networks, including wide area networks
(WANs), neighborhood area networks (NANs), and home area networks (HANs) [3,4]. It
is worth noting that the distributed framework is a typical communication framework for
demand-side response and efficient data aggregation schemes in smart grids [5,6]. In these
two works, distributed frameworks refer to typical peer-to-peer networks with local com-
putation, which inherit the merits of avoiding single-point failures. The other advantage
of adopting distributed communication networks for smart grids is more flexible pricing
which enables huge discounts on trading costs [7,8]. However, when the data aggregation
unit (DAU) receives a large quantity of data over a short period of time, it will lead to
congestion and packet loss in the transmission of smart grid control commands and meter
data [9,10], and utility companies have to pay more for automated generation control (AGC)
service. In [11], the influence of supply cost and packet loss on demand-side control are
studied. According to the results, the estimated demand is normally distributed, and the
supply cost rises in proportion to the rate of packet loss. The packet loss caused by failures
in communication between users and utilities with regard to the dependability of wireless
communication network demand replies is comprehensively analyzed in [12]. The results
show that the error of demand-side control is increased by the packet loss rate. Apart
from the aforementioned characteristics, communication resource allocations for smart
grids have some specific features. In [13], the unpredictability of two-way communications
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among the grid’s data network components is presented for smart grid systems with effi-
cient distributed energy resources. In [14], a cognitive ratio with the spectrum detection and
channel method for smart grids is implemented to increase communication dependability.
By jointly considering both sample rate regulations and dynamic channel accessibility,
the system utility maximization issue in energy harvesting CRSNs is explored in [15].
Moreover, the aggregate rates of all cellular nodes are optimized to allocate communication
channels and manage to transmit power, while maintaining the dependability criteria
of the RTP operation. A radio resource allocation method is suggested in [16]. In [17],
a unique expense methodology is proposed for allocating cloud computing resources for
demand-side management. while taking the load profile of computing devices and features
of cloud computing cases into account.

In recent years, cooperative communication technologies have exhibited superior
performance in achieving spatial diversity in order to lower bit failure rates in demand-side
communications [18–20]. Based on the fundamental technologies, a relay selection strategy
was proposed to enhance the end-to-end packet transmission delay, the energy efficiency
of NAN and NHAN, and throughput in [21]. In [3], the demand-side cooperation relay net-
work’s resource allocation issues are investigated in depth using bargaining models. Since
relaying symbolizes the sharing of resources between DAUs and relays, both relay selection
and resource allocation are concurrently considered. In [22], an artificial bee colony (ABC)
method is used to study the joint relay allocation and resource management in cooperative
communications systems. In [23], a cooperative relay strategy and a relay selection method
are adopted to enhance the secure transmission rate. In [24], a cooperative physical security
protection relay selection technique is presented to improve the communication safety of
industrial wireless nodes.

Pioneering research investigations have revealed that cooperative communication
technologies can significantly decrease the packet loss rate. Consequently, the demand-side
control errors caused by data congestion and costs of utility companies can be reduced.
However, the DAUs used for cooperative communication technologies have limits on
choosing relays for collaborative transmission, as can be seen in many classic models
in previous work. Typical examples are provided in [22–24]. In conventional studies,
each DAU can only decide whether to cooperate with the relay or not. When DAU data
packet congestion is not serious, the full power of the relay leased by the DAU will lead
to channel capacity redundancy and relay resource waste. In addition, the channel gain
showcases randomness in the actual environment. To address these critical issues, a two-
tier game scheme between the utility companies and relays is proposed for two-layer
cooperative communication networks in smart grids to reduce the costs of utility agencies
The new distributed robust power control is established based on the distribution of relay
power. The main contributions of this paper can be mainly summarized into the following
two points:

• A cooperative communication network model is established by considering the deci-
sion making from the utility companies and relay power allocations, which has never
been proposed before. The new model improves the flexibility of power allocation
options and further reduces the expenses of utility agencies.

• Due to the randomness of channel gain, robust constraints are introduced into the
optimization model and transformed. A distributed algorithm is created to maximize
the relay income and minimize the costs of utility companies.

The rest of this paper is structured as follows: Section 2 establishes the cooperative
communication network model. In Section 3, the cost model of the utility company is
converted, and a two-layer game model is established. Section 4 gives the simulations of
the suggested scheme. Section 5 draws the conclusions.
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2. System Model
2.1. Network for Demand-Side Cooperative Communications

We consider a cooperative communication network model as shown in Figure 1,
which consists of N DAUs and N gateways assisted by M relays. The network uses
frequency division multiplexer, and each DAU is given access to an orthogonal channel for
communication between the DAU, relay, and gateway. The relay relationship is defined
as a matrix α =

{
αi,k
}

M×N , where αi,k is the power allocation ratio of relay i to DAU k.
In [22], the relay relationship follows the constraints: each relay serves multiple DAUs,
while just one relay can be chosen by each DAU. To enhance the profit and robustness of
the system, we adjust the constraint so that each relay would serve multiple DAUs, and
each DAU can have several relays. Such an assumption is reasonable as it is similar to the
multi-point to multi-point technique in multicast [25]. Multicast is an effective transmission
method for group communication. For example, multi-point video conferencing uses this
technology. Multi-point video conferencing usually has multiple concurrent video sources,
and participants need to receive video data from multiple other users. Typically, each
receiver can receive data sent by more than one sender, and at the same time, each sender
can send data to more than one receiver. In this model, the DAUs can be considered as
multiple senders, and the relays act as multiple receivers. Correspondingly, the following
constraints can be obtained: {

∑N
k=1 αi,k ≤ 1

0 ≤ αi,k ≤ 1

}
(1)

Figure 1. Cooperative communication network model.

Based on [26], the gateway’s channel capacity k is determined by the maximum
combination ratio:

ck =
W
2

log2 1 + p0gd
k,k +

M

∑
i=1

αi,k pgi,k (2)

where p0 is the DAU’s transmission power, p is the relay’s transmission power, gd
k,k is the

channel gain from k of DAU to k of the gateway, and gi,k represents the channel gain from
relay i to gateway k. The channel gain has complex uncertainty, which can be approximately
expressed as

g = K(ḡ + c)d−κ (3)

where d is the distance between two communication nodes, and κ stands for the exponents
of path loss. K, determined by carrier frequency and antenna gain, represents the path
loss constant. In the case of a small range of Rayleigh fading, ḡ represents a random value
subject to exponential distribution, and c represents the highest estimate error.
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Supposing τ is the interval between the channel capacity and reception rate. With-
out loss of generality, let τ = 1

ln 2 , and then Ĉk = Ckτ.

2.2. Packet Loss Model

Without sacrificing generality, we solely examine packet loss in downlink communica-
tion and obtain the packet loss rate as

p1 =
Tin − Rkh

Tin (4)

where Tin denotes the DAU’s arriving rates, Rk is the gateway’s receiving rate, and h is the
correct transmission ratio between the gateways and the users.

Supposing the noise strength is N0, the gateways’ receiving rates with decode-and-
forward relays are defined as [27]

Rk =
1
2

ln 1 +
p0gd

k,k

N0 + ∑M
i=1(1− αi,k)pgi,k

+
∑M

i=1 αi,k pgi,k

N0 + ∑M
i=1(1− αi,k)pgi,k

(5)

Combining with (4), we have

p1 = h(1− 1
2Tin ln 1 +

p0gd
k,k

N0 + ∑M
i=1(1− αi,k)pgi,k

+
∑M

i=1 αi,k pgi,k

N0 + ∑M
i=1(1− αi,k)pgi,k

) (6)

Because of the uncertainty of channel gain in the actual communication environment,
the target of interrupt threshold ε ∈ (0, 1) is proposed to constrain the channel QoS of DAU
k. The interrupt probability of the DAU k channel should meet:

Pr{Rk ≥ Γ} ≥ 1− ε (7)

When Pr is greater than 1− ε, the communication is considered to be effective. Here,
Pr is the probability that the receiving rate Rk of the gateway is greater than the threshold Γ.

2.3. Cost Scheme of the Utility Agencies

As shown in (6), P1 is related to α, and it can be written as P1(α). The expense of the
utility agencies with respect to each gateway k is defined as

Zk(α) = paΦ(P1(α)) + Z0 (8)

where pa represents the AGC service’s price per unit fraction. Z0 is the cost of renting relay
power; we define Z0 as

Z0 =
M

∑
i=1

αi,kui (9)

where ui represents the unit price of leased relay power. In particular, the relay adjusts ui
according to the revenue model, and Φ(P1(α)) increases the packet loss rate P1. Therefore,
cooperative transmission through a leased relay can reduce the packet loss rate P1, thus
decreasing the cost of purchasing AGC ancillary services, and the utility company needs to
pay corresponding compensation to the relay. According to the results of previous work,
such as [3], the tracking error would be determined to have a normal distribution. When
the power company purchases µ+ tσ AGC service, t ∈ (1, 2, 3), the probability of providing
ancillary services can be guaranteed to reach 67%, 95%, and 99%, respectively. Therefore,
Φ(P1(α)) is given by

Φ(P1(α)) = µ + tσ (10)



Energies 2023, 16, 2911 5 of 17

where µ and σ represent expectation and variance, respectively. Here, c, d, e, and f are
constants. In MATLAB and Easyfit, the packet loss rate Φ(P1(α)) is set from 1% to 10%,
respectively, and the following can be obtained:

µ = cP1(α)− d (11)

and
σ = eP1(α)− f (12)

2.4. Revenue Model of Relay

The revenue of the relay i is defined as

max Ui = Ud −Ur (13)

where Ud represents the profit obtained from the utility agencies, which is defined as

Ud =
N

∑
k=1

αi,k pui (14)

In order to avoid the unlimited rise of the relay price, we introduce the interference
cost Ur between relays. It is defined as

Ur =
N

∑
k=1

p(1− αi,k)

n− 1
ln ui

1
M−1 ∑−i ln ui

ui (15)

If the relay i uses the power of αi,k p to forward data for DAU k, then the power of (1−
αi,k)p will be transmitted for devices other than DAU k and can be considered as interference
for DAU k. Relay i can be expressed as ∑N

k−1(1 − αi,k)p and further approximated as
(N − 1)p ∑N

k=1 αi,k; hence, we have to divide by N − 1 to avoid double counting. Here,
ln ui

1
M−1 ∑−i lnui

ui constitutes a noncooperative game between relays.

3. Game Model and Solution
3.1. A Two-Layer Game Model between Utility Company and Relays

A cost optimization model can be established to reduce the costs of utility companies
and increase the benefits of relays. This section will derive the optimal solution for power
allocation and relay pricing. Firstly, we establish a two-layer model. The lower layer
minimizes the expense of utility agencies by optimizing the power allocation ratio α,
and the optimization issue can be derived as

(P1)min
N

∑
k=1

Zk(α)

s.t.
N

∑
k=1

αi,k ≤ 1, (i = 1, 2 . . . , M)

0 ≤ αi,k ≤ 1, (i = 1, 2 . . . , M)

Pr{Rk ≥ Γ} ≥ 1− ε

(16)

where

Zk(α) = pah(1− 1
2Tin ln (1 +

p0gd
k,k

N0 + ∑M
i=1(1− αi,k)pgi,k

+
∑M

i=1 αi,k pgi,k

N0 + ∑M
i=1(1− αi,k)pgi,k

)) + Z0 (17)
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At the upper layer, the relay needs to increase the profit by adjusting the price of relay
power ui, and the optimization issue is denoted as follows:

(P2)max Ui =
N

∑
k=1

αi,k pui−

N

∑
k=1

p(1− αi,k)

n− 1
ln ui

1
M−1 ∑−i ln ui

ui

(18)

3.2. Lower Layer Optimization

(1) Transformation of objective functions: (P1) is a non-convex optimization issue and can
be transformed into a new objective function through a continuous convex approximation
algorithm. In (P1), Rk can be defined as:

Rk =
1
2 ln
(

1 +
p0gd

k,k
N0+∑M

i=1(1−αi,k)pgi,k

+ ∑M
i=1 αi,k pgi,k

N0+∑M
i=1(1−αi,k)pgi,k

) (19)

In the continuous convex approximation method, we have

δ log z + β ≤ log(1 + z) (20)

The objective function is optimized by adjusting the independent variable z, and z0 is
the optimal answer of the transformation issue. We need to determine the values of δ and
β, where δ ≥ 0. When z is equal to z0, we substitute it into (20), and we have(

z
z0

)δ

≤ 1 + z
1 + z0

(21)

According to (21), we can obtain:

(a) All effective coefficients meet (21);
(b) When δ ≥ 1, ( z

z0
)δ is a concave function;

(c) At z = z0, the tangent of ( z
z0
)

z
1+z0 is 1+z

1+z0
.

From the above statements, we conclude that δ = z0
1+z0

is the maximum value that
satisfies (21). Hence, the coefficients are selected as follows:{

δ = z0
1+z0

β = log(1 + z0)− z0
1+z0

log z0
(22)

Substituting (20) into (16), the objective function is represented as

Zk =− pa

(
a
(

1− 1
2Tin (δ ln SINRi(αi,k) + β)

)
− b
)

−
M

∑
i=1

αi,k pui

(23)

where a and b are constants, and the signal-to-interference plus noise ratio (SINR) is
denoted by

SINRi(αi,k) =
p0gd

k,k

N0 + ∑M
i=1(1− αi,k)pgi,k

+
∑M

i=1 αi,k pgi,k

N0 + ∑M
i=1(1− αi,k)pgi,k

(24)
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The optimization problem after transformation is not convex about αi,k. Let α̃i,k =
log2 αi,k. Then, the new objective function can be represented as

Zk =− pa

(
a
(

1− 1
2Tin

(
δ lnS INRi

(
eα̃i,k
)
+ β

))
− b
)

−
M

∑
i=1

eα̃i,k pui.
(25)

(2) Transformation of constraints: Multiple uncertain channel gain gd
k,k, gi,k exists in

(19), and it is difficult to obtain an analytical expression. The channel gain vector is given
as follows:

gk = [g1,k, g2,k . . . gM,k]

gn = [g1,1, g2,2 . . . gN,N ]
(26)

Under the condition of Rayleigh distribution, we calculate the expectations of the
channel gain vectors gk and gn:

E{gk} =
√

π

2
g̃k,E{gn} =

√
π

2
g̃n (27)

where g̃ = Kd−κ .

Theorem 1. For any interrupt probability threshold ε ∈ (0, 1), the distributed robust opportu-
nity constraint

inf
G0∼(Ḡ0,H)D

Pr

{
GT

0 A0 ≤ N0

}
≥ 1− ε (28)

can be equivalent to a convex second-order cone constraint:√
1− ε

ε

√
AT

0 HA0 + ϕ̂(A0)− N0 ≤ 0 (29)

where (.)D denotes an entire family of probability distributions on data G0, and ϕ̂(A0) = ḠT
0 A0,

A0 = A− ΓMB. Ḡ0 is a vector composed of the mean of G0, H is the covariance matrix of G, and
A = [α1,k, α2,k . . . , αM,k], B = [(1− α1,k), (1− α2,k) . . . , (1− αM,k)].

Proof of Theorem 1. We denote H f as a full-rank matrix such that H = H f HT
f and G0 =

Ḡ0 + H f v, where v is a random variable, E{v} = 0, and D{v} = I are discussed in the
following two cases:

Case A: HT
f A0 6= 0. According to the results in [25], there are:

supG0∼(G0,H)D
Pr
{

GT
0 A0 > N0

}
=

supv∼(0,I) Pr

{
vT HT

f A0 > −ḠT
0 A0 + N0

}
= 1

1+A2
0
, (30)

where q2 = infvT HT
f A0>−Ĝ0

T A0+N0
‖v‖2. If G0 A0 − N0 > 0, the lower bound is q2 = 0, v =

0. If G0 A0 ≤ 0, calculate the square of the distance from the origin to the hyperplane{
v : vT HT

f A0 > −ḠT
0 A0 + N0

}
. It is easy to obtain q2 =

(ḠT
0 p−N0)

2

AT
0 HA0

. Therefore, (28) is true

when 1
1+q2 ≤ ε. If and only if, Φ̄(A0) ≤ N0,−Φ̄(A0) ≥

√
1−ε

ε

√
AT

0 HA0, (28) and (29) are
equivalent.

Case B: HT
f A0 = 0. If Φ(A0) ≤ N0, there is infg∼(ĝ,H)D

Pr
{

GT
0 A0 ≤ 0

}
= 1. At this

time, (28) and (29) are still equivalent.
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Through the transformation of objective functions and constraints, the cost objective
function of the utility company is equivalent to

(P3)max−pa

(
a
(

1− 1
2Tin

(
δ lnSINRi

(
eα̃ik
)
+ β

))
− b
)

−∑M
i=1 eα̃i,k pui

s.t. ∑N
k=1 αi,k ≤ 1, (i = 1, 2 . . . , M)

0 ≤ α,ik ≤ 1, (i = 1, 2 . . . , M)√
1−ε

ε

√
AT

0 HA0 + ϕ̂(A0)− N0 ≤ 0, (k = 1, 2 . . . , N).

(31)

After the above transformations, the optimization problem (P3) is convex.
(3) Optimization solution: To solve the transformed optimization issue (P3), a distributed

iterative algorithm with successive convex approximation is introduced, and then the dual
decomposition method is used to obtain the optimal answer. The partial Lagrange function
of (P3) is denoted by

(P4)L =−
N

∑
k=1

Zk − λi

(
N

∑
k=1

αi,k − 1

)
−

N

∑
k=1

νk

(√
1− ε

ε

√
AT

0 HA0 + ϕ̂(A0)− N0

)
.

(32)

Define
(P5)B =− Zk − λiαi,k−

vk(

√
1− ε

ε

√
AT

0 HA0 + ϕ̂(A0)− N0).
(33)

and D(λ, ν) |= maxα L(α̃, λ, ν), where (P4) is determined by the dual problem (P6).

(P6)minD(λ, ν)

s.t. λi ≥ 0, (i = 1, 2 . . . , M)

νk ≥ 0, (k = 1, 2 . . . , N)

(34)

The dual problem (P6) is solved by power allocation and multiplier update. Here, eα̃i,k

stands for the optimization of power, and we have

eα̃i,k =
−B2 +

√
B2

2 + 4Tin B1

(
2Tin B3 − paaδk A1

pui−(λi+vkC1)

)
C2

(35)

where
B1 = p2gi,k (36)

B2 = 2Tin

(
N0 + pagd

k,k +
M

∑
i=1

pgi,k

)
(37)

B3 =

(
N0 +

M

∑
i=1

pgi,k −
M

∑
l 6=i

eα̃l,k pgl,k

)
, (38)

A1 = pgi,k

(
N0 +

M

∑
i=1

pgi,k

)
+ pagd

k,k

)
(39)
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A2 = N0 +
M

∑
i=1

pgi,k −
M

∑
l 6=i

eα̃l,k pgl,k (40)

A3 = pagd
k,k +

M

∑
l 6=i

eα̃l,k pgl,k (41)

C1 =

√
1− ε

ε

√
2− π

2
Γ

Γ + 1
+

(
Γ

Γ + 1

)2
pgi,k. (42)

The update of Lagrangian multipliers λi and νk can be shown below:

λi(t + 1) = λi(t) + θ

(
N

∑
k=1

αi,k − 1

)
(43)

νi(t + 1) = νi(t) + θ

(√
1− ε

ε

√
AT

0 HA0 + ϕ̂(A0)− N0

)
(44)

where t represents the quantity of iterations, and θ represents the step size. After the dual
issue is satisfied |D(t + 1) − D(t)| < ε, the iteration will stop if ε is a positive number
near 0.

3.3. Upper Layer Optimization

According to (18), a non-cooperative game is formulated between relays. Next,
we need to prove the uniqueness of the game Nash equilibrium (NE). A vector u∗ =(

u∗1 , u∗2 . . . , u∗M
)

is the NE if and only if

u∗ = arg max Ui(ui), i ∈ (0, 1, 2 . . . , M). (45)

First of all, the first derivative of the objective function Ui with respect to ui is taken:

∂Ui
∂ui

=
N

∑
k=1

αi,k p−
N

∑
k=1

(M− 1)p(1− αi,k)

N − 1
1 + ln ui

∑−i ln ui
(46)

Let ∂Ui
∂ui

= 0; the optimal response function can be obtained as:

f (u−i) = e
(N−1)∑N

k=1 αi,k ∑−i ln ui
(N−Ai)(M−1)

−1
, (47)

where Ai = ∑N
k=1 αi,k.

Taking the second derivative of the objective function Ui with respect to ui, we have

∂2Ui

∂u2
i

= −
N

∑
k=1

(M− 1)p(1− αi,k)

N − 1
1

ui ∑−i ln ui
≤ 0 (48)

Since Ui with respect to ui is lower than zero, Ui is convex with respect to ui. It can be
seen that the non-cooperative game has at the fewest one NE point. Then, we need to prove
the one of a kind of NE. When u∗ satisfies the following conditions, u∗ is the only NE [28].

• Positivity: I(u) > 0;
• Monotonicity: If u > u,, then I(u) > I(u,);
• Scalability: For all η > 1, η I(u) > I(ηu).

Proof. Positivity: According to the best response function, we have

f (u−i) = e
(N−1)Ai ∑−i ln ui
(N−Ai)(M−1)

−1
. (49)
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Since the exponential function is positive in any interval, it can be seen that f (u−i) > 0.
Monotonicity: In order to facilitate the subsequent calculation, let q = (N−1)Ai

(N−Ai)(M−1) .
Considering the partial derivative of f (u−i) with respect to uj(j 6= i), it can be observed:

∂ f (u−i)

∂uj
= eq ∑−i ln ui−1q

1
uj

. (50)

The exponential function is positive, and according to (1), 0 ≤ Ai ≤ 1; hence q ≥ 0.
Since u represents the electricity price, uj is positive. According to the above conditions,
we have:

∂ f (u−i)

∂uj
≥ 0. (51)

It is easy to obtain
∂ f (u−i)

∂ui
= 0. (52)

Therefore, monotonicity is proved.
Scalability: Comparing the magnitude of η f (u−i) and f (ηu−i), we obtain:

η f (u−i)

f (ηu−i)
= ηeq ∑−i ln ui−q ∑−i ln ηui > 1. (53)

When η > 1, we can obtain η f (u−i) > f (ηu−i), and the scalability is proved.
The uniqueness of NE is also proved.

3.4. Distributed Robust Power Control Algorithm for Power and Price Optimization

In the previous studies, the power allocation and Lagrange multiplier were solved by
transforming the power allocation objective function and constraint conditions, and the
uniqueness of NE in the relay layer non-cooperative game was proved. Next, we propose
the following distributed algorithm to realize the power distribution solution.

Firstly, we initialize the locations of DAUs, gateways, and relays, the leased relay
power ratio α and the power unit price u. Then, we calculate channel gain and utility
company cost. Secondly, the DAUs need to rent the power ratio αi,k and update the
Lagrange multiplier and utility company cost. Finally, the relays adjust the price ui to
the utility company based on α. This calculation iterates until α and u converge, and the
process is shown in Algorithm 1.

In each iteration of λ and ν, obtaining α and u requires O(T1T2) calculations. Suppose
that Q is the number of iterations for the algorithm to converge. Therefore, the total
complexity of Algorithm 1 is O(T1T2Q).
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Algorithm 1: Distributed robust power control algorithm
Input: DAUs and gateways randomly generate positions, N = 3; Relays randomly

generate positions, M = 10; Calculated channel gain gkk, gik,
k ∈ {1, 2 . . . N}, i ∈ {1, 2 . . . M}; Set the communication interruption
threshold Γ and the number of iterations T1 and T2; Initialize the ratio of
leased power α and power unit price u

Output: Optimize rental power ratio α and electricity price u

1 for t1 = 1; t1 ≤ T1; t1 = t1 + 1 do
2 for t2 = 1; t2 ≤ T2; t2 = t2 + 1 do
3 if |D(t2 + 1)− D(t2)| < ε then
4 Update the DAU leased power ratio α based on equation (35):
5 Calculate the expense of the utility agency for this iteration based on

(31);
6 Update the Lagrange multipliers λ, ν according to (43) and (44).
7 end
8 else
9 Transmit the decision results to relays;

10 end
11 The relays adjust the unit price of power through the decision of the utility

company in a non-cooperative game and transmits it to the utility company.
12 end
13 end

4. Numerical Results

Here, simulation results of power optimization between multiple relays and DAUs and
establishing a communication network topology for an area of Beijing, China are given. It is
worth noting that the data used for simulation were collected from historical data in practice.
The system has three DAUs, three gateways, and ten relay nodes, as shown in Figure 2.
DAUs are allocated at random in a circle with (116◦21.43′ E, 40◦0.73′ N) as the center and
3000 m as the radius, and the corresponding gateways are randomly distributed in a circle
with (116◦21.43′ E, 39◦57.97′ N) as the center and 3000 m as the radius. The relays are ten
LTE base stations in two circles with (116◦22.5′ E, 39◦59.28′ N), (116◦20.13′ E , 39◦59.28′ N)
as the center and 1500 m as the radius. The transmitting power of the DAU is 10W,
and each relay can allocate transmission power of 20 W. The noise level N0 is 10−9 W,
and the parameters are set to be: a = 10,716.91, b = 0.09868, c = 81.91, d = 0.01567, e = 3545,
and f = −0.02767. First of all, the simulation results of the DAU leased power ratio α are
shown in Figure 3. There are three sets of histograms, and each represents the ratio of leased
relay power per DAU. Each set of bars represents, from left to right, the ratio α of leased
power from the first relay to the tenth relay. In Figure 4, the ratio sum of relayed power is
given. It can be observed that Relay 5, Relay 9, and Relay 10 rented by DAUs account for a
large proportion. The purpose of DAUs leasing relay power is to improve communication
quality, reduce packet loss rate, and thereby reduce loss cost caused by communication
errors. Therefore, the α determined by DAUs is related to the unit price given by the relays.
Secondly, only when renting the same amount of power can the communication quality
improve as much as possible and the cost be minimized; hence α is related to the distance
between DAUs and relays and the distance between relays and gateways.

The decisions of relays depend largely on their relative position in the network topol-
ogy. Firstly, we analyze the behavior of relays and combine the topology of the network
structure and the distance between each relay and DAU as shown in Figure 5. It can be
observed that Relay 6, Relay 7, and Relay 8 are in relatively remote locations in the network
structure. Therefore, in order to increase its own revenue, relays will tend to two strategies.
One is to increase the unit price and reduce the proportion of leased power, such as Relay 1,
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Relay 3, and Relay 7. The other is to reduce the unit price by attracting DAUs to rent more
power, such as Relay 5, Relay 9, and Relay 10.

Figure 2. Topology of cooperative relay communication network (red crosses indicate the central
points of the circles).

Figure 3. The allocation of relay power to each DAU.

Figure 4. Ratio sum of relayed power.
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Figure 5. Distance between nodes.

Next, we analyze the behavior of DAUs. Combined with the DAU decision results
in Figure 3, the distance between DAUs and relays in Figure 5, and the power unit price
provided by the relay in Figure 6, it is observed that DAUs tend to cooperate with the
relays at a low unit price and a shorter distance. For example, when the information is
transmitted from DAU 1 to Gateway 1, it leases more power ratio to Relay 5, Relay 9, and
Relay 10 at a lower unit price and a shorter distance. Moreover, it can be observed from the
behavior of DAU 1 that when the unit price and distance are roughly the same, more relays
with smaller distances between the DAUs to the relays and the relays to the gateways are
selected. When DAU 2 transmits data to Gateway 2, it leases more power ratio to Relay
5, Relay 6, Relay 9, and Relay 10 at a lower unit price. Furthermore, it can be observed
from the behavior of DAU 2 that when the unit price and distance are roughly the same,
more relays with smaller unit price between the DAUs to the relays and the relays to the
gateways are selected. Figure 7 represents the convergence of the algorithm, and the relay
revenue converges within five iterations.

Next, two comparison schemes are proposed and simulated on the basis of the previ-
ous model.

Figure 6. The power unit price of relays.
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Figure 7. Convergence of the algorithm.

Scheme A: the DAU can only decide whether to request the relay for cooperative
transmission but cannot determine the proportion of the leased power. The power ratio
available to the DAU is determined by the number of DAUs requesting relay. Meanwhile,
the relay can improve its own income by adjusting the unit price of power. For example,
if DAU 1 and DAU 2 simultaneously requested Relay 1 for cooperative transmission of
forward data, DAU 1 and DAU 2 would obtain 50% of the power, respectively. At this
point, the objective function for the utility company is

min Z =
N

∑
k=1

(
paΦ(Pr) +

M

∑
i=1

xi,k

∑N
k=1 xi,k

pui

)
(54)

where xi,k represents whether DAU k rents Relay i. The revenue function of the relay is
denoted as

max Ui =
N

∑
k=1

xi,k

∑N
k=1 xi,k

pui−

N

∑
k=1

p
(

1− xi,k
∑k=1 Nxi,k

)
N − 1

ln ui
1

M−1 ∑−i ln ui
ui.

(55)

Through the simulation, the decision results of DAUs are listed in Table 1.

Table 1. DAU decision results under Scheme A.

DAU 1 DAU 2 DAU 3

Relay 1 1 1 0
Relay 2 1 0 1
Relay 3 0 1 1
Relay 4 0 1 1
Relay 5 0 1 1
Relay 6 1 0 0
Relay 7 1 0 0
Relay 8 1 0 0
Relay 9 1 0 1
Relay 10 1 1 0



Energies 2023, 16, 2911 15 of 17

Scheme B: the DAU can cooperate with a relay with the lowest cost, but each relay can
only serve one DAU, and the relay can regulate price to avoid multiple DAUs renting the
same relay. At this point, the objective function of the utility company is represented as

min Z =
N

∑
k=1

(
paΦ(Pr) +

M

∑
i=1

xi,k pui

)
(56)

The revenue function of the relays is represented as

max Ui =
N

∑
k=1

xi,k pui −
N

∑
k=1

p(1− xi,k)

N − 1
ln ui

1
M−1 ∑−i ln ui

ui. (57)

Similarly, under the rule conditions of Scheme B, the decision results of DAUs are
shown in Table 2. The behavior of DAUs in the two comparison schemes is different from
the decision behavior of DAUs. According to the above analysis, Relay 1 and Relay 2 are
close to the center of DAU 1 and Gateway 1, and Relay 10 is close to DAU 1 and Gateway 1.
The DAUs select Relay 6, Relay 7, Relay 8, and Relay 9 because these relays are positioned
at the network’s periphery, and they need to reduce the unit price to attract more DAUs
for cooperative transmission. In Scheme B, DAU 1 selects Relay 1, Relay 3, and Relay 9.
In Table 3, we give the expense of the utility agencies under the proposed scheme and
the two comparison schemes mentioned above. Z1, Z2, and Z3, respectively, represent the
cost generated by DAU 1, DAU 2, and DAU 3, and Z represents the total cost of the utility
company. As shown in Table 3, the utility company cost under the proposed scheme is
significantly less than that of the two comparison schemes.

Table 2. DAU decision results under Scheme B.

DAU 1 DAU 2 DAU 3

Relay 1 1 0 0
Relay 2 0 0 1
Relay 3 1 0 0
Relay 4 0 1 0
Relay 5 0 1 0
Relay 6 0 1 0
Relay 7 0 1 0
Relay 8 0 0 1
Relay 9 1 0 0
Relay 10 0 0 1

Table 3. The costs of utility companies.

Model of This Study/$ Scheme A/$ Scheme B/$

Z1 555.89 1154.5 1122.5

Z2 599.05 863.8 1038.5

Z3 562.22 1125 1401

Z 1717.16 3144.3 3762

5. Conclusions

In this paper, a two-layer cooperative communication network is studied between
the utility agency and relays. The utility agency rents the relay to assist the downlink
transmission to enhance the reliability of communication and reduce the data transmission
cost due to packet loss. Furthermore, the uncertainty of channel gain is considered, and a
two-tier game model is established. A distributed robust power regulation algorithm with
a continuous convex approximation scheme is presented to obtain the optimal relay power
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allocation and price. The profit of the relay is improved by adjusting the electricity price,
resulting in a reasonable power distribution for cooperative transmission. The comparative
simulation results exhibit that the expenses of the utility agencies of the proposed schemes
can be reduced by 6% and 21%, respectively. The standard deviations of income values
between the relays can be decreased by 40% and 48% respectively.
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