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Abstract: This paper investigates a drive system with energy recovery which uses a 3-phase 1-kW
36-slot 12-pole distributed winding outer-rotor surface-mounted permanent-magnet synchronous
motor (SPMSM) and surface-mounted permanent-magnet synchronous generator (SPMSG), which
can be used in indoor exercise bicycles. In order to extend drive system operating speed range, the
constant torque control, flux-weakening control, and maximum torque/voltage control are used to
extend its operation speed up to 1.75 times rated speed. In addition, a predictive speed controller
and a predictive current controller are proposed to improve transient responses, load disturbance
responses, and tracking responses. A digital signal processor, type TMS-320F-28035, manufactured
by Texas Instruments, is used as a control center for the proposed SPMSM/SPMSG drive system.
Experimental results validate the feasibility and correctness of the proposed methods.

Keywords: 36-slot 12-pole outer-rotor SPMSM/SPMSG; flux-weakening control; maximum torque
per volt control; predictive control

1. Introduction

Recently, electric indoor exercise bicycles have become more and more popular. Al-
though there has not been much research on these types of bicycles, many researchers have
investigated outdoor electric bicycles. For example, Muetze et al. evaluated the perfor-
mance of different types of electric motor-drive bicycles, including fully electric motor-drive
bicycles and partially electric motor-drive bicycles [1]. Chiara reviewed the configurations
and performance of different electric bicycles, including surface-mounted permanent-
magnet synchronous motors (SPMSM), interior permanent-magnet synchronous motors
(IPMSM), and interior permanent-magnet spoke-type motors [2]. Son et al. proposed an
SPMSM with independent distributed windings for electric bicycles. In that study, an
advance-angle phase-current was implemented to control the torque of the SPMSMs [3].
Misaki et al. implemented an increased power capacity for electric-assisted bicycles using
metal hydride fuel cells [4]. Taha designed an inner-rotor and an outer-rotor for electric
bicycle applications, and the performance of these two rotor configurations are also com-
pared in this paper [5]. Zhang implemented a low-cost controller for electrical bicycles, in
which a sensorless technique was used [6]. Park investigated a position estimation method
of an SPMSM drive system for electric bicycles [7]. These previous studies [1–7], however,
only focused on outdoor bicycles but not indoor bicycles.

Several researchers have investigated the predictive controller design and other re-
lated control designs for PMSM drive systems. For example, Hammoud et al. proposed
continuous-set model predictive control for PMSMs. A real-time realization of a continuous-
control-set model predictive current controller for PMSM drive systems was investigated
to achieve fast transient responses and good steady-state performance [8]. Eldeeb et al.
proposed a unified theory for optimal feedforward torque control of synchronous motor
drives. The optimal d-axis current and q-axis current for all operating strategies, including
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maximum torque per ampere (MTPA), field weakening, maximum torque per voltage
(MTPV) were investigated [9]. Hammoud et al. investigated offset-free continuous model
predictive current control of PMSM drive systems. A predictive horizon of two steps was
achieved with a 100 µs sampling period [10]. Xu et al. proposed a robust predictive current
controller with incremental model and inductance observer for PMSM drive systems. In
addition, the robustness and disturbance rejection were discussed [11].

In our paper, the predictive controllers, including a predictive speed controller and a
predictive current controller, of the whole drive system using a 36-slot 12-pole outer-rotor
SPMSM/SPMSG are investigated for indoor exercise bicycles. An SPMSM/SPMSG drive
system for virtual indoor exercise bicycles is implemented to enhance the riders’ pleasure
when they use an indoor exercise bicycle. This SPMSM/SPMSG system is implemented to
increase the accelerating speed or decelerating speed for the motor of an indoor exercise
bicycle. When the rider is riding from a virtual upland to a lowland, the motor of the
indoor bicycle is accelerated by adding external torque from the SPMSM drive system.
As a result, the riding experience will feel more realistic. When the rider is riding from a
virtual lowland to an upland, the motor of the indoor bicycle is decelerated by the braking
torque from the SPMSG system. As a result, the rider needs to use more physical force
to maintain the speed of the bicycle motor. By using this method, the riders can have a
more realistic experience, as though they are riding a standard bicycle outdoors. Figure 1
shows a photograph of the big screen scenarios, which provides a virtual landscape while
a rider is riding an indoor bicycle [12]. To the authors’ best knowledge, the ideas of design
and implementation of this 36-slot 12-pole outer-rotor SPMSM drive system, which can
provide a higher torque and lower speed than a regular 4-pole SPMSM, are original ideas
and have not been investigated in the previous papers [1–7]. In addition, the predictive
speed controller and the predictive current controller to enhance the dynamic responses
of the SPMSM for indoor bicycle are also new ideas [8–11]. Finally, the proposed SPMSM
drive system does not require any plug-in power from power company. A battery set is
used to receive the regenerative energy from riders, and then the battery set provides its
energy to the SPMSM drive system to achieve energy saving. These are the three main
contributions of this paper.
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Figure 2 shows the block diagram of the proposed SPMSM/SPMSG system with en-
ergy recovery. When the relays are connected to the inverter, the SPMSM is connected to 
and is controlled by the inverter to operate the SPMSM at different speeds. The SPMSM 
drive system provides an additional torque to accelerate the motor speed of the bicycle. 
However, when the relays are connected to the 3-phase diode rectifier, the SPMSG is con-
nected to the rectifier and then to the buck converter, which provides a 25-V output to the 

Figure 1. Photograph of an indoor exercise bicycle with screen.

Figure 2 shows the block diagram of the proposed SPMSM/SPMSG system with
energy recovery. When the relays are connected to the inverter, the SPMSM is connected to
and is controlled by the inverter to operate the SPMSM at different speeds. The SPMSM
drive system provides an additional torque to accelerate the motor speed of the bicycle.
However, when the relays are connected to the 3-phase diode rectifier, the SPMSG is
connected to the rectifier and then to the buck converter, which provides a 25-V output
to the regenerative resistance load and also to the charger to charge a 24 V battery set.
Improved energy recovery, therefore, is achieved. The digital signal processor (DSP), a
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32-bit control center, is used to read the encoder signal and execute the feedback signals,
and then control the relays, inverter, buck converter, and charger.
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2. Mathematical Model of SPMSMs

The mathematical model of the SPMSM is discussed here. The synchronous d-q axis
reference frame of an SPMSM is expressed as follows [13]:vd

vq

= rs

id

iq

+
Ld 0

0 Lq

 d
dt

id

iq

+ ωe(

Lq 0

0 Ld

−iq

id

 +

 0

λm

) (1)

where vd and vq are the d-q axis stator voltages, rs is the stator resistance, id and iq are
the d-q axis stator currents, Ld and Lq are the d-q axis inductances, d

dt is the differential
operator, ωe is the electrical rotor speed, and λm is the flux-linkage. The electromagnetic
torque is shown as the following equation:

Te =
3
2

P
2

λmiq (2)

where Te is the electromagnetic torque and P is the pole number.
The speed dynamic equation can be shown as the following equation:

d
dt

ωm =
1
J
(Te − TL − Bωm) (3)

where ωm is the mechanical speed, J is the inertia of the motor and load, B is the viscous
coefficient of the motor and load, and TL is the external load. The electrical rotor position
can be expressed as the following equation:

θe =
P
2

θm (4)

where θe is the electrical rotor position and θm is the mechanical rotor position. Then the
mechanical speed ωm of the motor is shown as follows:

ωm =
d
dt

θm (5)
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The electrical rotor speed ωe can now be shown as the following equation:

ωe =
P
2

ωm (6)

3. Predictive Speed-Loop Controller Design

Predictive control is a kind of control algorithm that was originally applied in indus-
trial processes in the 1970s, and it can be divided into two parts: direct predictive control,
which requires a precise model of the uncontrolled plant and indirect predictive control,
which involves a lower dimensional model [14]. Unlike many other advanced control
methods driven by theoretical research, the development of predictive control was mainly
developed by the requirements of industrial practice [15]. Model-based predictive control
has several advantages. First, it can be used for multi-input and multi-output systems.
Second, it can handle the past, present, and future performances of the dynamics of the
system. In addition, predictive control takes account of actuator constraints [16]. Finally,
the update rates of predictive control are low; as a result, the predictive control algorithms
are easily executed by using a DSP with on-line computations. In this paper, a predictive
speed-loop controller and a predictive current-loop controller are designed. The details are
discussed as follows.

By using Equation (3) and neglecting TL, we can derive the following equation:

Te = J
d
dt

ωm + Bωm (7)

In addition, from (2), we can obtain the torque equation of the SPMSM, which can be
expressed as the following equations:

Te = KTiq (8)

and
KT=

3
2

P
2

λm (9)

where KT is the torque constant of the SPMSM. Combining Equations (7) and (8), one can
derive the transfer function of the SPMSM as the following equation:

Gp(s) =
ωm(s)
iq(s)

=
KT

Js + B
(10)

The digital control system proposed in this paper requires a zero-order-hold device to
keep the values of the q-axis current. The transfer function of a zero-order-hold device can
be expressed as the following equation:

Gs_zoh(s) =
1 − e−sTst

s
(11)

where Tst is the sampling interval of the zero-order-hold device. The cascaded transfer func-
tion of the zero-order-hold device and the SPMSM can be rewritten as the following equation:

Gzp(s) = Gs_zoh(s)Gp(s)
= 1−e−sTst

s · KT
Js+B

(12)

By taking the z-transformation, we can obtain the following equation:

Gzp(z) =
ωm(z)
iq(z)

=
KT
B

(
1 − e−

B
J Tst

z − e−
B
J Tst

)
(13)
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After that, taking the inverse z-transformation, one can derive the motor speed as the
following equation:

ωm(k + 1) = e−
B
J Tst ωm(k) +

KT(1 − e−
B
J Tst)

B
iq(k)= asωm(k) + bsiq(k) (14)

In Equation (14), the parameters as and bs are defined as the following two equations:

as = e−
B
J Tst (15)

and

bs =
KT(1 − e−

B
J Tst)

B
(16)

where as and bs are the simplified parameters. By using (k − 1) to replace (k), Equation (14)
can be rewritten as the following equation:

ωm(k) = asωm(k − 1) + bsiq(k − 1) (17)

Subtracting Equation (17) from Equation (14), one can derive the following equation:

∆ωm(k + 1) = as∆ωm(k) + bs∆iq(k) (18)

where ∆ωm(k + 1) is the (k + 1)th sampling interval difference speed, ∆ωm(k) is the (k)th
sampling interval difference speed, and ∆iq(k) is the (k)th sampling interval difference
q-axis current. From Equations (17) and (18), we can derive the (k + 1)th sampling interval
estimated speed as the following equation:

ω̂m(k + 1) = ωm(k) + as∆ωm(k) + bs∆iq(k) (19)

After that, we can define the cost function as the following equation [17]:

Jp(k) = [ω∗
m(k + 1)− ω̂m(k + 1)]2 + kw

[
∆iq(k)

]2 (20)

where kw is the weighting factor of the cost function of the
[
∆iq(k)

]2. Submitting Equation (19)
into Equation (20), we can derive the following equation:

Jp(k) =
[
ω∗

m(k + 1)− ωm(k)− as∆ωm(k)− bs∆iq(k)
]2

+ kw
[
∆iq(k)

]2
= (b2

s + kw)
[
∆iq(k)

]2 − 2bs[ω∗
m(k + 1)− ωm(k)− as∆ωm(k)]∆iq(k) + [ω∗

m(k + 1)− ωm(k)− as∆ωm(k)]
2 (21)

Finally, by taking the ∂Jp(k)
∂∆iq(k)

and assuming that its result equals zero, we can derive
the following equation:

∂Jp(k)
∂∆iq(k)

= 2(b2
s + kw)∆iq(k)− 2bs[ω

∗
m(k + 1)− ωm(k)− as∆ωm(k)] = 0 (22)

From Equation (22) the ∆iq(k) can be obtained and expressed as the following equation:

∆iq(k) =
bs[ω∗

m(k + 1)− ωm(k)]− asbs∆ωm(k)
b2

s + kw
(23)

The q-axis current command, therefore, can be expressed as the following equation:

i∗q (k) = iq(k − 1) + ∆iq(k) (24)
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From Equation (23), we can obtain the block diagram of the speed-loop control, which
is shown in Figure 3. The control input i∗q (k) is the integration of the ∆iq(k), which is a
linear combination of the speed error [ω∗

m(k + 1)− ωm(k)] and the ∆ωm(k).
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4. Predictive Current-Loop Controller Design

In this section, the details of the predictive current-loop controller design are discussed.
From Equation (1), we can obtain the dynamic equation of the d-axis current as follows:

d
dt

id =
1
Ld

(vd − rsid + ωeLqiq) (25)

From Equation (1), we can obtain the dynamic equation of the q-axis current as follows:

d
dt

iq =
1
Lq

[
vq − rsiq − ωe(λm + Ldid)

]
(26)

The Equations (25) and (26) have coupling terms, which is the electric speed ωe. To
simplify the design of the current controller, it is necessary to define the new state variables
ud and uq. The d-q axis current dynamic equations, therefore, can be expressed as the
following equations [18]:

d
dt

id =
1
Ld

(ud − rsid) (27)

and
d
dt

iq =
1
Lq

(uq − rsiq) (28)

In Equation (27) and Equation (28), the variables ud and uq are defined as follows:

ud(s) = vd(s) + ωeLqiq(s) (29)

and
uq(s) = vq(s)− ωe(λm + Ldid(s)) (30)

By taking the Laplace transformations of (27) and (28) and combining with (29) and
(30), we can derive the following equations:

id(s) =
vd(s) + ωeLqiq(s)

sLd + rs
=

ud(s)
sLd + rs

(31)

and

iq(s) =
vq(s)− ωe(λm + Ldid(s))

sLq + rs
=

uq(s)
sLq + rs

(32)

From Equation (31), we can derive the d-axis current transfer function as follows:

Gdi(s) =
id(s)
ud(s)

=
1

sLd + rs
(33)
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Then from Equation (32), we can obtain the q-axis current transfer function as follows:

Gqi(s) =
iq(s)
uq(s)

=
1

sLq + rs
(34)

In this paper, the d-axis current transfer function is cascaded with a zero-order hold de-
vice, and the zero-order hold device has a transfer function which can be shown as follows:

Gc_zoh(s) =
1 − e−sTct

s
(35)

where Tct is the sampling interval of the current-loop control. By cascading the zero-order-
hold device and the d-axis current transfer function, we can obtain the following equation:

Gzdi(s) = Gc_zoh(s)Gdi(s) =
1 − e−sTct

s
· 1

sLd + rs
(36)

Similarly, by cascading a zero-order-hold device with the q-axis current transfer
function, we can obtain the following equation:

Gzqi(s) = Gc_zoh(s)Gqi(s) =
1 − e−sTct

s
· 1

sLq + rs
(37)

By taking the z-transformation of Gzdi(s), we can derive the following equation:

Gzdi(z) =
id(z)
ud(z)

=
1
rs

(
1 − e−

rs
Ld

Tct

z − e−
rs
Ld

Tct

)
(38)

Similarly, by taking the z-transformation of Gzqi(s), we can derive the following equation:

Gzqi(z) =
iq(z)
uq(z)

=
1
rs

1 − e
− rs

Lq Tct

z − e
− rs

Lq Tct

 (39)

By taking the inverse z-transformation from Equation (38), we can derive the d-axis
dynamic equation as follows:

id(k + 1) = e−
rs
Ld

Tct · id(k) +
1 − e−

rs
Ld

Tct

rs
· ud(k) (40)

Similarly, by taking the inverse z-transformation from Equation (39), we can derive
the q-axis dynamic equation as follows:

iq(k + 1) = e
− rs

Lq Tct · iq(k) +
1 − e

− rs
Lq Tct

rs
· uq(k) (41)

where id(k + 1) is the (k + 1)th sampling interval d-axis current and iq(k + 1) is the (k + 1)th
sampling interval q-axis current. From Equation (40), we can rewrite the d-axis current
dynamic equation as follows:

id(k + 1) = adid(k) + bdud(k) (42)

The parameters in Equation (42) can be defined as follows:

ad = e−
rs
Ld

Tct (43)
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and

bd =
1 − e−

rs
Ld

Tct

rs
(44)

Similarly, from Equation (41), we can rewrite the q-axis current dynamic equation
as follows:

iq(k + 1) = aqiq(k) + bquq(k) (45)

In Equation (45), we also can define the following two parameters as follows:

aq = e
− rs

Lq Tct (46)

and

bq =
1 − e

− rs
Lq Tct

rs
(47)

Using (k − 1) to replace k, the d-axis and q-axis current dynamic equations can be
shown as follows:

id(k) = adid(k − 1) + bdud(k − 1) (48)

and
iq(k) = aqiq(k − 1) + bquq(k − 1) (49)

Subtracting (48) from (42), we can derive the following difference equation:

∆id(k + 1) = ad∆id(k) + bd∆ud(k) (50)

In addition, subtracting (49) from (45), we can derive the following difference equation:

∆iq(k + 1) = aq∆iq(k) + bq∆uq(k) (51)

where the ∆id(k + 1) and ∆iq(k + 1) are the d-q axis difference currents of the (k + 1)th
sampling interval. The ∆id(k) and ∆iq(k) are the d-q axis difference currents of the (k)th
sampling interval. The ∆ud(k) and ∆uq(k) are d-q axis difference voltages of the (k)th
sampling interval.

From Equation (48) and Equation (50), we can derive the estimated d-axis current of
the (k + 1)th sampling interval as the following equation:

îd(k + 1) = id(k) + ad∆id(k) + bd∆ud(k) (52)

From Equation (49) and Equation (51), we can derive the estimated q-axis current of
the (k + 1)th sampling interval as the following equation:

îq(k + 1) = iq(k) + aq∆iq(k) + bq∆uq(k) (53)

Next, we can define the performance index of the d-axis current-loop control as the
following equation [18]:

Jcd(k) = [id
∗(k + 1)− id(k)− ad∆id(k)− bd∆ud(k)]

2 + kcw[∆ud(k)]
2 (54)

We can also define the performance index of the q-axis current-loop control as the
following equation [18]:

Jcq(k) =
[
iq
∗(k + 1)− iq(k)− aq∆iq(k)− bq∆uq(k)

]2
+ kcw

[
∆uq(k)

]2 (55)
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where kcw is the weighting factor of the control input ∆ud(k) and ∆uq(k). From Equation (54),
we can rearrange the equation as follows:

Jcd(k) = (b2
d + kcw)[∆ud(k)]

2 − 2bd[id
∗(k + 1)− id(k)− ad∆id(k)]∆ud(k)

+[id∗(k + 1)− id(k)− ad∆id(k)] (56)

By using the same method, we can rearrange Equation (55) as follows:

Jcq(k) = (b2
q + kcw)

[
∆uq(k)

]2 − 2bq
[
iq∗(k + 1)− iq(k)− aq∆iq(k)

]
∆uq(k)

+
[
iq
∗(k + 1)− iq(k)− aq∆iq(k)

]
(57)

Taking ∂Jcd(k)/∂∆ud(k) and assuming that its result equals zero, we can obtain the
following equation:

2(b2
d + kcw)∆ud(k)− 2bd[id

∗(k + 1)− id(k)− ad∆id(k)]= 0 (58)

Similarly, taking ∂Jcq(k)/∂∆uq(k) and assuming that its result also equals zero, we can
obtain the following equation:

2(b2
q + kcw)∆uq(k)− 2bq

[
iq
∗(k + 1)− iq(k)− aq∆iq(k)

]
= 0 (59)

From Equations (58) and (59), we can derive the following two equations:

∆ud(k) =
bd(id

∗(k + 1)− id(k))
b2

d + kcw
− adbd∆id(k)

b2
d + kcw

(60)

and

∆uq(k) =
bq
(
iq
∗(k + 1)− iq(k)

)
b2

q + kcw
−

aqbq∆iq(k)
b2

q + kcw
(61)

To consider the real control system, we need to add the coupling terms, −ωeLqiq(k)
and ωe[λm + Ld∆id(k)], and then we can obtain the following equations:

∆vd(k) = ∆ud(k)− ωeLqiq(k) (62)

and
∆vq(k) = ∆uq(k) + ωe[λm + Ld∆id(k)] (63)

where ∆vd(k) and ∆vq(k) are the differences of the d-q axis control inputs.
Finally, the d-q axis current-loop control inputs can be shown as follows:

vd
∗(k) = vd(k − 1) + ∆vd(k) (64)

and
vq

∗(k) = vq(k − 1) + ∆vq(k) (65)

From Equations (60)–(65), we can construct the block diagram of the d-q axis current
control system, which is shown in Figure 4. In Figure 4, the q-axis current command is a
linear combination of the q-axis current error [i∗q (k + 1)− iq(k)] and ∆iq(k). Similarly, the
d-axis current command is a linear combination of the d-axis current error [i∗d(k+ 1)− id(k)]
and ∆id(k).

In this paper, we define a performance index for the d-axis current control, which is
shown in Equation (54), and then we also define a performance index for the q-axis current
control, which is shown in Equation (55). Next, we use the optimalization technique to
solve the ∂Jcd(k)/∂∆ud(k) = 0 and ∂Jcq(k)/∂∆uq(k) = 0. Finally, we calculate the optimal
control input vd

∗(k) and vq
∗(k). Therefore, we can obtain the optimal current difference ∆id

and ∆iq for each sampling interval. However, the PI controller only uses pole assignment
but not optimization technique to determine KP and KI . Moreover, the integral action
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usually causes delay response. After the d-q coordinate transformation is executed, the ∆id
and ∆iq generate ∆ia, ∆ib, and ∆ic. As a result, the proposed predictive controller, which
uses optimization technique, has smaller harmonic currents than the PI controller does.
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5. SPMSM Drive System

In this paper, a constant DC-link inverter is used. As a result, the SPMSM drive system
includes three operating regions: a constant-torque region, a constant-power region, and
a maximum-torque per volt region, which are shown in Figure 5 [19]. The details are
discussed as follows.
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(a) Constant-torque region

When the SPMSM is operated below its rated speed, due to the limits of the motor’s
capability, the operating current has to be less than the allowed maximum current, and
the operating voltage has to be less than the allowed maximum voltage. As a result, the
SPMSM is operated in the constant-torque region. These two constraints are described as
the following equations:

iq ≤ imax
q (66)

and √
v2

d + v2
q ≤ vmax

s (67)

where imax
q is the maximum q-axis current and vmax

s is the maximum stator voltage.
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(b) Constant-power region

When the PMSM is operated beyond its rated speed, the back-EMF is increased and is
close to the DC-bus voltage. In this situation, the resistance voltage drop and the inductance
voltage drop are neglected. By submitting rsiq = 0, id = 0, and d

dt Lqiq = 0 into Equation (1),
we can derive the following equations:

vd = −ωeLqiq (68)

and
vq = ωeλm (69)

Then, by submitting (68) and (69) into (67), we can obtain the following equation:√
(−ωeLqiq)

2 + (ωeλm)
2 ≤ vmax

s (70)

From Equation (70), we can easily derive the following equation:

(isc
s )2 + iq2 ≤ (

vmax
s

ωeLq
2 ) (71)

where isc
s is defined as

(
λm
Lq

)
, which is the characteristic current of the SPMSM.

The Equation (71) can be graphically expressed and is shown in Figure 6, which
includes a current constraint and a voltage constraint. In Figure 6, the line OA is the
constant torque region, the line AB is the constant power region, and the line BC is the
maximum torque/volt region.
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(c) Maximum torque/volt control region

When the SPMSM is operated at the B point in Figure 6, the d-axis current is near isc
s ,

there is little flux, which causes serious current harmonics, and then this deteriorates the
performance of the SPMSM. To solve this problem, in this paper, a maximum torque per
volt (MTPV) method is used, which decreases the q-axis current to decrease the torque. The
d-q axis currents can now be shown as follows:

id_MTPV = −isc
s (72)
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and
iq_MTPV =

vmax
s

ωeLq
(73)

where id_MTPV is the d-axis current in the MTPV operating region, and iq_MTPV is the q-axis
current in the MTPV operating region.

(d) Implementation

In this paper, an advance angle control is used to control the current vector is, which
is shown in Figure 7a. When the SPMSM is operated in the constant torque region, the
advance angle θFW is set as zero. However, when the SPMSM is operated in the constant
power region, the θFW is gradually increased. As a result, the d-axis becomes more negative
and the q-axis current is gradually reduced, and this is shown in Figure 7b. When the
SPMSM is operated in the MTPV operating region, the d-axis current is fixed, and then the
q-axis current is gradually reduced, and this is shown in Figure 7c.
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6. Implementation

Figure 8 shows the implemented regeneration circuit of the SPMSM drive system. The
SPMSM/SPMSG has a rated speed of 200 r/min, 36 slots, 12 poles, a stator resistance of
6.84 Ω, d-axis and q-axis inductances of 9.8 mH, a flux linkage of 0.122 V·s/rad, an inertia
of 0.01 kg·m2, and a viscous coefficient of 0.005 N·m·s/rad. When the indoor exercise
bicycle is ridden from a virtual upland to a lowland, the motor of the indoor exercise
bicycle is accelerated. Then, the relays are connected to the inverter, which uses the energy
from the battery set to drive the SPMSM, which adds extra torque to the indoor exercise
bicycle to make the ride feel more realistic. However, when the rider of the indoor bicycle
is riding from a virtual lowland to an upland, the motor of the indoor exercise bicycle
is decelerated. The relays are connected to the 3-phase rectifier to transfer the SPMSG
energy to the capacitor of the DC-link. After that, a buck-converter is used to convert the
DC-link capacitor voltage to near 25 V, which provides for regenerative resistance. Then,
the SPMSM converter transforms its energy into the regenerative resistance. In order to
store and save the recovered energy, a charger is implemented to use the regenerated energy
to charge the 24-V battery set.
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Figure 9a is a photograph of the SPMSM, including the stator, rotor, and air gap.
The stator has 36 slots, a diameter of 150 mm, a 1 mm air-gap, and 3-phase distributed
windings. The rotor has 12 poles with ferrite permanent-magnetic flanges. The diameter
of the rotor is 220 mm, and a belt is attached to the rotor. Figure 9b is a photograph of
the SPMSM drive system, including the encoder, the SPMSM, the mechanical coupling
device, and the dynamometer. The encoder provides 2500 pulses/revolution. Figure 10
shows a photograph of the main circuit, including the inverter, sensing circuit, DSP, encoder
circuit, and DC-link capacitor. The DSP is type TMS-320F-28035, manufactured by Texas
Instruments. All of the circuits were designed and implemented by the authors of this paper.
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connector.
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vided by a DC power supply. The encoder is 2500 pulses/revolution. The dynamometer 
was manufactured by Chain-Tail Cooperation, type ZKB1S2AA, which uses a variable DC 
voltage to adjust the external load. The PMSM/PMSG was manufactured by Direction 
Technology and National Taiwan University of Science and Technology. To validate theo-
retical analysis, several experimental results are shown here. Figure 11a shows the meas-
ured speed responses at 200 r/min by using predictive controllers and PI controllers. Both 
of them have first-order transient responses because the SPMSM has an outer-rotor, which 
provides a great amount of inertia. As we can observe, the predictive controllers have 
faster transient responses than the PI controllers. Figure 11b shows the load disturbance 
responses under a 1 N·m load at 200 r/min. When an external load is added, the predictive 
controllers have a 20 r/min speed drop and a 0.2 s recovery time, but the PI controllers 
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have better performance than the PI controllers. Figure 12a shows the measured speed 
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7. Experimental Results

The experimental proto-type system in this paper uses a Texas Instruments DSP, type
TMS-320-F-28035, as the control center. The measured execution time of the proposed
predictive speed-loop control is 1 ms, and the measured execution time of the proposed
predictive current-loop control is 100 µs. The input DC-link voltage is 24 V DC, which is
provided by a DC power supply. The encoder is 2500 pulses/revolution. The dynamometer
was manufactured by Chain-Tail Cooperation, type ZKB1S2AA, which uses a variable DC
voltage to adjust the external load. The PMSM/PMSG was manufactured by Direction
Technology and National Taiwan University of Science and Technology. To validate theoret-
ical analysis, several experimental results are shown here. Figure 11a shows the measured
speed responses at 200 r/min by using predictive controllers and PI controllers. Both of
them have first-order transient responses because the SPMSM has an outer-rotor, which
provides a great amount of inertia. As we can observe, the predictive controllers have
faster transient responses than the PI controllers. Figure 11b shows the load disturbance
responses under a 1 N·m load at 200 r/min. When an external load is added, the predictive
controllers have a 20 r/min speed drop and a 0.2 s recovery time, but the PI controllers
have a 40 r/min speed drop and a 0.5 s recovery time. Again, the predictive controllers
have better performance than the PI controllers. Figure 12a shows the measured speed
responses at a 200 r/min sinusoidal speed command. The predictive controllers have
better performance, which can track the sinusoidal speed commands very well. The PI
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controllers, however, have a lag response due to the delay of the integrational controller.
Figure 12b demonstrates the measured speed errors. The maximum tracking error of the
predictive controllers is 12 r/min, but it is 45 r/min for the PI controllers. Figure 13a
demonstrates the measured triangular speed responses at 200 r/min, and we can see that
the predictive controllers have a faster tracking response than the PI controllers. Figure 13b
demonstrates the measured speed errors under the same conditions. As we can observe,
the maximum tracking error of the predictive controllers is 28 r/min, but it is 38 r/min
for the PI controllers. Figure 14 displays the measured step-input transient responses at
different commands from 2 r/min to 350 r/min when using the predictive controllers. All
of the results have similar linear responses. As a result, it is not necessary to tune the
parameters of the predictive controllers for different operating speeds.
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Figure 15a shows the measured a-phase current waveform at 200 r/min and 1 N.m by 

using a predictive current controller. Figure 15b demonstrates the harmonic spectrum 
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Figure 14. Measured step-input speed responses at different commands.

Figure 15a shows the measured a-phase current waveform at 200 r/min and 1 N·m
by using a predictive current controller. Figure 15b demonstrates the harmonic spectrum
from fundamental frequency up to the 15th harmonic by using the predictive current
controller. We can see that the total harmonic distortion is 8.8%. Figure 16a shows the
measured a-phase current waveform at 200 r/min and 1 N·m by using a PI current con-
troller. Figure 16b demonstrates the harmonic spectrum by using the PI controller from
the fundamental up to the 15th harmonic. We can see that the total harmonic distortion
is 12.5%. Comparing Figure 15a,b and Figure 16a,b, we can conclude that the predictive
current controller has better performance than the PI current controller. Figure 17a displays
the measured voltage of the regenerative resistance load, which is used to charge the 24 V
battery, and it also displays the a-phase voltage output that is generated by the SPMSG
when the system is operated when regenerating energy. Figure 17b shows the measured
regeneration voltage waveforms and power in Watts at different duty cycles of the buck
converter with different speeds of the SPMPG.

Figure 18a shows the measured voltage waveform when the relay is switched from
“on” to “off”, and we can see that the switching interval is near 300 ns. Figure 18b shows
the measured voltage waveform when the relay is switched from “off” to “on”, and the
switching interval is near 900 ns. Figure 19a shows the measured speed responses without
using the flux-weakening control. As we can observe, the speed cannot track the speed
command because the back-EMF of the SPMSM is near 24 V. Figure 19b shows the related
d-q axis current commands and their currents, and we see that the d-q currents cannot track
their current commands. Figure 20a shows the measured speed responses at 300 r/min by
using the flux-weakening control, and the measured speed can track the speed command
well. Figure 20b shows the measured d-q axis commands and their measured d-q axis
currents, and all of the d-q axis currents can track their current commands well. Figure 21a
shows a comparison of the measured speed responses using and without using MTPV
control. The adjustable speed range can be extended by using the proposed MTPV control.
Figure 21b shows the measured torque-speed curve from 10 r/min to 350 r/min, including
constant torque, flux-weakening, and maximum torque per volt regions. Figure 22a,b show
the measured speed and current responses by using the new parameters of the predictive
controllers with and without input current constraint. The responses using the input
current constraint are smoother and slower than without using the input current constraint.
Figure 23a–c show the measured responses when the motor parameters are varied. The
predictive controller has better performance than the PI controller again. Figure 24a,b
shows responses of the PI current controller and the new parameters of the predictive
current controller. No torque sensor is used here. However, we can judge the torque ripples
from the q-axis current ripples and speed ripples. As you can observe, from Figure 24a,b,
the torque ripples between the predictive control and PI control are quite close. Therefore,
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we can conclude that the predictive controllers provide better transient responses but not
better torque ripples than the PI controllers.
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Figure 15. Measured a-phase current using predictive controller. (a) waveform, (b) harmonics. Figure 15. Measured a-phase current using predictive controller. (a) waveform, (b) harmonics.
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Figure 16. Measured a-phase current using PI controller. (a) waveform, (b) harmonics. Figure 16. Measured a-phase current using PI controller. (a) waveform, (b) harmonics.
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Figure 17. Measured regeneration voltage waveforms and power. (a) voltage waveforms, (b) 
power. 
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Figure 18. Measured voltage responses of relay. (a) off, (b) on.
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Figure 19. Measured responses at 300 r/min without flux-weakening control. (a) speeds, (b) currents. 
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Figure 19. Measured responses at 300 r/min without flux-weakening control. (a) speeds, (b) currents.
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Figure 19. Measured responses at 300 r/min without flux-weakening control. (a) speeds, (b) currents. 
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Figure 19. Measured responses at 300 r/min without flux-weakening 
control. (a) speeds, (b) currents. 
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Figure 20. Measured responses at 300 r/min with flux-weakening control. 
(a) speeds, (b) currents. 
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Figure 20. Measured responses at 300 r/min with flux-weakening control. (a) speeds, (b) currents.
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Figure 21. Measured speed responses at 350 r/min with maximum torque/voltage control. (a) speeds,
(b) torque-speed curve.
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Figure 21. Measured speed responses at 350 r/min with maximum torque/voltage control. (a) 

speeds, (b) torque-speed curve. 
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Figure 22. The measured responses at 50 r/min. (a) speeds, (b) currents. 
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Figure 22. The measured responses at 50 r/min. (a) speeds, (b) currents.
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Figure 22. The measured responses at 50 r/min. (a) speeds, (b) currents. 
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Figure 23. Speed responses with varied parameters 2 sr , 0 5. dL , 0 5. qL , and 2J  at 50 r/min. (a) 

speeds. (b) proposed predictive controller. (c) PI errors. 
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Figure 23. Speed responses with varied parameters 2rs, 0.5Ld, 0.5Lq, and 2J at 50 r/min. (a) speeds.
(b) proposed predictive controller. (c) PI errors.
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Figure 24. Measured responses with different controllers. (a) speeds, (b) q-axis currents. 
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Table 1 shows the comparisons of the proposed predictive controllers and PI controllers
that were designed by pole assignment method. As we can observe, the predictive con-
trollers have better performance than the PI controllers, including faster rise time, shorter
settling time, smaller steady-state errors, faster recovery times, smaller speed drops when
an external load is added, and smaller tracking errors for both sinusoidal and triangular
speed commands.

Table 1. Comparisons of predictive controllers and PI controllers.

Conditions Specifications PI Controllers Predictive Controllers

200 r/min
step-input command

Rise time 1 s 0.4 s

Settling time 1.4 s 0.8 s

Steady-state errors ±2 r/min ±1 r/min

200 r/min
adding a 2N-m load

Recovery time 0.5 s 0.2 s

Maximum speed drop 31 r/min 20 r/min

200 r/min
sinusoidal speed command

Maximum speed error 44 r/min 22 r/min√
n
∑

k=1
ω2

error(k)

n
194 r/min 94 r/min

200 r/min
triangular speed command

Maximum speed error 37 r/min 28 r/min√
n
∑

k=1
ω2

error(k)

n
188 r/min 134 r/min

8. Conclusions

In this paper, a 36-slot 12-pole outer-rotor SPMSM drive system with energy recovery
is implemented. This new SPMSM/SPMSG system provides high torque and low-speed
operating ranges, which are very suitable for indoor exercise bicycle applications. In
addition, flux-weakening control and maximum torque per voltage control are proposed
to easily extend its maximum motor speed to 1.75 times the rated speed. Moreover, the
predictive-speed controller and predictive-current controller are designed and implemented
to improve the transient responses, load disturbance responses, and tracking responses.

The paper proposes a new design method for a multi-pole outer-rotor SPMSM and its
drive system which is very suitable for indoor exercise bicycle applications.
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