# Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Photovoltaics Current State of the Art

#### 2.1. Classifications

**Figure 1.**Classification of photovoltaic. The 2nd G, with an efficiency of 21.4%, came into existence after 20 years of research and development [9]. The disadvantage of 2nd G is that most of the components of these cells are becoming increasingly rare and expensive (indium), and some are toxic (cadmium). The 3rd G is a recent generation that has emerged due to the high costs of 1st G solar cells, materials availability limitations, and the toxicity of 2nd G solar cells. In addition to silicon, researchers use various new materials to make solar cells, such as nano-materials, silicon wires, solar inks created with conventional printing press technology, conductive plastics, and organic dyes- [9,18]. In [18], the fourth generation (4th G) classifies the new generation of solar cell technology. It uses a combination of organic and inorganic materials for manufacturing. The advantage of 4th G is combining inorganic and organic materials to maintain cost and increase solar to electrical energy conversion efficiency. The maximum efficiency of laboratory-based photovoltaic cells is more than 40%, according to the National Renewable Energy Laboratory (NREL) in 2020 [6]. According to NREL, Figure 2 shows the efficiency improvement trends as of November 2021.

#### 2.2. Concentrated Photovoltaic Cooling

## 3. Types and Classification of Cooling Techniques in Solar Cells

## 4. Pulsating Flow on CPV Cooling

## 5. Novel Approach to CPV Cooling

^{−6}residual was considered to indicate a converged solution. A total heat flux of 150,000 W/m

^{2}, equivalent to a concentration of 150 suns of the solar simulator used for the experiment, was applied. The complete 3D model (Figure 6c) was constructed using a three-axis computer numerical control (CNC) machine with flat plate material made of Aluminium 6082T6 manufacture by Ooznest UK. The pulsating flow was generated using an Arduino MEGA microcontroller sourced through RS components UK, integrated with a solenoid valve, which opened and closed at a frequency of 0.5 Hz and a period of 2 s. A 5-multijunction solar cell was used.

^{+}value of 0.765. A user-defined function (UDF) was created for a flow rate ranging from 0.5 L/m (0.0085 kg/s) to 2.5 L/m (0.0425 kg/s) to generate pulsating flow at the inlet. The equivalent flow rate velocity (ranging from 0.5 L/m to 2.5 L/m) was used in the UDF, which was then imported into the FLUENT software. Subsequently, boundary conditions were defined at the walls, inlet, and outlet. The experimental process flow adopted is illustrated in Figure 8. Finally, a high-flux sun simulator experiment was conducted to validate the model.

#### 5.1. Simulation Results

#### 5.2. Experiment Results

#### 5.3. Validation

## 6. Future Work

## 7. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Gul, M.; Kotak, Y.; Muneer, T. Review on Recent Trend of Solar Photovoltaic Technology. Energy Explor. Exploit.
**2016**, 34, 485–526. [Google Scholar] [CrossRef][Green Version] - Ankit; Sahoo, S.K.; Sukchai, S.; Yanine, F.F. Review and Comparative Study of Single-Stage Inverters for a PV System. Renew. Sustain. Energy Rev.
**2018**, 91, 962–986. [Google Scholar] [CrossRef] - Zhang, J.; Xuan, Y. Performance Improvement of a Photovoltaic—Thermoelectric Hybrid System Subjecting to Fluctuant Solar Radiation. Renew. Energy
**2017**, 113, 1551–1558. [Google Scholar] [CrossRef] - Al-Nimr, M.A.; Bukhari, M.; Mansour, M. A Combined CPV/T and ORC Solar Power Generation System Integrated with Geothermal Cooling and Electrolyser/Fuel Cell Storage Unit. Energy
**2017**, 133, 513–524. [Google Scholar] [CrossRef] - Abdulmunem, A.R.; Samin, P.M.; Rahman, H.A.; Hussien, H.A.; Mazali, I.I. Enhancing PV Cell’s Electrical Efficiency Using Phase Change Material with Copper Foam Matrix and Multi-Walled Carbon Nanotubes as Passive Cooling Method. Renew. Energy
**2020**, 160, 663–675. [Google Scholar] [CrossRef] - Nandurkar, Y.; Shrivastava, R.L.; Soni, V.K. Improvement in Energy Efficiency of CPV Module by Way of Various Active and Passive Cooling Techniques. J. Inst. Eng. India Ser. C
**2022**, 103, 259–265. [Google Scholar] [CrossRef] - Sharaf, M.; Huzayyin, A.S.; Yousef, M.S. Performance Enhancement of Photovoltaic Cells Using Phase Change Material (PCM) in Winter. Alex. Eng. J.
**2022**, 61, 44. [Google Scholar] [CrossRef] - Xu, H.; Wang, N.; Zhang, C.; Qu, Z.; Karimi, F. Energy Conversion Performance of a PV/T-PCM System under Different Thermal Regulation Strategies. Energy Convers. Manag.
**2021**, 229, 113660. [Google Scholar] [CrossRef] - Ranabhat, K.; Patrikeev, L.; Revina, A.A.; Andrianov, K.; Lapshinsky, V.; Sofronova, E. An Introduction to Solar Cell Technology. J. Appl. Eng. Sci.
**2016**, 14, 481–491. [Google Scholar] [CrossRef][Green Version] - Skullong, S.; Promvonge, P.; Thianpong, C.; Pimsarn, M. Heat Transfer and Turbulent Flow Friction in a Round Tube with Staggered-Winglet Perforated-Tapes. Int. J. Heat Mass Transf.
**2016**, 95, 7. [Google Scholar] [CrossRef] - Singh, S.; Singh, S.K.; Mali, H.S.; Dayal, R. Numerical Investigation of Heat Transfer in Structured Rough Microchannels Subjected to Pulsed Flow. Appl. Eng.
**2021**, 197, 117361. [Google Scholar] [CrossRef] - Akdag, U.; Akcay, S.; Demiral, D. Heat Transfer Enhancement with Laminar Pulsating Nanofluid Flow in a Wavy Channel. Int. Commun. Heat Mass Transf.
**2014**, 59, 8. [Google Scholar] [CrossRef] - Naphon, P.; Wiriyasart, S. Experimental Study on Laminar Pulsating Flow and Heat Transfer of Nanofluids in Micro-Fins Tube with Magnetic Fields. Int. J. Heat Mass Transf.
**2018**, 118, 131. [Google Scholar] [CrossRef] - Kim, S.Y.; Kang, B.H.; Hyun, J.M. Heat Transfer from Pulsating Flow in a Channel Filled with Porous Media. Int. J. Heat Mass Transf.
**1994**, 37, 2025–2033. [Google Scholar] [CrossRef] - Huang, X.; Li, P.; Tan, Y. Time-Dependent Heat Transfer Analysis of Ellipsoidal Protruded Microchannel with Multiple Pulsating Jets. Appl. Eng.
**2022**, 210, 118348. [Google Scholar] [CrossRef] - Zhang, L.; Tian, L.; Zhang, A.; Chen, H. Effects of the Shape of Tube and Flow Field on Fluid Flow and Heat Transfer. Int. Commun. Heat Mass Transf.
**2020**, 117, 104782. [Google Scholar] [CrossRef] - Aghenta, L.O.; Iqbal, M.T. Development of an IoT Based Open Source SCADA System for PV System Monitoring. In Proceedings of the IEEE Canadian Conference of Electrical and Computer Engineering, CCECE 2019, Edmonton, AB, Canada, 5–8 May 2019. [Google Scholar]
- Singh, B.P.; Goyal, S.K.; Kumar, P. Solar Pv Cell Materials and Technologies: Analysing the Recent Developments. Proc. Mater. Today Proc.
**2021**, 2021, 43. [Google Scholar] [CrossRef] - Abo-Zahhad, E.M.; Ookawara, S.; Radwan, A.; El-Shazly, A.H.; ElKady, M.F. Thermal and Structure Analyses of High Concentrator Solar Cell under Confined Jet Impingement Cooling. Energy Convers. Manag.
**2018**, 176, 39–54. [Google Scholar] [CrossRef] - Abo-Zahhad, E.M.; Ookawara, S.; Esmail, M.F.C.; El-Shazly, A.H.; Elkady, M.F.; Radwan, A. Thermal Management of High Concentrator Solar Cell Using New Designs of Stepwise Varying Width Microchannel Cooling Scheme. Appl. Eng.
**2020**, 172, 115124. [Google Scholar] [CrossRef] - Abo-Zahhad, E.M.; Ookawara, S.; Radwan, A.; El-Shazly, A.H.; El-Kady, M.F.; Esmail, M.F.C. Performance, Limits, and Thermal Stress Analysis of High Concentrator Multijunction Solar Cell under Passive Cooling Conditions. Appl. Eng.
**2020**, 164, 114497. [Google Scholar] [CrossRef] - Du, B.; Hu, E.; Kolhe, M. Performance Analysis of Water Cooled Concentrated Photovoltaic (CPV) System. Renew. Sustain. Energy Rev.
**2012**, 16, 6732–6736. [Google Scholar] [CrossRef] - Ahmed, A.; Shanks, K.; Sundaram, S.; Mallick, T. Energy and Exergy Analyses of New Cooling Schemes Based on a Serpentine Configuration for a High Concentrator Photovoltaic System. Appl. Eng.
**2021**, 199, 117528. [Google Scholar] [CrossRef] - Mallick, T.K.; Eames, P.C.; Norton, B. Using Air Flow to Alleviate Temperature Elevation in Solar Cells within Asymmetric Compound Parabolic Concentrators. Sol. Energy
**2007**, 81, 3. [Google Scholar] [CrossRef] - Hersch, P.; Zweibel, K.S. Basic Photovoltaic Principles and Methods; Energy Research Institute: Washington, DC, USA, 1982. [Google Scholar]
- Nayan, M.F.; Ullah, S.M.S.; Saif, S.N. Comparative Analysis of PV Module Efficiency for Different Types of Silicon Materials Considering the Effects of Environmental Parameters. In Proceedings of the 3rd International Conference on Electrical Engineering and Information and Communication Technology, iCEEiCT 2016, Dhaka, Bangladesh, 22–24 September 2016. [Google Scholar]
- Wilson, G.M.; Al-Jassim, M.; Metzger, W.K.; Glunz, S.W.; Verlinden, P.; Xiong, G.; Mansfield, L.M.; Stanbery, B.J.; Zhu, K.; Yan, Y.; et al. The 2020 Photovoltaic Technologies Roadmap. J. Phys. D Appl. Phys.
**2020**, 53, 493001. [Google Scholar] [CrossRef] - Itten, R.; Stucki, M. Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts. Energy
**2017**, 10, 841. [Google Scholar] [CrossRef][Green Version] - Philipps, S.P.; Bett, A.W. III-V Multi-Junction Solar Cells and Concentrating Photovoltaic (CPV) Systems. Adv. Opt. Technol.
**2014**, 3, 469–478. [Google Scholar] [CrossRef] - Ibrahim, K.A.; Kim, M.; Kinuthia, D.; Hussaini, Z.A.; Crawley, F.; Luo, Z. High Performance Green Hydrogen Generation System. In Proceedings of the IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, PowerMEMS 2021, Virtual, 6–8 December 2021. [Google Scholar]
- Xiao, M.; Tang, L.; Zhang, X.; Lun, I.; Yuan, Y. A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems. Energy
**2018**, 11, 3416. [Google Scholar] [CrossRef][Green Version] - Bahaidarah, H.M.S.; Baloch, A.A.B.; Gandhidasan, P. Uniform Cooling of Photovoltaic Panels: A Review. Renew. Sustain. Energy Rev.
**2016**, 57, 1520–1544. [Google Scholar] [CrossRef] - Sharaf, M.; Yousef, M.S.; Huzayyin, A.S. Review of Cooling Techniques Used to Enhance the Efficiency of Photovoltaic Power Systems. Environ. Sci. Pollut. Res.
**2022**, 29, 26131–26159. [Google Scholar] [CrossRef] - Wang, S.; Shi, J.; Chen, H.H.; Schafer, S.R.; Munir, M.; Stecker, G.; Pan, W.; Lee, J.J.; Chen, C.L. Cooling Design and Evaluation for Photovoltaic Cells within Constrained Space in a CPV/CSP Hybrid Solar System. Appl. Eng.
**2017**, 110, 196. [Google Scholar] [CrossRef][Green Version] - Royne, A.; Dey, C.J.; Mills, D.R. Cooling of Photovoltaic Cells under Concentrated Illumination: A Critical Review. Sol. Energy Mater. Sol. Cells
**2005**, 86, 451–483. [Google Scholar] [CrossRef] - Tonui, J.K.; Tripanagnostopoulos, Y. Air-Cooled PV/T Solar Collectors with Low Cost Performance Improvements. Sol. Energy
**2007**, 81, 2. [Google Scholar] [CrossRef] - Radziemska, E. Performance Analysis of a Photovoltaic-Thermal Integrated System. Int. J. Photoenergy
**2009**, 2009, 732093. [Google Scholar] [CrossRef][Green Version] - Anand, S.; Senthil Kumar, M.; Balasubramanian, K.R.; Ajith Krishnan, R.; Maheswari, L. An Experimental Study on Thermal Management of Concentrated Photovoltaic Cell Using Loop Heat Pipe and Heat Sink. Heat Transf. Asian Res.
**2019**, 48, 21504. [Google Scholar] [CrossRef] - Theristis, M.; Sarmah, N.; Mallick, T.K.; O’Donovan, T.S. Design and Numerical Analysis of Enhanced Cooling Techniques for a High Concentration Photovoltaic (HCPV) System. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012. [Google Scholar]
- Cui, M.; Chen, N.; Yang, X.; Wang, Y.; Bai, Y.; Zhang, X. Thermal Analysis and Test for Single Concentrator Solar Cells. J. Semicond.
**2009**, 30, 044011. [Google Scholar] [CrossRef][Green Version] - Xu, J.; Luo, E.; Hochgreb, S. A Thermoacoustic Combined Cooling, Heating, and Power (CCHP) System for Waste Heat and LNG Cold Energy Recovery. Energy
**2021**, 227, 20341. [Google Scholar] [CrossRef] - Al-Amri, F.; Maatallah, T.S.; Al-Amri, O.F.; Ali, S.; Ali, S.; Ateeq, I.S.; Zachariah, R.; Kayed, T.S. Innovative Technique for Achieving Uniform Temperatures across Solar Panels Using Heat Pipes and Liquid Immersion Cooling in the Harsh Climate in the Kingdom of Saudi Arabia. Alex. Eng. J.
**2022**, 61, 1413–1424. [Google Scholar] [CrossRef] - Anderson, W.G.; Dussinger, P.M.; Sarraf, D.B.; Tamanna, S. Heat Pipe Cooling of Concentrating Photovoltaic Cells. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. [Google Scholar]
- Gilmore, N.; Timchenko, V.; Menictas, C. Microchannel Cooling of Concentrator Photovoltaics: A Review. Renew. Sustain. Energy Rev.
**2018**, 90, 1041–1059. [Google Scholar] [CrossRef] - Shittu, S.; Li, G.; Zhao, X.; Akhlaghi, Y.G.; Ma, X.; Yu, M. Comparative Study of a Concentrated Photovoltaic-Thermoelectric System with and without Flat Plate Heat Pipe. Energy Convers. Manag.
**2019**, 193, 55. [Google Scholar] [CrossRef] - Shittu, S.; Li, G.; Zhao, X.; Zhou, J.; Ma, X.; Akhlaghi, Y.G. Experimental Study and Exergy Analysis of Photovoltaic-Thermoelectric with Flat Plate Micro-Channel Heat Pipe. Energy Convers. Manag.
**2020**, 207, 112515. [Google Scholar] [CrossRef] - Badr, F.; Radwan, A.; Ahmed, M.; Hamed, A.M. An Experimental Study of the Concentrator Photovoltaic/Thermoelectric Generator Performance Using Different Passive Cooling Methods. Renew. Energy
**2022**, 185, 80. [Google Scholar] [CrossRef] - Han, X.; Lv, Y. Design and Dynamic Performance of a Concentrated Photovoltaic System with Vapor Chambers Cooling. Appl. Eng.
**2022**, 201, 117824. [Google Scholar] [CrossRef] - Han, X.; Zhao, X.; Chen, X. Design and Analysis of a Concentrating PV/T System with Nanofluid Based Spectral Beam Splitter and Heat Pipe Cooling. Renew. Energy
**2020**, 162, 131. [Google Scholar] [CrossRef] - Senthilkumar, M.; Balasubramanian, K.R.; Kottala, R.K.; Sivapirakasam, S.P.; Maheswari, L. Characterization of Form-Stable Phase-Change Material for Solar Photovoltaic Cooling. J. Anal. Calorim.
**2020**, 141, 2487–2496. [Google Scholar] [CrossRef] - Nasef, H.A.; Nada, S.A.; Hassan, H. Integrative Passive and Active Cooling System Using PCM and Nanofluid for Thermal Regulation of Concentrated Photovoltaic Solar Cells. Energy Convers. Manag.
**2019**, 199, 12065. [Google Scholar] [CrossRef] - Duan, J. A Novel Heat Sink for Cooling Concentrator Photovoltaic System Using PCM-Porous System. Appl. Eng.
**2021**, 186, 116522. [Google Scholar] [CrossRef] - Rahmanian, S.; Rahmanian-Koushkaki, H.; Omidvar, P.; Shahsavar, A. Nanofluid-PCM Heat Sink for Building Integrated Concentrated Photovoltaic with Thermal Energy Storage and Recovery Capability. Sustain. Energy Technol. Assess.
**2021**, 46, 101223. [Google Scholar] [CrossRef] - Aslfattahi, N.; Saidur, R.; Arifutzzaman, A.; Abdelrazik, A.S.; Samylingam, L.; Sabri, M.F.M.; Sidik, N.A.C. Improved Thermo-Physical Properties and Energy Efficiency of Hybrid PCM/Graphene-Silver Nanocomposite in a Hybrid CPV/Thermal Solar System. J. Anal. Calorim.
**2022**, 147, 125–1142. [Google Scholar] [CrossRef] - Barrau, J.; Omri, M.; Chemisana, D.; Rosell, J.; Ibañez, M.; Tadrist, L. Numerical Study of a Hybrid Jet Impingement/Micro-Channel Cooling Scheme. Appl. Eng.
**2012**, 33–34, 1. [Google Scholar] [CrossRef] - Barrau, J.; Perona, A.; Dollet, A.; Rosell, J. Outdoor Test of a Hybrid Jet Impingement/Micro-Channel Cooling Device for Densely Packed Concentrated Photovoltaic Cells. Sol. Energy
**2014**, 107, 113–121. [Google Scholar] [CrossRef] - Awad, M.; Radwan, A.; Abdelrehim, O.; Emam, M.; Shmroukh, A.N.; Ahmed, M. Performance Evaluation of Concentrator Photovoltaic Systems Integrated with a New Jet Impingement-Microchannel Heat Sink and Heat Spreader. Sol. Energy
**2020**, 199, 78. [Google Scholar] [CrossRef] - Barrau, J.; Rosell, J.; Chemisana, D.; Tadrist, L.; Ibañez, M. Effect of a Hybrid Jet Impingement/Micro-Channel Cooling Device on the Performance of Densely Packed PV Cells under High Concentration. Sol. Energy
**2011**, 85, 4. [Google Scholar] [CrossRef] - Han, X.; Wang, Y.; Zhu, L. Electrical and Thermal Performance of Silicon Concentrator Solar Cells Immersed in Dielectric Liquids. Appl. Energy
**2011**, 88, 37. [Google Scholar] [CrossRef] - Mehrotra, S.; Rawat, P.; Debbarma, M.; Sudhakar, K. Performance of a Solar Panel with Water Immersion Cooling Technique. Int. J. Sci. Environ. Technol.
**2014**, 3, 1161–1172. [Google Scholar] - Rawat, P.; Sudhakar, K. Performance Analysis of Partially Covered Photovoltaic Thermal Water Collector. Int. J. Res. Eng. Technol.
**2016**, 5. [Google Scholar] [CrossRef] - Sun, Y.; Wang, Y.; Zhu, L.; Yin, B.; Xiang, H.; Huang, Q. Direct Liquid-Immersion Cooling of Concentrator Silicon Solar Cells in a Linear Concentrating Photovoltaic Receiver. Energy
**2014**, 65, 264–271. [Google Scholar] [CrossRef] - Kang, X.; Wang, Y.; Huang, Q.; Cui, Y.; Shi, X.; Sun, Y. Study on Direct-Contact Phase-Change Liquid Immersion Cooling Dense-Array Solar Cells under High Concentration Ratios. Energy Convers. Manag.
**2016**, 128, 73. [Google Scholar] [CrossRef] - Xin, G.; Wang, Y.; Sun, Y.; Huang, Q.; Zhu, L. Experimental Study of Liquid-Immersion III-V Multi-Junction Solar Cells with Dimethyl Silicon Oil under High Concentrations. Energy Convers. Manag.
**2015**, 94, 63. [Google Scholar] [CrossRef] - Farahani, S.D.; Alibeigi, M.; Zakinia, A.; Goodarzi, M. The Effect of Microchannel-Porous Media and Nanofluid on Temperature and Performance of CPV System. J. Anal. Calorim.
**2021**, 147, 7945–7962. [Google Scholar] [CrossRef] - Radwan, A.; Ookawara, S.; Ahmed, M. Analysis and Simulation of Concentrating Photovoltaic Systems with a Microchannel Heat Sink. Sol. Energy
**2016**, 136, 70. [Google Scholar] [CrossRef] - Soliman, A.M.A.; Hassan, H. Effect of Heat Spreader Size, Microchannel Configuration and Nanoparticles on the Performance of PV-Heat Spreader-Microchannels System. Sol. Energy
**2019**, 182, 59. [Google Scholar] [CrossRef] - Yang, K.; Zuo, C. A Novel Multi-Layer Manifold Microchannel Cooling System for Concentrating Photovoltaic Cells. Energy Convers. Manag.
**2015**, 89, 46. [Google Scholar] [CrossRef] - Sohel Murshed, S.M.; Nieto de Castro, C.A. A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling. Renew. Sustain. Energy Rev.
**2017**, 78, 821–833. [Google Scholar] [CrossRef] - Ghani, I.A.; Sidik, N.A.C.; Kamaruzaman, N. Hydrothermal Performance of Microchannel Heat Sink: The Effect of Channel Design. Int. J. Heat Mass Transf.
**2017**, 107, 21–44. [Google Scholar] [CrossRef] - Bhandari, P.; Singh, J.; Kumar, K.; Ranakoti, L. A review on active techniques in microchannel heat sink for miniaturisation problem in electronic industry. Acta Innov.
**2022**, 2022, 45–54. [Google Scholar] [CrossRef] - Ganguly, S.; Sarkar, S.; Kumar Hota, T.; Mishra, M. Thermally Developing Combined Electroosmotic and Pressure-Driven Flow of Nanofluids in a Microchannel under the Effect of Magnetic Field. Chem. Eng. Sci.
**2015**, 126, 60. [Google Scholar] [CrossRef] - Shit, G.C.; Mondal, A.; Sinha, A.; Kundu, P.K. Electro-Osmotically Driven MHD Flow and Heat Transfer in Micro-Channel. Phys. A Stat. Mech. Appl.
**2016**, 449, 8. [Google Scholar] [CrossRef] - Akachi Hisateru US 4921041 A—Structure of a Heat Pipe. Available online: https://www.lens.org/lens/patent/151-789-425-811-172/frontpage (accessed on 29 May 2022).
- Faghri, A. Heat pipes: Review, opportunities and challenges. Front. Heat Pipes
**2014**, 5, 1. [Google Scholar] [CrossRef][Green Version] - Nikolayev, V.S. Physical Principles and State-of-the-Art of Modeling of the Pulsating Heat Pipe: A Review. Appl. Eng.
**2021**, 195, 117111. [Google Scholar] [CrossRef] - Zhang, Y.; Faghri, A. Advances and Unsolved Issues in Pulsating Heat Pipes. Heat Transf. Eng.
**2008**, 29, 20–44. [Google Scholar] [CrossRef][Green Version] - Khandekar, S.; Charoensawan, P.; Groll, M.; Terdtoon, P. Closed Loop Pulsating Heat Pipes—Part B: Visualisation and Semi-Empirical Modeling. Appl. Therm. Eng.
**2003**, 23, 2021–2033. [Google Scholar] [CrossRef] - Liu, X.; Sun, Q.; Zhang, C.; Wu, L. High-Speed Visual Analysis of Fluid Flow and Heat Transfer in Oscillating Heat Pipes with Different Diameters. Appl. Sci.
**2016**, 6, 321. [Google Scholar] [CrossRef][Green Version] - Kim, J.; Kim, S.J. Experimental Investigation on Working Fluid Selection in a Micro Pulsating Heat Pipe. Energy Convers. Manag.
**2020**, 205, 112462. [Google Scholar] [CrossRef] - Kim, W.; Kim, S.J. Effect of Reentrant Cavities on the Thermal Performance of a Pulsating Heat Pipe. Appl. Eng.
**2018**, 133, 27. [Google Scholar] [CrossRef] - Kim, W.; Kim, S.J. Effect of a Flow Behavior on the Thermal Performance of Closed-Loop and Closed-End Pulsating Heat Pipes. Int. J. Heat Mass Transf.
**2020**, 149, 119251. [Google Scholar] [CrossRef] - Youn, Y.J.; Kim, S.J. Fabrication and Evaluation of a Slicon-Based Micro Pulsating Heat Spreader. Sens. Actuators A Phys.
**2012**, 174, 6. [Google Scholar] [CrossRef] - Elshafei, E.A.M.; Safwat Mohamed, M.; Mansour, H.; Sakr, M. Experimental Study of Heat Transfer in Pulsating Turbulent Flow in a Pipe. Int. J. Heat Fluid Flow
**2008**, 29, 18. [Google Scholar] [CrossRef] - Hemmat Esfe, M.; Bahiraei, M.; Torabi, A.; Valadkhani, M. A Critical Review on Pulsating Flow in Conventional Fluids and Nanofluids: Thermo-Hydraulic Characteristics. Int. Commun. Heat Mass Transf.
**2021**, 120, 104859. [Google Scholar] [CrossRef] - Yellin, E.L. Laminar-Turbulent Transition Process in Pulsatile Flow. Circ. Res.
**1966**, 19, 791–804. [Google Scholar] [CrossRef][Green Version] - Yu, H.; Zhuang, J.; Li, T.; Li, W.; He, T.; Mao, N. Influence of Transient Heat Flux on Boiling Flow Pattern in a Straight Microchannel Applied in Concentrator Photovoltaic Systems. Int. J. Heat Mass Transf.
**2022**, 190, 122792. [Google Scholar] [CrossRef] - Alizadeh, H.; Ghasempour, R.; Shafii, M.B.; Ahmadi, M.H.; Yan, W.M.; Nazari, M.A. Numerical Simulation of PV Cooling by Using Single Turn Pulsating Heat Pipe. Int. J. Heat Mass Transf.
**2018**, 127, 108. [Google Scholar] [CrossRef] - Dang, S.N.; Xue, H.J.; Zhang, X.Y.; Qu, J.; Zhong, C.W.; Chen, S.Y. Three-Dimensional Human Thermoregulation Model Based on Pulsatile Blood Flow and Heating Mechanism. Chin. Phys. B
**2018**, 27, 114402. [Google Scholar] [CrossRef] - Ye, Q.; Zhang, Y.; Wei, J. A Comprehensive Review of Pulsating Flow on Heat Transfer Enhancement. Appl. Eng.
**2021**, 196, 117275. [Google Scholar] [CrossRef] - al Siyabi, I.; Shanks, K.; Mallick, T.; Sundaram, S. Indoor and Outdoor Characterization of Concentrating Photovoltaic Attached to Multi-Layered Microchannel Heat Sink. Sol. Energy
**2020**, 202, 55–72. [Google Scholar] [CrossRef] - Ahmed, H.E.; Ahmed, M.I.; Seder, I.M.F.; Salman, B.H. Experimental Investigation for Sequential Triangular Double-Layered Microchannel Heat Sink with Nanofluids. Int. Commun. Heat Mass Transf.
**2016**, 77, 104–115. [Google Scholar] [CrossRef] - Jiang, P.X.; Fan, M.H.; Si, G.S.; Ren, Z.P. Thermal-Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers. Int. J. Heat Mass Transf.
**2001**, 44, 1039–1051. [Google Scholar] [CrossRef] - Olayiwola, B.O.; Schaldach, G.; Walzel, P. CFD Simulations of Flow and Heat transfer in a Zigzag channel with Flow Pulsation. Int. Mech. Eng. Congr. Expo.
**2012**, 44, 1531–1541. [Google Scholar] - Bayomy, A.M.; Saghir, M.Z. Heat Transfer Characteristics of Aluminum Metal Foam Subjected to a Pulsating/Steady Water Flow: Experimental and Numerical Approach. Int. J. Heat Mass Transf.
**2016**, 97, 9. [Google Scholar] [CrossRef] - Haibullina, A.; Khairullin, A.; Balzamov, D.; Ilyin, V.; Bronskaya, V.; Khairullina, L. Local Heat Transfer Dynamics in the In-Line Tube Bundle under Asymmetrical Pulsating Flow. Energy
**2022**, 15, 571. [Google Scholar] [CrossRef] - Tan, L.; Yuan, Y.; Huang, C. CFD Modelling on Flow Field Characteristics of Engine Cooling Water Jacket and Its Cooling Performance Improvement Based on Coolant Transport Path Analysis Method. Proc. Inst. Mech. Eng. Part A J. Power Energy
**2022**, 237, 385–401. [Google Scholar] [CrossRef] - Altaç, Z.; Mahir, N. A Comparative Assessment of Turbulent Forced Convection Heat Transfer from a Single Cylinder Using RANS and Les Models. J. Therm. Sci. Technol.
**2018**, 38, 11–24. [Google Scholar] - Afroz, F.; Sharif, M.A.R. Numerical Investigation of Heat Transfer from a Plane Surface Due to Turbulent Annular Swirling Jet Impingement. Int. J. Therm. Sci.
**2020**, 151, 106257. [Google Scholar] [CrossRef] - Montorfano, D.; Gaetano, A.; Barbato, M.C.; Ambrosetti, G.; Pedretti, A. CPV Cells Cooling System Based on Submerged Jet Impingement: CFD Modeling and Experimental Validation. In Proceedings of the AIP Conference Proceedings, Surakarta, Indonesia, 12 May 2014; Volume 1616. [Google Scholar]
- Lee, S.S.; Lai, S.O.; Chong, K.K. A Study on Cooling of Concentrator Photovoltaic Cells Using CFD. In Proceedings of the ICIMTR 2012—2012 International Conference on Innovation, Management and Technology Research, Malacca, Malaysia, 21–22 May 2012. [Google Scholar]
- Kurtulmuş, N.; Sahin, B. Experimental Investigation of Pulsating Flow Structures and Heat Transfer Characteristics in Sinusoidal Channels. Int. J. Mech. Sci.
**2020**, 167, 268. [Google Scholar] [CrossRef]

**Figure 3.**Concentrated photovoltaic [23].

**Figure 4.**Statistical charts of articles published on CPV cooling. (

**a**) Articles published per year, (

**b**) Articles published based on countries, (

**c**) First five countries with founding investment.

**Figure 6.**Model (

**a**) Channel view (

**b**) Complete coupled design used for simulation (

**c**) Built model design used for the experiment.

**Figure 10.**Temperature contour of solar cell from simulation (

**a**) Continuous flow (

**b**) Pulsating flow at 30 pulse/minute.

**Figure 11.**Temperature contour of x-y centre cut-view of the model from simulation (

**a**) Continuous flow (

**b**) Pulsating flow at 30 pulse/minute.

**Figure 12.**Temperature contour of z-y centre cut-view of the model from simulation (

**a**) Continuous flow (

**b**) Pulsating flow at 30 pulse/minute.

**Figure 13.**Temperature contour of the coupled model from simulation (

**a**) Continuous flow (

**b**) Pulsating flow at 30 pulse/minute.

**Figure 14.**(

**a**) Effect of inlet temperature on solar cell and cooling pad temperature (

**b**) Reynolds number and Nusselt number versus flow rate.

**Figure 15.**Pulsating velocity variation at T = 2 s and f = 0.5 Hz with cooling enhancement and Womersley number.

**Figure 16.**(

**a**) Reynolds number and Nusselt number versus flow rate (

**b**) Pulsating velocity variation at T = 2 s and f = 0.5 Hz with cooling enhancement and Womersley number.

**Figure 17.**Solar cell temperature versus flow rate for continuous and pulsating flow at 30 pulse/min.

Type of Solar Cell | Monocrystalline | Polycrystalline | Thin Film | Multi-Junction |
---|---|---|---|---|

Type of Material | Fragments from single wafer crystal | Fragments from different silicon crystals | Fragments from single wafer crystal | Combination of different semiconductors |

Life Span | 25 to 30 years | 20 to 25 years | 10 to 20 years | 30 or more years |

Efficiency | 14 to 26% | 12 to 21% | Very low | 33.8 to 69.1 |

Appearance | Aesthetic | Non-aesthetic | Aesthetic | Aesthetic |

Portability | Big, comes in different size | Big, comes in different size | Flexible lightweight | Lightweight, smaller size |

Number of Junctions | 1 | 1 | 1 | It can have 2–7 |

Cost | High | High | Low | Higher |

Cooling Technique | Method of Study | Concentration | Main Challenges | Reference |
---|---|---|---|---|

Heat Pipe and Fins | Experiment Theoretical Numerically Simulation | Lower Medium High * | Overheating, uncontrollable oscillatory thermal flows, reverse thermal flows, area-dependent cooling capacity, temperature non-uniformity | [31,32,44,45,46,47,48,49] |

PCM | Experiment Theoretical Numerically Simulation | Lower Medium High * | Limited cooling capacity at higher concentrations, limited amounts of heat energy storage, acidic nature, issue of disposal after lifetime used, mass/weight cooling capacity dependant | [42,50,51,52,53,54] |

Jet Impingement | Experiment Theoretical Numerically Simulation | Lower Medium High | System design complexity, draining spent flow, temperature non-uniformity, manufacturing costs | [55,56,57,58] |

Immersion Liquid | Experiment Theoretical Numerically Simulation | Lower Medium High | Salt deposition issue, cell performance degression, pressure drop, type of liquid, increased weight, design architecture | [42,59,60,61,62,63,64] |

Microchannel | Experiment Theoretical Numerically Simulation | Lower Medium High | Pressure drops, corrosion, temperature non-uniformity, higher manufacturing costs, more power requirements, more studies are needed to commercialise | [65,66,67,68,69,70] |

MHTE Approach | Area of Approach | Current State of Art | Research Gap and Limitations |
---|---|---|---|

Use of Nanofluid | Type coolant | Corrosion problems, stability issues, sedimentation issues, agglomeration issues, pressure drop, high cost | |

Hybrid Cooling | Overall system | Compatibility issues, cost economic viability, integrating components within a single system | |

Boiling Heat Pipes (PHP) | Phase change liquids | Limited modelling tools, no flow pattern control, little experimental work, and availability of components to measure flow. | |

Magneto Hydrodynamics (MHD) | Type coolant and overall system | Limited experimental work, more numerical models and simulations research are required, and additional cost | |

Electro Osmotic Flow (EOF) | Porous material under the influence of an electric field | Limited modelling tools, effects of channel geometries on the EOF, design optimisation | |

Pulsating Flow | Flow and overall system | Limited theoretical study, more research is needed combined with porous media, contradicting results, additional cost due to using of solenoid valves, other means to provide pulsation can be explored, may lead to system complexity |

Parameter | Parameter | Design Specification | Hydraulic Diameter (D_{h}) |
---|---|---|---|

Circular Section | Circular inlet diameter (m) | 0.0085 | 0.0085 |

Inlet radius (m) | 0.00425 | ||

Cross-section area (m^{2}) | 0.000056752 | ||

Actual Channel Section | Inlet channel area (m^{2}) | 0.00007225 | 0.00544 |

Actual channel area (m^{2}) | 0.000034 | ||

Multi Junction Solar Cell | Channel length (m) | 0.4 | |

Single solar cell length (m) | 0.01 | ||

Single solar cell width (m) | 0.010275 | ||

Single solar cell area (m^{2}) | 0.00010275 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ibrahim, K.A.; Luk, P.; Luo, Z. Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling. *Energies* **2023**, *16*, 2842.
https://doi.org/10.3390/en16062842

**AMA Style**

Ibrahim KA, Luk P, Luo Z. Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling. *Energies*. 2023; 16(6):2842.
https://doi.org/10.3390/en16062842

**Chicago/Turabian Style**

Ibrahim, Khalifa Aliyu, Patrick Luk, and Zhenhua Luo. 2023. "Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling" *Energies* 16, no. 6: 2842.
https://doi.org/10.3390/en16062842