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Abstract: An adaptive matrix inverse (AMI) method is presented to identify the temperature and
unknown boundary heat flux in a domain of a regular or irregular shape with temperature-dependent
properties. The nonlinear problem is broken down into a number of linear submodels, and for each
submodel, the temperature is obtained in measuring points. Next, based on the matching degree
between the temperatures measured and calculated by each prediction submodel, the submodels
are weighted and combined to create the full model for the solution of an inverse nonlinear heat
transfer problem. Comparisons are also made with the existing multiple model adaptive inverse
(MMAI) algorithm and method based on the Levenberg–Marquardt algorithm (LMA). The results
of the presented numerical tests for undisturbed and disturbed “measuring” data indicate that
the heat fluxes identified by the AMI method are close to the exact values. The application of the
presented method for bodies with an irregular shape is also demonstrated. The AMI method has
been experimentally verified during the thick-walled cylinder cooling process. The proposed method
can be applied in online diagnostic systems for thermal state monitoring.

Keywords: non-linear inverse problem; complex shape; online; experimental verification

1. Introduction

It is complicated and challenging to model heat transfer and thermal dynamics. In
particular, smart district heating systems are of special interest to countries with significant
seasonal variations. A new phenomenon related to the temporal dynamics in district
heating systems is presented in [1]. A heat operation strategy with variable flow and
variable temperature enhances the flexibility and optimality of the distributed dispatch
of integrated electricity–heat systems [2]. One of the methods to solve steady-state and
transient heat transfer problems is inverse algorithms. Inverse algorithms are of great
importance in scientific research and technical fields. They can be applied even if some
thermophysical properties, source terms, dimensions, boundary conditions, or initial
conditions of a heated body are not specified [3]. Inverse heat conduction problems (IHCP)
can be one-, two-, or three-dimensional. They can be linear or nonlinear. The inverse
solution requires additional information in the form of measured temperature histories.
Many solution techniques are based on the comparison between calculated and measured
temperatures in the analysed body.

The implementation of the least squares method (LSM) for steady-state IHCP is pre-
sented in [4], and the Levenberg–Marquardt algorithm (LMA) in [5]. Methods solving
transient inverse problems may be found in [6–20]. A combination of the radial integra-
tion boundary element method (RIBEM) method with the LMA to estimate temperature-
dependent conductivity is proposed in [6]. Paper [7] presents an inverse method for the
heat transfer coefficient identification in a working heat exchanger. The inverse algorithm is
formulated as a nonlinear optimization. The three-dimensional inverse boundary problem
is identified through an iterative regularization in [8]. A user-friendly procedure to solve
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inverse transient heat flow problems is presented in [9,10]. The proposed algorithm, which
is based on the LMA method, can use calculation programs, which are available on the
market. The methods proposed in [5–10] can be implemented in practice in an offline mode
due to the iterative nature of the calculations.

Another way is to start the solution procedure in places where the temperature has
already been measured and continue towards unknown areas. So-called space-marching
methods are often used in practice [11,12] due to their simple and fast calculation algo-
rithms, which usually employ the finite difference method or control volume method
(CVM). A space-marching procedure for solving the linear two-dimensional IHCP by sepa-
rate finite difference quotients for temperature and heat flux is shown in [13]. In [14], a finite
element method (FEM) based on control volumes is proposed to enable the introduction of
irregular finite volumes to solve nonlinear inverse two-dimensional problems. A modified
space-marching algorithm for transient temperature and heat flux identification is devel-
oped in [15]. However, space-marching methods make it necessary to place temperature
measuring points on a single layer, which splits the domain into the direct and inverse
regions. This leads to considerable restrictions on the way of placing the measuring points.
Area discretization is also difficult when unknown boundary conditions occur on surfaces
perpendicular to each other.

Another proposal for the solution of the transient IHCP is the application of Duhamel’s
integral [16,17]. The advantage of this method is the fast rate of calculations, which en-
ables its use in real time. Unfortunately, this method cannot be applied to solve nonlinear
problems, so the material thermophysical properties must be temperature-independent.
If the convection boundary condition appears, the method requires that the heat transfer
coefficient should be assumed. Dynamic matrix control (DMC) is often implemented in
modern control systems [18]. Based on the DMC idea, a rule-adaptive fuzzy model predic-
tive control (MPC) algorithm for controlling temperatures of a multivariable soil-heating
process system is formulated [19]. A multiple model adaptive inverse method (MMAI) is
formulated for nonlinear problems [20]. A major downside of the methods [16–20], which
are all based on the superposition principle, is the need to calculate variables from the
initial time instant when the temperature distribution is uniform.

The presented survey of the current state of knowledge indicates that despite the
great number of works devoted to the issue in question, there are very few methods of
rapid identification of the transient thermal state of a heated body that allow the flexible
location of temperature measuring points, regular or irregular geometries, and temperature-
dependent properties.

This paper presents a new adaptive matrix inverse method to estimate the tempera-
ture and unknown boundary heat flux in a domain of a regular or irregular shape with
temperature-dependent properties. The nonlinear problem is broken down into a number
of linear submodels, and for each submodel, the temperature in the measuring points is
obtained. Tikhonov regularization is used to improve the solution stability. This method
may be implemented in an online mode due to the non-iterative nature of the calculations.
Unlike the inverse methods based on the superposition method, the proposed method
can be launched at any time during the analysed process, and measuring points can be
located anywhere in the calculation domain to improve the solution quality. The layout of
measuring points is only limited by measurement possibilities, but it affects the solution
accuracy. The proposed AMI method is better suited to online diagnostic systems than the
inverse methods presented before.

2. Description of the Problem

The following system of equations can solve transient heat conduction in the element,
which is shown in Figure 1 [21]:

c(T)ρ(T)
∂T(x, y, z, t)

∂t
=

∂

∂x

[
k(T)

∂T(x, y, z, t)
∂x

]
+

∂

∂y

[
k(T)

∂T(x, y, z, t)
∂y

]
+

∂

∂z

[
k(T)

∂T(x, y, z, t)
∂z

]
(1a)
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T(x, y, z, t) = T0(x, y, z) t = 0 (1b)

−k(T)
∂T(x, y, z, t)

∂n

∣∣∣∣
Γd

= qd d = 1, 2, . . . , Nq, t > 0 (1c)
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Figure 1. A direct problem with thermal boundary conditions.

Material properties are known functions of temperature (k—thermal conductivity,
c—specific heat, ρ—density). The initial temperature distribution at time 0 s is T0(x, y, z),
and qd(t) are heat fluxes on surfaces Γd.

If the CVM [22] is applied by dividing the domain into NE control volumes, the set of
Equation (1a) may be written in the matrix form{ .

T
}
= [B]{T}+ [C]{q} (2)

with the initial condition

{T(t0)} =


T1(t0)
T2(t0)

.

.
TNE(t0)


NE

(3)

where {T} is the NE component column vector, which represents temperature changes
in NE nodes, time variable t varies between t0 and tN+1, [B] is the NE × NE component

matrix, [C] is the matrix of NE × Nq dimensions, and {q} =
{

q1, q2, . . . qNq

}T
is the Nq—

component column vector, which represents boundary heat flux changes. The spatial
division and the choice of the time step affect the accuracy of the direct solution. The denser
the discretization, the more accurate the solution will be. However, there is a point beyond
which further compaction has no effect on the quality of obtained results. The matrix
[B] in Equation (2) can be temperature-dependent. However, in the proposed method, it
is determined only for selected temperatures for each prediction submodel that will be
presented in Section 3.

The solution of Equation (2) in the form of a linear differential equation has the
following matrix form [23]:

{T(t)} = e(t−t0)[B]{T(t0)}+ et[B]
∫ t

t0

e−s[B][C]{q(s)}ds (4)
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Replacing t with t0 + ∆t in (4) gives:

{T(t0 + ∆t)} = e∆t[B]{T(t0)}+ e(t0+∆t)[B]
∫ t0+∆t

t0

e−s[B][C]{q(s)}ds (5)

If heat fluxes qd(t) on the boundary surfaces Γd are estimated by a staircase function
versus time (cf. Figure 2),

q1(t) = q1(k)
. . .

qd(t) = qd(k)
. . .

qNq(t) = qNq (k)


k∆t < t < (k + 1)∆t, k ∈ 〈0, . . . , N〉 (6)
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Equation (5) can also be formulated as:

{T(t0 + ∆t)} = [G]{T(t0)}+ [H]
{

q(0)
}

, (7)

where
[G] = e[B]∆t, (8)

[H] =
∫ t0+∆t

t0

e(t0+∆t−s)[B][C]ds = −
∫ 0

∆t
eτ[B][C]dτ =

∫ ∆t

0
eτ[B]dτ[C], (9)

where τ = t0 + ∆t− s.
Converting e∆t[B] into the McLaurin series-like function ex, [G] has the form

[G] = [I] + ∆t[B] +
(∆t[B])2

2!
+

(∆t[B])3

3!
+

(∆t[B])4

4!
. . . (10)

Substituting e∆t[B] into Equation (9) and integrating gives

[H] =

[
[I] +

∆t[B]
2!

+
(∆t[B])2

3!
+

(∆t[B])3

4!
+

(∆t[B])4

5!
. . .

]
[C]∆t (11)

Using Equation (7), the temperature distribution in time t1 can be formulated as:

{T(t1)} = [G]{T(t0)}+ [H]
{

q(0)
}

(12)
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Similarly, for time point t2,

{T(t2)} = [G]{T(t1)}+ [H]
{

q(1)
}

(13)

Substituting Equation (12) into (13) gives{
T(2)

}
= [G]

[
[G]
{

T(0)

}
+ [H]

{
q(0)
}]

+ [H]
{

q(1)
}

, (14)

which, after transformation, is{
T(2)

}
= [G]2

{
T(0)

}
+ [G][H]

{
q(0)
}
+ [H]

{
q(1)
}

, (15)

and for point k (cf. Figure 2) is

{
T(k)

}
= [G]k

{
T(0)

}
+

k−1

∑
j=0

[G]k−1−j[H]
{

q(j)

}
(16)

Equation (16) may be applied to obtain the temperature field in space for time tk when

all boundary heat fluxes
{

q(j)

}
=
{

q1(j), q2(j), . . . qNq (j)

}T
for time j = 0 . . . , k − 1 are

known. It is also a direct solution, like the CVM.

3. Formulation of the Method

If boundary heat fluxes {q} are unknown in fragments of the domain border, the task
becomes ill posed, and supplementary temperature measurements are necessary (Figure 3).
They can be determined using the measured temperature histories in points 1 to NT. In
order to simplify the description, it was assumed that the number of unknown heat fluxes
Nq and measuring points NT are equal to 2. Temperature is measured in points 1 and 2 at
instant k + 1, k + 2, . . . , k + NF, which constitutes the corresponding inverse heat transfer
problem. Here, NF is the number of future time steps, and q1(k) and q2(k) are identified values
of q1(t) and q2(t) for t = k∆t [24]. The following denotations are adopted: the subscript in
parentheses means the temporal moment; the subscript without parentheses denotes the
spatial point or the submodel number; and superscripts are reserved for exponentiation.

Energies 2023, 16, 2649 5 of 23 
 

 

[ ] [ ] [ ] [ ]( ) [ ]( ) [ ]( ) [ ]
2 3 4

...
2! 3! 4! 5!

t B t B t Bt B
H I C t

 Δ Δ ΔΔ = + + + + Δ
 
 

, (11) 

Using Equation (7), the temperature distribution in time t1 can be formulated as: 

( ){ } [ ] ( ){ } [ ] ( ){ }1 0 0T t G T t H q= + , (12) 

Similarly, for time point t2, 

( ){ } [ ] ( ){ } [ ] ( ){ }2 1 1T t G T t H q= + , (13) 

Substituting Equation (12) into (13) gives 

( ){ } [ ] [ ] ( ){ } [ ] ( ){ } [ ] ( ){ }2 0 0 1T G G T H q H q = + +  , (14) 

which, after transformation, is 

( ){ } [ ] ( ){ } [ ][ ] ( ){ } [ ] ( ){ }2
2 0 0 1T G T G H q H q= + + , (15) 

and for point k (cf. Figure 2) is 

( ){ } [ ] ( ){ } [ ] [ ] ( ){ }
1

1
0

0

k
k k j

k j
j

T G T G H q
−

− −

=

= + , (16) 

Equation (16) may be applied to obtain the temperature field in space for time tk when 

all boundary heat fluxes ( ){ } ( ) ( ) ( ){ }1 2, ,....
q

T

Nj j j jq q q q= for time j = 0 ... k − 1 are known. It 

is also a direct solution, like the CVM. 

3. Formulation of the Method 
If boundary heat fluxes {q} are unknown in fragments of the domain border, the task 

becomes ill posed, and supplementary temperature measurements are necessary (Figure 
3). They can be determined using the measured temperature histories in points 1 to NT. In 
order to simplify the description, it was assumed that the number of unknown heat fluxes 
Nq and measuring points NT are equal to 2. Temperature is measured in points 1 and 2 at 
instant k + 1, k + 2, ..., k + NF, which constitutes the corresponding inverse heat transfer 
problem. Here, NF is the number of future time steps, and q1(k) and q2(k) are identified values 
of q1(t) and q2(t) for t = kΔt [24]. The following denotations are adopted: the subscript in 
parentheses means the temporal moment; the subscript without parentheses denotes the 
spatial point or the submodel number; and superscripts are reserved for exponentiation. 

 
Figure 3. An inverse problem with additional measured temperature histories. 
Figure 3. An inverse problem with additional measured temperature histories.

The system of Equations (1a) or (16) is nonlinear because thermal conductivity, specific
heat, and density can be temperature functions. To determine matrix [B] in Equation (2)
and matrices in subsequent equations, the temperature distribution should be known.
Since the temperature distribution is sought, some starting temperature distribution can be
assumed and the problem can be solved iteratively. Unfortunately, the computation time
will then be extended and the inverse algorithm cannot be used in online mode. Therefore,
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a linearization of the problem is proposed. If several temperatures are selected within the
range of the maximum temperature change, then one non-linear problem can be broken
down into several linear problems. In each of the linear problems, the matrix [B] and
the following matrices can already be determined because the temperatures have been
selected to determine them. The nonlinear problem is broken down into a number of linear
heat transfer subspaces, which are described by submodels PSMs (s = 1, 2, . . . , N) [20]
(cf. Figure 4). The purpose of the PSMs model is to calculate the temperature history in
places where this temperature is measured. For this purpose, the previously described
equations are needed. The closer the temperature history calculated by a given submodel
is to the measured temperature history, the better the given submodel fits the solution of
non-linear problem. Finally, the results obtained from the submodels are combined into
the final solution, the process of which is called the adaptation. Next, according to the
matching degree between the temperatures measured {y(k)} and calculated by submodels
{c(k)s} (s = 1, 2, . . . , N), they are weighted and combined to create the full adaptive prediction
model (APM) for the solution of the nonlinear IHCP. Finally, boundary heat fluxes {q(k)} are
calculated. They are applied to determine the temperature distribution {T(k+1)}, once again
using the prediction submodels and the full adaptive prediction model.
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In Figure 4, {Y} is the column vector due to the temperature variations in measuring
points m = 1 and m = 2 from the beginning to the end of the analysed process. The 2*NF
dimensional column vector {y(k+1)} contains the measured temperature histories in TC1 and
TC2 at instant k + 1, k + 2, . . . , k + NF.

The temperature values in the same spatial points and at the same time instants as in
vector {y(k+1)} can be calculated using Equation (16).
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

Tm=1(k+1)
Tm=1(k+2)

...
Tm=1(k+NF)

Tm=2(k+1)
Tm=2(k+2)

...
Tm=2(k+NF)


=



{vm=1}[G]
{

T(k)

}
{vm=1}[G]2

{
T(k)

}
...

{vm=1}[G]NF−1
{

T(k)

}
{vm=2}[G]

{
T(k)

}
{vm=2}[G]2

{
T(k)

}
...

{vm=2}[G]NF−1
{

T(k)

}



+



{vm=1}[H]
{

q(k)
}

{vm=1}[G][H]
{

q(k)
}
+ {vm=1}[H]

{
q(k+1)

}
...

{vm=1}
NF−1

∑
j=0

(
[G]NF−1−j[H]

{
q(k+j)

})
{vm=2}[H]

{
q(k)
}

{vm=2}[G][H]
{

q(k)
}
+ {vm=2}[H]

{
q(k+1)

}
...

{vm=2}
NF−1

∑
j=0

(
[G]NF−1−j[H]

{
q(k+j)

})



, (17)

where {vm} is the NE dimensional row vector

{vm} = {0, . . . , am, ...0} and am = 1 (18)

The term on the left and the first term on the right side of Equation (17) are noted as
{T(k+1)} and {c(k+1)}, respectively. The second term on the right side of this equation may be
transformed in the following way

[
[Za] [Zb]
[Zc] [Zd]

]


q1(k)
q1(k+1)

...
q1(k+NF−1)

q2(k)
q2(k+1)

...
q2(k+NF−1)


= [Z]

{
q(k)
}

, (19)

where

[Za] =


{vm=1}[H]{1 0}T 0 · · · 0
{vm=1}[G][H]{1 0}T {vm=1}[H]{1 0}T · · · 0

...
...

...
...

{vm=1}[G]NF−1[H]{1 0}T {vm=1}[G]NF−2[H]{1 0}T · · · {vm=1}[H]{1 0}T

,

[Zb] =


{vm=1}[H]{0 1}T 0 · · · 0
{vm=1}[G][H]{0 1}T {vm=1}[H]{0 1}T · · · 0

...
...

...
...

{vm=1}[G]NF−1[H]{0 1}T {vm=1}[G]NF−2[H]{0 1}T · · · {vm=1}[H]{0 1}T

,

[Zc] =


{vm=2}[H]{1 0}T 0 · · · 0
{vm=2}[G][H]{1 0}T {vm=2}[H]{1 0}T · · · 0

...
...

...
...

{vm=2}[G]NF−1[H]{1 0}T {vm=2}[G]NF−2[H]{1 0}T · · · {vm=2}[H]{1 0}T

,

[Zd] =


{vm=2}[H]{0 1}T 0 · · · 0
{vm=2}[G][H]{0 1}T {vm=2}[H]{0 1}T · · · 0

...
...

...
...

{vm=2}[G]NF−1[H]{0 1}T {vm=2}[G]NF−2[H]{0 1}T · · · {vm=2}[H]{0 1}T


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The material properties depending on temperature are components of matrices [G] and
[H]. The problem is easier to solve if the matrices are determined at a certain temperature.
For this reason, submodels PSMs (s = 1, 2, . . . , N) are built.

Temperatures {c(k+1)s} predicted by submodels PSMs can be compared to the measured

values {y(k+1)}, as presented in Figure 3. The bigger the deviation
∥∥{c(k+1)s

}
−
{

y(k+1)

}∥∥,
the worse the adjustment of the prediction submodel PSMs to the full model. The s = N
normalized 2*NF dimensional vectors {w(k+1)s} are adopted:

wm(k+i)s =
exp

(
−
∣∣∣ym(k+i) − cm(k+i)s

∣∣∣/max
∣∣∣ym(k+i) − cm(k+i)s

∣∣∣)
N
∑

s=1
exp

(
−
∣∣∣ym(k+i) − cm(k+i)s

∣∣∣/max
∣∣∣ym(k+i) − cm(k+i)s

∣∣∣) i = 1, . . . , NF − 1; m = 1, 2; s = 1, . . . , N, (20)

where subscript m is the measuring point number.
By using the prediction submodel weights, the prediction submodels PSMs are

weighted and combined to calculate {c(k+1)} and [Z] as follows:

cm(k+i) =
N

∑
s=1

wm(k+i)scm(k+i)s i = 1, . . . , NF − 1; m = 1, 2, (21)

Zm(k+i); m(k+i) =
N

∑
s=1

wm(k+i)sZm(k+i)s; m(k+i)s i = 1, . . . , NF − 1; m = 1, 2 (22)

The inverse method should find the unknown boundary condition {q(k)} to keep
calculated temperatures {T(k+1)} close to the experimentally measured temperatures {y(k+1)}.{

y(k+1)

}
∼=
{

T(k+1)

}
(23)

The LSM is applied to fulfil this condition:

2

∑
m=1

NF

∑
i=1

(
ym(k+i) − Tm(k+i)

)2
= min (24)

This can be written with a regularization term using Equation (17):

S =
∥∥{c(k+1)

}
+ [Z]

{
q(k)
}
−
{

y(k+1)

}∥∥2
+ α
∥∥{q(k)

}∥∥2
= min, (25)

where α is a regularization parameter. Tikhonov regularization [25] can improve the IHCP
stability. The solution that fulfils Equation (25) is{

q(k)
}
=
(
[Z]T [Z] + [R]

)−1
[Z]T

({
y(k+1)

}
−
{

c(k+1)

})
, (26)

where

[R] =



α1 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · α1 0 · · · 0
0 · · · 0 α2 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · α2


(27)

Here, α1 and α 2, respectively, are the regularization parameters for heat fluxes q1(t)
and q2(t). To determine temperature {T(k+1)}, submodels PSMs (s = 1, 2, . . . , N) are built,
weighted, and combined once again. After temperature {T(k+1)} is obtained, the next time
point can be analysed until the end of the process t = Nt∆t.
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4. Numerical Verification

The above-developed algorithm is used for temperature estimation in the plate pre-
sented in Figure 5. It is made of a steel 17M0V84mod [26]. Its temperature-dependent
properties are shown in Table 1.
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Figure 5. Plate with boundary conditions and measurement points.

Table 1. Thermophysical properties of 17M0V84mod steel.

T [◦C] k [W/(m K)] c [J/(kg K)] ρ [kg/m3]

20 46.7 527.5 7800
100 49.8 580.4 7800
200 52.8 599.9 7800
300 50.5 489.3 7800

The following dimensions and initial and boundary conditions are used: Lx = 750 mm,
Ly = 150 mm, T(x,y,t=0) = 20 ◦C,

q1(t) = 1.8× 105
(

1− e−0.1t
)
+ 1.5× 105 sin

(
πt
60

)
[W
/

m2], (28a)

q2(t) =


0
[
W/

m2
]

t < 30 s

3× 105
[
W/

m2
]

30 s ≤ t ≤ 72 s

0
[
W/

m2
]

t > 72 s

(28b)

Rapid time- and space-dependent changes in the heat flux take place in the power
boiler furnace, for example. The curves are intended to test the method so that it can be
used in practice in the future. The following number of spatial divisions, time step size,
and number of future steps are adopted: lx = 6, ly = 8; ∆t = 0.6 s; NF = 5. Temperature
measuring points are located in TC1 (2Lx/3, Ly/2) and TC2 (2Lx/3, 7Ly/8), respectively.
Like in the direct solution, spatial division and the choice of the time step affect the accuracy
of the inverse method. However, excessive compaction may not improve the quality of
the solution, but rather reduce its stability. The solution stability also depends on the
number of future time steps NF. The method becomes unstable if it is insufficient. In
contrast, when it is too big, there is a rise in solution errors. The choice of the time and
space division can be similar to the selection made in the direct solution. The number
of future steps can be selected using the iterative method. A gradual reduction in their



Energies 2023, 16, 2649 10 of 22

number increases the method instability. The location of measuring points also has a great
impact on the solution’s accuracy and stability. An increase in the distance of the measuring
points from the edges with unknown boundary conditions deteriorates the solution stability
and accuracy.

The root mean square error (RMSE) [27] and the average relative error of the identified
temperature is proposed to estimate the accuracy of the method:

ST =

√
1

NENt
∑NE

m=1 ∑Nt
k=l

(
Tm(k), exa − Tm(k)

)2
, (29)

ηT = ST

/√
1

NENt
∑NE

m=1 ∑Nt
k=l

(
T2

m(k), exa

)
, (30)

where Nt represents the whole number of time steps and T(k)m, exa shows the exact value of
Tm(t) at the kth instant.

Additionally, the average relative error of the estimated heat flux is introduced:

ηqm =

√
1

Nt
∑Nt

k=l

(
qm(k), exa − qm(k)

)2
/√

1
Nt

∑Nt
k=l

(
qm(k), exa

)2
(m = 1, 2), (31)

where qm(k), exa means the exact value of qm(t) at the kth moment.
To solve the inverse boundary problem, temperature changes “measured” in points

TC1 and TC2 are used. The curves are computed by a direct method using the FEM and the
mesh densified twice (Figure 6). They may be applied as “undisturbed measuring” data
(Ym(k) , exa) to verify the proposed method.
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The number of submodels (N) depends on the material nonlinearities in the analysed
temperature changes. Greater changes in material properties with temperature require more
submodels. For the problem under consideration, the influence of N on accuracy is analysed
as can be seen in Table 2. The greater the N, the smaller the errors ST and ηT are. Analysing
errors ηq1 and ηq2 , the best results are obtained for N = 5, and the corresponding set of
prediction submodels is Ω = {PSM1(20), PSM2(90), PSM3(160), PSM4(230), PSM4(300)}.
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Table 2. Calculation time and obtained errors for the three methods with σ = 0.

Method Calculation Time [s] ST [◦C] ηT [%] η [%] (q1) η [%] (q2)

AMI (N = 2) 55 2.997 3.294 9.310 14.66
AMI (N = 4) 127 1.798 1.976 6.265 14.18
AMI (N = 5) 193 1.685 1.853 5.802 14.26
AMI (N = 6) 227 1.648 1.812 5.764 14.41
AMI (N = 8) 445 1.592 1.750 6.094 15.12

AMI (N = 10) 912 1.583 1.740 6.257 15.28
MMAI (N = 5) 56 - - 8.837 18.29

LMA 6600 - - 5.036 30.66

The golden section search method [28] is employed to find regularization parameters
in Equation (27) to minimize the average relative error in Equation (30). The time to find
the regularization coefficients is not taken into account in calculation times, which are
presented in Tables 2 and 3. The following values are applied for the proposed inverse
method: α1= 2.5 × 10−13, α2 = 0.5 × 10−13. The heat fluxes identified by the AMI and
MMAI methods for the number of submodels (N = 5) are presented in Figure 7. The exact
fluxes are taken from Equation (28a,b). The obtained calculation time and errors are written
in Table 2. In both methods, the code is written in the Matlab program. An Intel i7-4700HQ
2.4 GHz processor with 8 GB of RAM is used. The computation of the AMI method takes
more time, but the identified heat fluxes are closer to the exact values. The MMAI method
is faster because it calculates the temperature only in measurement points TC1 and TC2.

Table 3. Calculation time and obtained errors for different σ.

σ Method Calculation Time [s] ST [◦C] ηT [%] η [%] (q1) η [%] (q2)

0.001
AMI 216 1.686 1.853 5.802 14.26

MMAI 89 - - 8.891 18.32

0.03
AMI 219 1.774 1.905 10.32 20.50

MMAI 57 - - 12.04 25.77

0.05
AMI 206 1.847 2.030 16.72 26.52

MMAI 88 - - 19.29 34.08
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The decrease in the proposed method stability can be observed as oscillations of the
determined quantities. Reducing the number of future steps NF from five to two may
reveal the oscillations, which are shown in Figure 8. This is the reason of the identification
error increase to the values: ST = 4.91 ◦C, ηT = 5.40%, ηq1 = 38.19%, and ηq2 = 55.64%. If
the regularization coefficients are additionally lowered, the solution becomes completely
unstable, giving the following errors: ST = 5.E99 ◦C, ηT = 6.E99%, ηq1 = 5.7E90%, and
ηq2 = 8.3E105%.
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Additionally, the method based on the LMA algorithm is tested [9,10]. This procedure
allows for the use of ANSYS Multiphysics software [29]. Temperature measurement points
have to be moved to TC1 (11Lx/12, Ly/2) and TC2 (2Lx/3, 15Ly/16) to obtain a stable
solution. The appropriate temperature changes are generated by the direct method. The
number of future steps must also be increased to NF = 10. Despite all these actions, the
errors and computation time are much higher than in the AMI and MMAI methods.

The errors shown in Table 2 are created by the inverse problem’s ill-conditioning.
Despite the considerable distance of the thermocouples from the unknown boundary
conditions, the errors are not high. The AMI method for N = 5 allows the best identification
of the unknown boundary conditions, and the mean error of the calculated temperature
distribution does not exceed 1.7 ◦C and 1.9%.

To approach real conditions, “noisy measuring” data Y(k)m are calculated by summing
normal random errors and “undisturbed measuring” data.

Y(k)m = Y(k)m,exa + ωσ (32)

where ω is the random value of normal distribution with zero mean over the range
[−2.576, 2.576], and σ is the measuring error standard deviation.

The number of submodels is (N = 5). For the disturbed data, the computing time
by the AMI method also takes more time than by the MMAI method, as can be seen in
Table 3. As the measuring error standard deviation σ increases, the errors in the identified
temperature and heat fluxes (ST, ηT and ηq) become greater. For stronger disturbance, the
regularization coefficients were different for every noise and were raised to the values of
α1= 9.8 × 10−13 and α2 = 1.96 × 10−13. The heat fluxes identified by the AMI method are
close to the exact values, as can be seen in Figure 9. Despite the introduced measuring errors
and very difficult conditions of the test (flux q2 suddenly changes from zero to 300 kW/m2),
the mean error of the calculated temperature distribution does not exceed 1.9 ◦C and the
relative error is about 2%. Comparisons of temperature calculated by a direct method and
by the AMI method are presented in Figures 10 and 11.
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Both methods enabled accurate identification of unknown boundary conditions from
the beginning of the heating process when a uniform temperature distribution appeared.

The additional advantage of the AMI method is that it can be used when the element’s
initial temperature distribution is non-uniform. During long-term online identification, the
system may crash and the algorithm must be restarted. The method, which is based on the
superposition method, should analyse the process from the moment that the temperature
distribution is uniform. This means that in the event of a system failure, the analysis must
be repeated from the very beginning of the process. The AMI method is free from this
disadvantage—it can be launched at any time during the process.

To demonstrate this capacity of the AMI method, the previously analysed heating pro-
cess is identified starting halfway through the heating process. If the algorithm determining
temperature is stopped after 51 s, the AMI method can start computations based on the
determined temperature field at the previous time instant (50.4 s) and using the measured
temperature histories in points TC1 and TC2. If the time is counted from the system restart,
the measured temperature curves take the form given in Figure 12. The errors of the
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computed temperature and heat fluxes are ST = 1.370 ◦C, ηT = 1.272%, ηq1 = 6.327%, and
ηq2 = 17.96%. If the method that is based on the superposition algorithm is restarted after
the interruption, and considering the last measurements before the system crashed as the
starting condition, it becomes completely unstable.
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Figure 13. Comparison between exact heat fluxes and those calculated by the AMI method from the
system restart.

The proposed AMI method can also be used for bodies with irregular geometry. The
control volume-FEM is used [30] instead of the CVM. The plate from previous analyses
is deformed to the form shown in Figure 14. The same material properties and the same
initial and boundary conditions as before are used to generate “measured” temperature
histories in points TC1 and TC2, which are needed for the inverse boundary problem. The
histories calculated using a direct solution based on the control volume-FEM are presented
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in Figure 15. Despite the irregular geometry resulting in irregular control volumes, the
unknown heat fluxes identified by the AMI method are close to the exact values, which
can be seen in Figure 16. The average errors in the estimated temperature and heat fluxes
are ST = 1.780 ◦C, ηT = 2.068%, ηq1 = 3.715%, and ηq2 = 18.36%. If the measuring points are
shifted to the middle of the edges of S1 and S2, the errors will drop to ηq1 = 1.240% and
ηq2 = 2.881%.
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Figure 16. Comparison between exact heat fluxes and those calculated by the AMI method for an
irregular plate.

5. Experimental Verification

The experiment is carried out on a thick-walled cylinder, presented in Figure 17a. It is
made of 17M0V84mod steel. Its temperature-dependent thermal properties are presented
in Table 1 [26]. Six thermocouples for measuring wall temperature are located along
the cylinder wall thickness (cf. Figure 17b). After completing the installation of the
thermoelements, an electric resistance heating system is mounted on the cylinder outer
surface, and insulation covers it. The thick-walled cylinder is heated to a temperature of
300 ◦C. Next, it is cooled by an injection of cold water, which flows through the spraying
device inside the cylinder. The measured temperature histories in six points and the water
temperature are shown in Figure 18.
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Figure 18. Water temperature, measured temperature histories, and those identified by the AMI method.

The outer surface of the cylinder’s model is insulated, while an unknown thermal
boundary condition appears on the inner one. The measured temperature history in point
r2 = 50 mm is used to solve the problem, which is defined in this way. For the problem
under consideration, the influence of the number of submodels (N) on accuracy is analysed,
as can be seen in Table 4. The best results are obtained for N = 3, and the corresponding
set of prediction submodels is Ω = {PSM1(30), PSM2(165), PSM3(300)}. The temperature
histories identified by the AMI method for the number of submodels (N = 3) are compared
to the measured temperature histories, as shown in Figure 18. The mean error of the
calculated temperature distribution and relative error are ST = 2.31 ◦C and ηT = 1.45%,
respectively. If the inverse solution is based on temperature history in point r1, r3, or r4, the
errors are slightly larger, as presented in Table 4.

Table 4. Calculation time and errors obtained by the AMI method for different measurement points.

Measurement Point N Calculation Time [s] ST [◦C] ηT [%]

T1 = T (r = 45 mm) 2 28 2.473 1.537
T2 = T (r = 50 mm) 1 10 3.185 2.016
T2 = T (r = 50 mm) 2 39 2.350 1.481
T2 = T (r = 50 mm) 3 79 2.309 1.451
T2 = T (r = 50 mm) 4 113 2.356 1.479
T2 = T (r = 50 mm) 5 171 2.394 1.503
T3 = T (r = 55 mm) 3 89 2.474 1.539
T4 = T (r = 60 mm) 3 63 2.798 1.747

A further improvement in the solution accuracy can be obtained by adding the tem-
perature history to the analysis, which is measured on the cylinder’s outer surface. In this
way, the boundary condition on the outer surface can also be identified. The influence
of the number of submodels (N) on accuracy is analysed, as is presented in Table 5. The
best results are obtained for N = 2, and the corresponding set of prediction submodels is
Ω = {PSM1(20), PSM2(300)}. The mean error of the calculated temperature distribution
and relative error are ST = 1.90 ◦C and ηT =1.20%, respectively. The identified heat fluxes
are shown in Figure 19. A low heat flux q2 on the outer surface indicates that the thermal
insulation is good but not perfect in reality.
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Table 5. Calculation time and errors obtained by the AMI method for two measurement points.

Measurement Point N Calculation Time [s] ST [◦C] ηT [%]

T2 = T (r = 50 mm) and
T6 = T (r = 80 mm) 1 52 1.995 1.253

T2 = T (r = 50 mm) and
T6 = T (r = 80 mm) 2 94 1.902 1.196

T2 = T (r = 50 mm) and
T6 = T (r = 80 mm) 3 226 1.916 1.204

T2 = T (r = 50 mm) and
T6 = T (r = 80 mm) 4 373 1.922 1.208

T2 = T (r = 50 mm) and
T6 = T (r = 80 mm) 5 622 1.925 1.209
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Figure 19. Heat flux on cylinder cooled surface identified by the AMI method.

The uncertainties of the determined parameters were estimated using the error propa-
gation rule of Gauss [31]. The following equation is used for the heat flux or temperature
uncertainty calculation caused by temperature measurement errors:

2σxi =

[
NT

∑
m=1

(
∂xi
∂ fm

2σfm

)2
]0.5

i = 1, 2, 3 (33)

The 95% uncertainty in the estimated parameters can be expressed in the form

xi = x∗i ± 2σxi (34)

where x∗i represent the value of parameters obtained using the proposed inverse method
(q1, q2, T). To show the influence of measurement errors on the determined heat fluxes or
temperature, the 95% confidence intervals were calculated. The following uncertainties of
measured temperatures are assumed: 2σfm = ±0.258 K, m = 1, . . . , NT .

The uncertainties of the determined parameters were calculated for the assumed heat
fluxes, which are shown in Figure 20. The calculation yielded the following results:

2σq1 = 17647
[
W/m2

]
, 2σq2 = 2292

[
W/m2

]
, 2σT = 0.256 [K]
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exact values. The MMAI method is faster because it calculates the temperature only in 
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6. Summary and Conclusions

An adaptive matrix inverse (AMI) method is presented to identify the temperature and
unknown boundary heat flux distribution in a domain of a regular or irregular shape with
temperature-dependent properties. The nonlinear IHCP is broken down into a number of
linear submodels, and for each submodel, the temperature is obtained in measuring points.
Next, based on the matching degree between the temperatures measured and calculated
by each prediction submodel, the submodels are weighted and combined to create the
full model for the solution of a nonlinear IHCP. Comparisons are also conducted with
the existing MMAI procedure and the method based on the LMA algorithm, which are
described in the literature.

The results of the presented numerical tests for undisturbed and disturbed “measur-
ing” data indicate that the heat fluxes identified by the AMI method are the closest to the
exact values. The MMAI method is faster because it calculates the temperature only in
measurement points. The LMA method is the least accurate and it needs the longest time
to perform the identification. A poorer accuracy and longer computation time are compen-
sated for by a friendlier algorithm, which allows for the implementation of commercial
calculation programs.

The presented method can be applied in an online mode due to the non-iterative
nature of the computations. The measuring points can be located anywhere in the cal-
culation domain to improve the solution quality. Unlike the inverse methods presented
before, the proposed method can be launched at any time during the analysed process,
and measuring points can be located anywhere in the calculation domain to improve the
solution quality. The layout of measuring points is only limited by measurement possibili-
ties, but it affects the solution accuracy. The proposed AMI method is well suited to online
diagnostic systems.

The AMI method has been experimentally verified during the thick-walled cylinder
cooling process. The temperature histories identified by the proposed method are compared
to measured temperature histories. The influence of the number of submodels and the loca-
tion of temperature measurement points on accuracy is analysed. A further improvement
in the solution accuracy can be obtained by adding to the analysis the temperature history,
which is measured on the cylinder’s outer surface. In this way, the boundary condition on
the inner and outer surfaces can be simultaneously identified. Space-marching methods do
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not provide this possibility. A low heat flux on the outer surface indicates that the thermal
insulation is good but not perfect in reality.

Future time steps and Tikhonov regularization are applied to improve the calcula-
tion stability. The golden section search method is employed to find the regularization
parameters. For stronger disturbance, the regularization coefficients should be raised. The
proposed AMI method has also been used for a body with irregular geometry. Despite
the irregular geometry resulting in irregular control volumes, the unknown heat fluxes
identified by the AMI method are close to the exact values.

All the computations presented in this paper were calculated in the Matlab pro-
gram. Programming the AMI method in a high-level language can further reduce comput-
ing times.

The proposed method may be used to identify temperature distributions in elements
with temperature-dependent properties. The AMI method can be implemented in online
diagnostic systems for thermal state monitoring.
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