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Abstract: Load flow solutions refer to the steady-state stability of power systems and have a crucial
role in the design and planning of slow-changing elements; e.g., in online tab changing actions,
automatic generation control, over-excitation limiters and the power recovery characteristics of a
load. Therefore, the purpose of this work was to show the connectivity between load flow analysis
and long-term voltage stability using a generator model by introducing a novel voltage stability
assessment based on the multi-machine dynamic model along with the load flow study for a power
grid. The Euclidean distance (ED) was used to introduce a new voltage stability index based on the
voltage phasor profile for real-time monitoring purposes. The effects of reactive power compensation,
in addition to load-generation patterns and network topology changes in the system behavior, could
be seen clearly on the voltage profiles of the buses. Thus, the increased values for the EDs of the
buses’ voltage amplitudes—from 0 to around 1.5 (p.u.)—implied that the system was approaching
the voltage collapse point, corresponding to the Jacobian matrix singularity of the load flow equation.
Moreover, the weakest load bus with respect to any system change was also identified. Indeed, the
criticality of any network interruption was in direct proportion to this voltage stability index. The
proposed method was validated using the IEEE 118-bus test system.

Keywords: Euclidean distance; load flow analysis; maximum loading point; steady-state voltage
stability index

1. Introduction

Voltage collapse, in terms of long-term stability analysis, is the process by which the
sequence of events accompanying voltage instability leads to an unacceptable voltage
drop in a significant part of a power system. Catastrophic decreases in voltage lead to a
loss of stability in large interconnected power systems, causing blackouts. This long-term
power system stability analysis employs the load flow concept, which plays an important
role in power system operation and planning. The loss of system equilibrium is a direct
consequence of the saddle-node bifurcation of the network equations (electro-mechanic),
which is undoubtedly the most significant fundamental phenomenon [1]. Up until now,
applications of network theory and statistical mechanics to power transmission networks
have predominantly emphasized the synchronization of synchronous generators [2–4]. The
synchronization of power networks is primarily regulated by the flow of power and the
management of power-demanding loads. Achieving this requires a comprehensive theoret-
ical understanding of active power, which plays a critical role in ensuring the stability and

Energies 2023, 16, 2508. https://doi.org/10.3390/en16052508 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16052508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2145-4936
https://orcid.org/0000-0002-7429-3171
https://doi.org/10.3390/en16052508
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16052508?type=check_update&version=2


Energies 2023, 16, 2508 2 of 21

synchronization of power networks [5]. However, voltage collapse as collective nonlinear
“instability” has received little attention from a network perspective [6–9]. Voltage instabil-
ity is fundamentally a dynamic phenomenon, with slightly slow dynamics in terms of time,
from a few seconds to several minutes or more [7,8]. In addition, the connectivity of the
behavior of a linearized dynamic model of a power system can be seen in the load-flow
Jacobian matrix performance [2,6,8,10,11].

On the other hand, the conventional viewpoint on load flow analysis as a solution for
the steady-state condition of a power system cannot provide a comprehensive steady-state
voltage stability analysis [12,13]. We categorized voltage collapse phenomena using a load
flow solution with the concepts of total and local voltage collapse of a power network.
Total voltage collapse returns to the steady-state collapse of the power system based on a
load flow analysis with the singularity of a Jacobian matrix such that no acceptable load
flow solution exists [14]. The voltage stability margin and voltage collapse point (VCP)
can be determined using voltage stability indices (VSIs), depending on the Jacobian matrix
singularity for the total voltage stability assessment [15]. Moreover, a modal analysis of
the Jacobian matrix is required to assess the VSIs to estimate the critical lines and buses.
Nonetheless, the divergence of the Jacobian matrix at the VCP is the most exact way to
assess the steady-state condition of voltage stability in the normal condition of the network.

Voltage collapse is divided into two different categories: local and total. The local type
returns to voltage drops based on IEC 60364 standards, which determine the allowable
voltage drops for low-voltage installations supplied directly from a public low-voltage
distribution system: 3% for lighting and 5% for other uses. This means less than 95% of
the power of each bus is transferred to the local voltage collapse. Total voltage collapses
in the majority of buses involve voltage drops less than 5% [16]. Local voltage collapse
corresponds to a situation in which there is no solution for the load flow equation for
power networks equivalent to two-bus systems, where the sending end bus is assumed
to be a generator bus and the receiving end bus a load bus in distribution systems. The
local voltage stability varies between no loading and the maximum loading point of the
corresponding bus. Different approaches have been employed for the load flow equation,
such as quadratic or biquadratic approaches as a function of the voltage amplitude of the
load buses, the Thévenin model, Tellegen’s theorem and the Thévenin equivalent maximum
power transfer [17,18].

The theoretical difference between local VSIs returns to the assumptions utilized, such
as the power factor and the Thévenin impedance in terms of any changes in the network
topology. From an online practical viewpoint, in addition to the load flow calculations, the
network impedance calculations are also difficult due to the scale of and unsatisfactory
data for the power system. Nevertheless, the dynamic and static characteristics of load,
as well as the limitations on generators’ reactive power capability, are not included in
these indexes. However, local VSIs can contain enough information to directly determine
the voltage stability margin, since voltage and current phasors at the system buses are
already available from the phasor measurement units (PMUs) installed in many power
systems [18,19]. In addition to the advantages of simplicity and the low computational
effort required, local methods also provide very good insight into the voltage-collapse
process and can easily be used for online system monitoring [4]. In terms of voltage stability,
various long-term approaches are discussed in [20]. This study introduced the rapid voltage
stability index, which is based on the Wolf algorithm, to enhance the optimal load capacity
of a transmission system.

Additionally, the authors of [21] utilize an optimization method implemented with an
ensemble sparse oblique regression tree method for voltage stability-constrained operation
optimization to improve the voltage stability margin. The authors of [22] undertake
online voltage stability observation using a feature subspace-founded ensemble approach.
The general idea is to use the input from various feature selectors for the ensemble and
aggregate their outputs. The modern voltage stability index (MVSI) ignores the line
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resistance partially—i.e., by zeroing the resistance of a part and not completely the exact
formula of the system—to develop an estimated and fast collapse prediction index [23].

The contribution of this study is that it investigated the relationship between the
concepts of local and total voltage collapse to find simple and robust VSIs for real-time mon-
itoring purposes. Hence, the main contributions of this study are summarized as follows:

• A monitoring tool for secure operation is one of the main contributions of this study.
In addition, the Euclidean distance is utilized to calculate a real-time voltage stability
index. The proposed index for online purposes employing the Euclidean distance (ED)
defines a scale from 0 to 1.5 p.u. for the bus voltage amplitude ED corresponding to
the grid behavior from the normal operation point to the voltage collapse point under
different cascading scenarios;

• Moreover, the weakest load bus based on any grid changes can be found, such that
this index makes the steady-state verification of voltage stability possible through the
concepts of a synchronous generator and motors understood according to PV and PQ
buses in the presence of various events;

• To address the long-term voltage stability problem, a multi-machine dynamic model
was developed to determine the boundary operation of the PV bus. In parallel, the
capability curve was used to access the phasor diagram of the PV bus;

• The proposed method was examined carefully using the 118-bus network, which has
the potential to verify the ED index, in two scenarios including three cascading events—
load demanding, line outage and reactive power compensation—simultaneously.

2. Connectivity between the Multi-Machine Dynamic Model and Load Flow Analysis

IEEE Std. 399–1997 defines load flow analysis as “the determining the steady-state
condition of power system including voltage magnitude and phase angle of each bus for
a specified set of load and generation value” [19]. This specified set is returned to the
steady-state operation of the network synchronous generators accelerating or decelerating
due to any disturbance; i.e., load increments, line outages or generator outages. Thus, a
load flow solution can be estimated as the stable equilibrium points of the dynamic model
of the power system using a set of differential and algebraic equations as follows [24].

dX(t)
dt

= U(X, H, G), F(X, H) = 0, (1)

where X is the vector of state (independent) variables (the voltage magnitude and angle at
each bus), and H is the vector of dependent variables (active and reactive power of each
bus). G indicates the dynamic model of the multi-machine electromechanical equations
and F is the load flow equation.

The derivation of the load flow equation from the dynamic analysis of a power system
can be defined using multiple simplified synchronous machines in a network with constant
admittance load models. Each synchronous machine is presented by a constant voltage
source with the direct axis transient reactance showing the constant flux linkages between
rotor and armature. The machine output active powers are supposed to remain constant in
terms of the load flow analysis by neglecting the governors. As a result, the synchronous
machine, as a generator model, conducts to the PV or generator-type bus so that the real
power and the voltage magnitude are specified in the power flow analysis.

Regarding the aforesaid considerations, a group of coherent machines could be rep-
resented by one equivalent machine connected to an infinitive bus that tends to develop
restoring power equal to or greater than a power demand event to maintain the state of
equilibrium operation point that is found with a load flow solution. The dynamics model
of a synchronous machine as a generator and an induction motor as a load model for the
ith machine is as follows [7,25]:

Hi
π f0

d2(αi − α0)

dt2 + Di
d(αi − α0)

dt
= Pmi − Pei, (2)
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Qei −Qload = 0, (3)

Hi is an inertia constant of the machine, and i is stated by the swing bus MVA
as follows:

Hi =
SGi
SBi

HGi, (4)

where HGi and SBi are the inertia constant and the complex power of machine i, respectively.
f 0 and Di correspond to the nominal frequency and damping coefficient for the synchronous
machine i. αi and α0 indicate the terminal voltage phase angles of a synchronous machine i
in relation to the swing bus as references before and after an event correspondingly related
to. Pmi and Pei represent the real power generation of machine i and the load demand for
induction machines separately. In this case, for the synchronous machine i, (Qei) contributes
to the compensation Qload as the reactive power of the induction machines.

The convergence of Equation (2) as a swing equation for the multi-machine equation
leads to a new operation point for bus αi from the initial point α0 in the steady-state
condition. Thus, if the left-hand side of Equation (2) matches zero, then the real power
parts of the load flow equation based on the equivalent admittance of all loads for machine
i coupled to bus i become:

Pmi = Pei = Vi

N

∑
k=1

VkYik cos(αik − βik) (5)

where N is the number of buses. Vi, Vk and Yik indicate the synchronous machine i with
system bus voltage magnitudes and line admittances. αik and βik indicate the angle between
the sending and receiving line buses and the corresponding line admittance, respectively.
The reactive power injected by bus i is calculated from the voltage amplitude and phase
angle in the reactive power part of the load flow equation:

Qei = Vi

N

∑
k=1

VkYik sin(αik − βik) (6)

The most important control task of PV buses is to maintain the normal condition
of load buses’ voltage amplitudes while their reactive power compensation capacity is
specified. Thus, any long-term voltage stability analysis determining a voltage stability
margin from a VCP will in some way return to the characteristics of the PV buses in term
of the load demand increasing with any system topology changes.

A power network consists of a PV, PQ and slack buses, as shown in Figure 1, corre-
sponding to the first given condition of the buses. The PV bus is indicated by the simplified
steady state of the synchronous generator, including E (excitation or induced voltage), X
(synchronous reactance) and Vt (terminal voltage). The PQ bus can imply any static load
model through equivalent active and reactive powers connected to the network bus.
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The PV bus operates similarly to a cylindrical synchronous generator. The PV bus-
specified voltage magnitude entails no alteration in the voltage terminal under the genera-
tion operation conditions.

Figure 2 shows phasor diagrams for the behavior of PV buses with respect to different
network-load demand-type resistances, capacitors and reactance to unity, showing the
leading and lagging power factor control of a synchronous generator. The terminal voltage
with constant values as references can be seen.
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As seen in Figure 2, the real power generation and reactive power compensation
provided to a network from a PV bus according to the armature current for a single phase
are [26]:

Ia =

∣∣∣E f

∣∣∣∠δ− |Vt|∠00

Xs∠900 (7)

The complex power flow from the PV bus (generator) to the terminal voltage is

S1 = P1 + jQ1 = E f Ia
∗ =

∣∣∣E f

∣∣∣2∠900 −
∣∣∣E f

∣∣∣|Vt|∠
(
900 + δ

)
XS

(8)

The complex power flow from the terminal voltage to the network considered as an
infinite bus is calculated by separating the real and imaginary parts of the equations, giving:

P = P2 + jQ2 = Vt Ia
∗ =

∣∣∣E f

∣∣∣|Vt|∠
(
900 + δ

)
− |Vt|2∠900

XS
(9)

Separating the real and imaginary parts of the equations gives:

P = P1 = P2 =

∣∣∣E f

∣∣∣|Vt|
XS

sin δ (10)

Q1 =

∣∣∣E f

∣∣∣
XS

(∣∣∣E f

∣∣∣− |Vt| cos δ
)

(11)

Q2 =
|Vt|
XS

(∣∣∣E f

∣∣∣ cos δ− |Vt|
)

(12)

In Equation (12), for
∣∣∣E f

∣∣∣ cos δ = |Vt|, the injected reactive power from the PV bus

to the network equals zero. For
∣∣∣E f

∣∣∣ cos δ > |Vt| and
∣∣∣E f

∣∣∣ cos δ < |Vt| as over-excited and
under-excited modes, correspondingly, the PV bus injects and absorbs reactive power to, as
well as from, the network, respectively.
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In fact, the PV bus with a constant terminal voltage and productive real power com-
pensates for the reactive power demand (absorb or deliver) through its capacity. Thus,
Equation (10) is arranged as follows

P
|Vt|

XS =
∣∣∣E f

∣∣∣ sin δ→
∣∣∣E f

∣∣∣ sin δ = constant (13)

It can be seen from Equation (13) that, for
∣∣∣E f

∣∣∣, the magnitude decreases in terms of
the increment of the power angle. Moreover, the active and reactive power flow received at
the terminal voltage bus can be formulated using the armature current as

P = P1 = P2 =

∣∣∣E f

∣∣∣|Vt|
XS

sin δ (14)

Q1 =

∣∣∣E f

∣∣∣
XS

(∣∣∣E f

∣∣∣− |Vt| cos δ
)

(15)

Therefore, Equation (13) is written as

|Vt||Ia| cos θ

|Vt|
XS = XS|Ia| cos θ =

∣∣∣E f

∣∣∣ sin δ (16)

Figure 3 illustrates the response and operation of the PV bus based on its specified
voltage magnitude Vt and real power P as a consequence of any changes in the network.
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Figure 3. The terminal voltage and injected reactive power of the PV bus with respect to
network demand.

In order to derive the PV bus capability curve, the operation phasor diagram of
the PV bus shown in Figure 3 is multiplied by (EfVt/X). The phasor diagrams of the
PV bus capability curve are shown in Figures 4 and 5. Figure 4 demonstrates the active
power (generating) and reactive power (generating and absorbing) on the y-axis and
x-axis, respectively.
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The semicircle with radius Ia Vt illustrates the operation zone of the PV bus capability
curve in Figure 5.
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From a practical point of view, this operation zone is limited by the under- and over-
excitation limiter indicated by the red sector. The reason behind the limitation of the
magnetic field current is to control the Ef magnitude between Efmin and Efmax. Consequently,
the boundary of the PV bus operation based on the angle correction of any load power
factor is less than 90. This leads to the definition of Qmin and Qmax for the PV bus type. In
this context, variation in Vt is the only approach that maintains the PV bus reactive power
compensation inside the capability curve operation zone (red line).

A slack bus (swing bus) is utilized to balance the active and reactive power while
performing load flow studies. This issue corresponds to the varying synchronous generator
power angle (δ) based on the fixed terminal voltage V and excited voltage Ef, as shown in
Figure 6.

It can be seen from this diagram that, as the power angle increases, the armature
current increases and the power factor is improved. The slack bus is considered as a
reference, with lagging voltage for all PV and PQ buses due to the power flow to other
buses. In a real system, it can also be shown for PQ buses that the maximum difference
in the phase angle between the load current and voltage is less than 90 due to the use of
induction motors with most implemented loads.
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3. The Voltage Stability Index Using the Euclidean Distance for Voltage Profile
Phasor Vectors

The goal of this study was a novel assessment method for the analysis of the net-
work local and total voltage stability based on the load flow solution and using the polar
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Euclidean distance between the voltage profile phasors of buses, taking into account the in-
troduced boundary for the PV buses’ operation. Figure 7 displays a power system network
with a typical bus based on the equivalents of the transmission line π model.
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The application of the KLC law for this bus results in:

Ii = yi0Vi + yi1(Vi −V1) + (Vi −V2)yi2 + . . . + yin(Vi −Vn) (17)

Ii = Vi

n

∑
j=0

yij −
n

∑
j=1

yijVj (18)

For any injected active and reactive power load and generator, equivalent admittance
is used

Ii =
|Pi − jQi|∣∣V∗i ∣∣ = yi0newVi (19)

Therefore, based on Equation (19), Equation (18) becomes

yi0newVi = Vi

n

∑
j=0

yij −
n

∑
j=1

yijVj → Vi

(
n

∑
j=0

yij − yi0new

)
= ViYii =

n

∑
j=1

yijVj (20)

The Norton theorem and Thévenin’s corresponding theorem can be utilized for Equation (20)
with an ideal current source voltage source and with corresponding impedance, as shown in
Figure 8 and formulated as

V
Yii

=
n

∑
j=1

yijVj (21)

IiNO =
ViTH
ZiTH

=
n

∑
j=1

yijVj (22)Energies 2023, 16, x FOR PEER REVIEW 9 of 22 
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The equivalent Thévenin circuit can be extended for all buses connected to bus i, as
indicated in Figure 8, making it possible to rewrite Equation (23) as:

IiNO =
ViTH
ZiTH

=
n

∑
j=1

yijVjTH , (23)

As a result, for any PV or PQ buses in the load flow analysis, the equivalent Thévenin
model of the power network using a π model can be implemented. This model shows the
impact of any changes in the network on the power flow equation, as presented in Figure 9.
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In this context, the voltage profile of the network under the first given condition
found by the load flow solution is considered for the Thévenin model voltage source
magnitude and phase angle, as there are no load or open circuit values. Standard practice
for economical and stable network operation is to keep bus voltages near their open circuits.
Hence, the stable steady-state condition of the bus voltage in terms of any changes in the
network is defined by ∣∣∣Vi(NL) −Vi(L)

∣∣∣∣∣∣Vi(NL)

∣∣∣ ≤ ξ i ∈ {1, 2, 3, . . . , n} (24)

where Vi(NL) and Vi(L) are the no load and loading voltages at the ith bus, respectively,
and ξ is a deviation showing the allowable percentage limit for voltage profile dropping.
The grid with a light load has a small deviation, and the heavy-loaded grid conducts
large amounts of ξ, resulting in voltage collapse. The connectivity of the network collapse
returns to bus voltage collapse as local voltage breakdown in a cascading manner. This
association between the load flow equation and the dynamic response of a power system
can be studied using the simple mechanical analog system shown in Figure 10.

Figure 10 shows that a number of masses representing the load buses in the electric
system are suspended from a network. Furthermore, the mechanical analog system consists
of screws in the solid body and elastic strings corresponding to generator PV busses and
the electric transmission lines, respectively. The system is in a static steady state, with each
string loaded below its break point corresponding to the fact that each transmission line is
operated below its static stability. As a result, the masses undergo transient coupled mo-
tions, and the forces in the strings fluctuate. The system settles down to a new equilibrium
state, characterized by a new set of strings that have the masses’ weight and can be adjusted
with a screw in the solid body in the new position (i.e., line powers in the electric case). The
regulation of a screw based on loosening represents the new value of the corresponding
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PV bus voltage amplitude and phase angle. The additional masses and cutting a string,
equivalent to the load demand and line outage in the power network, result in local voltage
collapse and, eventually, total system collapse. Local voltage collapse for PQ buses means
that the injected increased power is less than the load demand consumption. As mentioned,
the outage of PV buses in the long-term voltage collapse analysis corresponds to the strings
breaking and then the removal of screws from the solid body. Accordingly, the local voltage
collapse leads to total system collapse.
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The connectivity of the steady-state stability of the bus voltage, considered as long-
term voltage stability in Equation (24) and described using distance calculations with the
Euclidean distance formula for two voltage phase angles, is given in polar coordinates. If
the polar coordinates of these voltages are defined by two parameters, such as V1 (r,θ) and
V2 (s,ψ), then the distance between voltage operation points is given by the cosine law, d
(V1,V2) = r2 + s2 − 2rs cos(θ − ψ).

This hypothesis regarding the Euclidean distance in the polar coordinate form is:

∣∣∣Vi(NL) −Vi(L)

∣∣∣∣∣∣Vi(NL)

∣∣∣ =
|∆Vi|∣∣∣Vi(NL)

∣∣∣ =
√

Vi(NL)
2 + Vi(L)

2 − 2Vi(NL)Vi(L) cos
(

θi(NL) − θi(L)

)
∣∣∣Vi(NL)

∣∣∣ ≤ ξ (25)

The Euclidean distance describes Equation (24) based on voltage magnitude, and
phase can also be used to define the boundary of ξ around the VCP easily. The local voltage
stability can be analyzed for bus I using the Euclidean distance (Equation (25)) and the
proposed Thévenin model (Equations (22) and (23)). For instance, the value of ξ under the
first given condition is equal to zero due to:√

Vi(NL)
2 + Vi(NL)

2 − 2Vi(NL)Vi(NL) cos(0)∣∣∣Vi(NL)

∣∣∣ =

√
2Vi(NL)

2 − 2Vi(NL)
2 cos(0)∣∣∣Vi(NL)

∣∣∣ = 0

For any PV bus, the maximum value of ξ at the local VCP can be estimated:√
Vi(L)

2 + Vi(L)
2 − 2Vi(L)Vi(L) cos(90)∣∣∣Vi(NL)

∣∣∣ =

√
2− 2 cos(90)

1
= 1.4142

It is apparent that ξ varies between 0 and 1.4142 in practice and from the viewpoint of
the stability operation of the generator and loads in a power system, while mathematically
it changes between 0 and 2.

In order to determine the relationship between the local voltage collapse and the
Euclidean distance, the proposed Thévenin model was utilized for the load flow equation
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at bus i so that the Thévenin Vth(busi) implies the first initial guess of the voltage phasor or
open circuit. Therefore, we have:

Pj + iQj = Vbusi I∗j = Vbusi
(Vth(busi)−Vbusi)

∗

Z∗th(power network)

(Pj + iQj)Z∗th(power network) = Vbusi
(
∆V∗busi

) (26)

F1 = (RthPj +XthQj)
= Vbusi∆Vxbusi = Vbusi

(
Vth(busi) cos(αVth − αVbusi)−Vbusi

) (27)

F2 = (RthQj −XthPj)
= Vbusi∆Vybusi = Vbusi(Vth(busi) sin(αVth − αVbusi)

(28)

The classical form of the load flow equation for a two-bus test system is indicated in
Equations (27) and (28). The implementation of Newton-based load flow for the mentioned
equation gives the Jacobian matrix as follows:

Jacobian(F1, F2) =

[ dF1
dααVbusi

dF1
dVbusi

dF2
dαVbusi

dF2
dVbusi

]

=

[
VbusiVth(busi) sin(αVth−αVbusi) Vth(busi) cos(αVth − αVbusi)− 2Vbusi
−VbusiVth(busi) cos(αVth − αVbusi) Vth(busi) sin(αVbusi − αVth)

] (29)

It is clear that the determinant of the Jacobian matrix as a system derivative with
respect to independent variables in terms of loading is equal to zero at the maximum
loading point. We can find:

Vbusi −
2V2

busi cos(αVth−αVbusi)
Vth(busi)

= 0

Vth(busi) cos(αVth−αVbusi)

Vth(busi)
= Vbusi

2Vbusi
= 1

2

(30)

Equation (30) shows that the value of the bus voltage amplitude at the local col-
lapse point is reduced to half of the basic condition. The reformulated Jacobian matrix
determinant based on the Euclidean distance gives:

Det(Jacobian(F1, F2)) = VbusiV2
th(busi) − 2V2

busiVth(busi) cos(αVth − αVbusi)

= Vbusi[V2
th(busi) − 2VbusiVth(busi) cos(αVth − αVbusi))]

= Vbusi
(
∆V2 −V2

busi
)
= Vbusi

(
ED2 −V2

busi
)
= 0 ⇒ ED2 = V2

busi ⇒
ED

Vbusi
= 1

(31)

It can be found from Equations (26) and (31) that

|S|
VbusiYth(power network)

=
ED

Vbusi
= 1 (32)

The boundary of the voltage phase angle of the Thévenin model can be estimated at
the VCP as follows

cos
(
αVth − αVbusi

)
=

1
2
⇒ cos(αVth − αVbusi) =

Vth(busi)

Vbusi
× 1

2
(33)

Originally, the value of Vth(busi) is near 1 p.u., and the assumed Vbusi is 0.5 due to its
sharply dropping at the VCP; thus, we have

cos(αVth − αVbusi) =
1
4
⇒ αVth − αVbusi = 73.520 (34)
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This issue reveals that, in most practical cases, the maximum difference in the phase
angle from the initial to the vicinity local voltage collapse varies around 80 ± 7◦ [27].

The load flow equation can also be defined as the cost function, such that the solutions
settle down at the optimum point and no solution for the optimum point corresponds to
the VCP [11,28]. The local VCP valuation can be carried out using the cost function of the
complex power for an equivalent two-bus system using Equations (27) and (28):

cost(P, Q) = (F1 −Vbusi

(
Vth(busi) cos(αVth − αVbusi)−Vbusi

)
)

2

+
(

F2 −Vbusi

(
Vth(busi) sin(αVth − αVbusi)

))2
(35)

For different values of F1 and F2 as active and reactive load enhancements, Equation (31)
has a pair of solutions that meet each other at the VCP. In other words, the trajectories of all
straight lines through two distinct state variable solutions (the voltage magnitude and the
angle at each bus) approach the VCP in terms of the loading factor [29]. The quadratic form of
the load flow solution for the cost function is

VbusiR
2 −Vth(busi)VbusiR + (

F2
−Vth(busi)

)
2
+ F1 = 0 (36)

The solution to Equation (36) is

VbusiR =
Vth(busi) ±

√
Vth(busi)

2 − 4[( F2
−Vth(busi)

)2 + F1]

2
(37)

By dividing Equation (36) by the Vth(busi), we get:

VbusiR
Vth(busi)

=
1
2
±
√

1
4
− [

F22

Vth(busi)
4 +

F1
Vth(busi)

2 ] (38)

In order to have two distinct roots for Equation (36), the discriminant should be
positive, which results in:

VbusiVth(busi) cos(αVth − αVbusi)−Vbusi
2COS2(αVth − αVbusi)

Vth(busi)
2 <

1
4

(39)

Equation (39) varies between 0 and 0.25, corresponding to the voltage stability index
varying between 0 and 1 [28,30].

In the case of Equation (39), as the discriminant of Equation (35) is equal to 0.25 at the
local collapse point, Equation (38) becomes

VbusiR
Vth(busi)

=
1
2

(40)

Moreover, Equation (40) can be confirmed from the derivation of Equation (36) with
respect to VbusiR. Accordingly, the variations in the bus voltage magnitude and phase angle
from the first given condition to the local voltage collapse may be between 1 and 0.5 and
approximately 0 and 90◦. The total voltage collapse of the network can occur in a cascaded
manner after the local voltage collapse. Indeed, a minimum of one local voltage collapse is
required to break down a network.

The connectivity between the load flow analysis and the long-term voltage stability
was investigated using a generator model by introducing a novel voltage stability assess-
ment based on the multi-machine dynamic model along with the load flow study for a
power grid. In parallel, the Euclidean distance (ED) was represented as a novel voltage
stability index through the voltage phasor profile. The results of the reactive power com-
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pensation’s further load-generation patterns and network topology fluctuations in the
changing network configuration can be perceived plainly from the voltage profiles of the
buses. The whole process of stability estimation using an ED method is shown in Figure 11:

1. Run the standard Newton-based load flow equation for the load demand increase
in response to the different topology changes resulting from line outages or reactive
power compensation, or only one of them;

2. Calculate the Euclidean distance (ED) (Equation (25)) for every PQ bus;
3. Consider the PQ bus with the greatest value for the Euclidean distance (ED) as the

weakest bus;
4. If the voltage phase angle of the weakest bus is greater than −900, then local voltage

collapse will occur; otherwise, go to 5;
5. If the determinant of the Jacobian matrix is less than zero and the Euclidean distance

(ED) of any of the PQ buses approaches 1.5 p.u., stop the computation; otherwise, go
to 1.
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4. Results

The proposed method was tested and validated using an IEEE 118-bus test system network.

4.1. IEEE 118-Bus Test System

An IEEE 118-bus test system was used to verify the Euclidean distance (ED) voltage
stability index for the voltage profile during load demand increases for the different
topology changes resulting from line outages and reactive power compensation. This
system includes 118 buses, 186 branches, 91 load sides and 51 thermal units. A single-line
diagram of the IEEE 118-bus test system is shown in Figure 12.

The ED voltage stability index was verified in the two scenarios shown in Table 1 by
estimating the voltage stability margin. These cascade events happened at step numbers
11, 26 and 36, corresponding to load levels of 5302.5, 6893.25 and 7953.75 MW, respectively.
The load increasing path was calculated according Equation (41)

P = P0 + n× Pstep (41)

where P0 is equal to the initial load demand condition for every PQ bus, Pstep is equal to
the step size of 0.025 p.u. and n represents the step increase.
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Table 1. Testing scenarios.

Scenarios Event 1 Event 2 Event 3

First case Load increment—11 steps Load increment—26 steps Load increment—36 steps

Second
case Outage 5–6 Outage 3–12 Q = −50 at bus 30

The related voltage profile increasing from 4242 MW under the first given system
condition to the maximum loading point at 11,665.5 MW was used as a reference profile.
The effects of the cascade events involving line outages and reactive power consumption
changes, as well as load demand increasing, on the reference voltage profile under the first
given condition were considered to investigate the propose method.

4.2. First Case

For the loading pattern in the first case, the system load was increased gradually
with a step size of 0.025 p.u. until the resulting load capability limit corresponding to the
existence of the load flow solution defined as the voltage stability limit point was reached.
The system maximum load ability in terms of load increases was found at the boundary
of the Jacobian matrix singularity at a load level of 2.75 p.u. Divergence in the load flow
solution and the Jacobian matrix singularity were seen at 2.775, beyond the maximum load
ability. The non-zero elements of the Jacobian matrix for the load level of 2.75 were the 1051
points shown in Figure 13.
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The density of the matrix and the non-zero elements of the diagonals reflect the
condition of a system, indicating whether it is well- or ill-conditioned. Since the matrix
density was low, it can be concluded that the IEEE 118-bus test system at the load level of
2.75 was an ill-conditioned system, as presented in Figure 13.
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Figure 13. The sparsity form of the Jacobian matrix at a load level of 2.75.

This was because most of the Jacobian matrix’s zero elements were within the area of
∂∆P/∂∆α and ∂∆Q/∂∆|V| (surrounded by dashed red lines). Figures 14 and 15 show the
solid mesh geometry of a sparse Jacobian for the IEEE 118-bus test system under loadings
of 2.75 and 2.775 as the boundary and beyond the VCP of the system, respectively. The zero
elements of the Jacobian matrix main diagonal in Figure 13 clearly imply the insolvability
of the load flow equation.
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In Figure 15, it is apparent that the large number of Jacobian matrix zero elements is
what leads to the insolvability condition for the load flow equations; i.e., for the complete
estimation of power grid instability. The determinant and condition number of the Jacobian
matrix can also verify this fact, with Table 2 indicating that the Jacobian matrix condition,
as a ratio of the maximum to minimum eigenvalues, had a very high value, 1.8446 × 107 at
2.775 (step 72), in comparison to before the maximum loading point (MLP). For this case,
the negative sign of the Jacobian matrix determinant indicates the absolute steady-state
instability of the system at a value of 2.775 (step 72) and higher. On the other hand, the
infinite sensitivity of the system stability in the vicinity of the MLP was apparent due to the
very large difference between the values of the Jacobian matrix determinant at the loading
points of 2.775 (step 72) and 2.75 (step 71): −6.0727e + 302 and 2.4317e + 251, respectively.
Accordingly, the value at 2.75 (step 71) was considered as the VCP.

Table 2. The determinant and condition number of the Jacobian matrix at loadings of 2.75 and 2.775.

Loading Demand Step Jacobian Matrix
Determinant Condition Number Stability Condition

2.775 (72) −6.0727e + 302 1.8446e + 007 Beyond the MLP
2.75 (71) 2.4317e + 251 6.9519e + 003 Boundary of the MLP

1 (1) 4.0224e + 262 3.1723e + 003 Original condition

The voltage amplitude and phasor profile in terms of the load demand increment in
the MLP are shown in Figures 16 and 17, respectively.

Figures 16 and 17 indicate the variations in the magnitude of the bus voltages and the
phase angles, which had minimum values of 0.8676 (p.u) and−90◦ for buses 44 and 41 near
the MLP, respectively. This confirmed that the breakdown of the steady-state stability of
the power system in the vicinity of the MLP could have occurred due to the voltage phase
angle approaching −90◦ in at least one of the buses; i.e., either the voltage phasor or the
amplitude profiles from the initial loading point. Figure 18 shows the ED index profiles in
terms of the load demand increment in the MLP and also verifies that buses 44 and 41 were
the weakest unstable regions near the MLP because of their corresponding maximum ED
index values between buses.
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4.3. Second Case

This case includes cascading line outages and reactive power compensation during the
load demand increase. The outages based on lines 5–6 and 3–12 between buses 5, 6, 3 and
12 were implemented at loading levels of 5302.5 MW (step 11) and 6893.25 MW (step 26),
respectively. The reactive power compensation occurred at bus 3 with −50 Mvar as the
reactive load.

Figures 19 and 20 show the gaps between the three voltage phase angles and amplitude
profiles, respectively, that occurred due to the mentioned triple cascading events. This
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resulted in the semi-blackout simulation for the 118-bus test system. A blackout is a total
loss of power in an area and the most severe form of power outage that can occur. Failure
of PV bus operation during a blackout is related to the field current limitations and occurs
in order to control reactive power. The boundary of the PV bus operation based on the
angle correction of the load power factors is a maximum of 90◦ in terms of any blackout
phenomena. This means that the PV buses reduce the voltage magnitude of the generator
terminal to keep operation between the defined Qmin and Qmax. Consequently, the generator
reactive power limit is a key factor in voltage instability.
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Figure 19. Phase angle of the voltage profile during the events leading to the voltage collapse point
for the IEEE 118-bus test system.
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Figure 20. The amplitude of the voltage profile in the events leading to the voltage collapse point for
the IEEE 118-bus test system.

From Figures 21 and 22, it can be seen that the response of the ED index involves three events
relating to the load demand steps and bus numbers of the IEEE 118-bus test system, respectively.
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Figure 21. The response of the ED index for the case including three events related to the load
demand steps for the IEEE 118-bus test system.
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Figure 22. The response of the ED index for the case including three events related to the bus number
for the IEEE 118-bus test system.

1. For the first event, the variation in the ED index from step 11 to step 12 due to the
outage of lines 5–6 showed that the maximum value for bus 5 was 0.5648. Thus, bus 5
was the weakest node, which was also confirmed by the discriminant of the quadratic
form of the local load flow solution shown in Equation (38), as the auxiliary index had
a maximum value of 1.839 for bus 5, as also indicated for all buses in Figure 23. The
maximum value of 1.839 for bus 5 is also indicated for all buses in Figure 24.
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2. The second event at step 26 of the load demand occurred due to the outage of
lines 3–12. This event pushed the number for bus three above 1.4142 as the ED
index safe-side stability line. This means that, before the third event, bus three with a
value of 1.4375 started to collapse. The reduction shown in Equation (38) for bus three
during the second event also demonstrated the local voltage collapse. Indeed, the
power factor angle of bus three as a load bus during the second event was reduced
sharply from −56.730 to −89.300 at the local vicinity of the unstable point. The values



Energies 2023, 16, 2508 20 of 21

for the ED index for buses 1, 2 and 117 also passed over the stability zone on the side
of bus 3. Moreover, the mentioned bus voltage phase angle operated in the unstable
zone due to it approaching a value higher than 90◦. Furthermore, the local voltage
collapse indicated by the convergence of the load flow solution at the local maximum
loading point for the quadratic form can be clearly seen in the example for bus one in
Figure 24.

3. This case study indicated that voltage stability damage can occur in a local power
grid, and occasionally this can extent to the whole power grid. As a consequence, the
voltage stability collapses across the entire power grid, as seen for the load demand at
step 42 as a divergence of the load flow solution due to the Jacobian matrix singularity.
Cascading events can also decrease the transmission capacity of a grid, which causes
decreased substation voltage stability and even substation voltage collapse in heavy-
load situations.

5. Conclusions

In this paper, for the steady-state stability estimation of a power system based on
a voltage stability estimation phasor profile, a novel index consisting of the Euclidean
distance (ED) was introduced for online purposes. The mentioned index defines a scale
from 0 to 1.5 p.u. for the bus voltage amplitude ED corresponding to the grid behavior
from the normal operation point to the voltage collapse point under different cascading
scenarios. In addition, the bus with the weakest load with respect to any grid changes can
be detected. Indeed, this index also enables the steady-state verification of voltage stability
through the concepts of a synchronous generator and synchronous-based motors in terms
of PV and PQ buses during any event. The IEEE 118-bus test system was utilized to verify
the ED index in two scenarios including three cascading events—load demand, line outage
and reactive power compensation—simultaneously.
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