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Abstract: Fractured reservoirs are highly heterogeneous in both matrix and fracture properties,
which results in significant variations in well production. Assessing and quantifying the influence
of fractures on fluid flow is essential for developing unconventional reservoirs. The complicated
effects of fractures in unconventional fractured reservoirs on fluid flow highly depend on fracture
geometry, fracture distribution, and fracture properties, which can be reflected in pressure transient
testing. The biggest challenge lies in delineating the pre-existing natural fracture distribution pattern,
density, azimuth, and connectivity. Using the advanced finite element method, this paper builds
a finely characterized near-wellbore model to numerically simulate the pressure transient testing
process in naturally fractured reservoirs and further evaluates fracture-related effects to obtain a
more accurate solution. First, the numerical program is benchmarked by the analytical solutions
and numerical results of Eclipse. Next, different fracture models with single fractures or fracture
networks are set up to investigate the effects of fracture parameters numerically (e.g., fracture
location, fracture dip angle, fracture spacing, the ratio of fracture permeability to matrix permeability,
fracture network orientation, horizontal fracture distribution, etc.) on pressure transient behaviors in
naturally fractured reservoirs. Velocity and pressure profiles are presented to visualize and analyze
their effects, and new features in the flow regimes of the derivative plots of the bottom-hole pressure
are identified and discussed. Finally, based on geological and geophysical data, including image logs,
core descriptions, wireline logs, and seismic and well test data, a practical fractured model of the
Dalwogan 2 well in the Surat basin is built, analyzed, and compared with homogenous and measured
data. The results show significance in characterizing the complex fracture networks in near-wellbore
models of unconventional fractured reservoirs.

Keywords: near-wellbore model; pressure transient testing; fractures; numerical simulation; naturally
fractured reservoirs

1. Introduction

The high degree of uncertainty involved in the development of unconventional frac-
tured reservoirs leads to the need to understand the flow behavior in reservoirs [1]. Gener-
ally, fractures serve as both storage spaces and the main flow channels in reservoir rocks [2].
Fractures control the storage, impact the distribution of the natural gas storage in reservoirs,
and provide necessary information related to tectonics, overpressure, burial history, and
diagenesis [3,4]. The fluctuation of well production in fractured reservoirs is caused by the
extreme heterogeneity of the matrix and fractures, and a large proportion of the production
might come from a short, intensely fractured interval within a single well [5]. Research on
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fractures in actual unconventional reservoirs has received attention [6,7]. Therefore, im-
proving the understanding of fracture characteristics is critical for the efficient development
of unconventional fractured reservoirs, such as carbonate reservoirs.

Various methods are used for fracture identification in reservoirs. (1) Direct observa-
tion of fracture-based well cores and natural outcrops is used, but cost constraints affect
the number of implementations [8]. (2) Fracture identification using new seismic methods
based on pre-stacked seismic data has emerged based on the principles of amplitude varia-
tion with azimuth [9,10], travel-time variation with azimuth [11], and velocity variation
with azimuth [12], and fracture proximity, thinned fault likelihood, fracture density [13],
and post-stack reflective seismic waves [14,15]. Each method provides fracture information
on a different scale and has its own limitations. (3) Fracture classification and prediction
through artificial intelligence and machine learning methods. Conventional logging, down-
hole videos, and image logging are all tools used in fracture identification [7,16]. The
geological characteristics of fractures, including fracture density, fracture spacing, and
fracture conductivity, can present many features of the flow in naturally fractured reser-
voirs. Furthermore, seismic wave attenuation, which is closely related to fracture properties
because of its scattering and fluid-related mechanisms [17], can be used to detect fractures
and define their orientation, density, and fluid content in carbonate rocks [18]. However, the
biggest challenge lies in delineating the pre-existing natural fracture distribution pattern,
density, azimuth, and connectivity [19]. While the mechanics and geologic conditions that
generate natural fractures are generally well understood, the actual complex characteristics
of unconventional fractured reservoirs cannot be accurately described. Therefore, further
research is needed to better characterize fractures in unconventional fractured reservoirs.
Fracture parameters, including fracture location, fracture spacing, the ratio of fracture
permeability to matrix permeability, fracture network orientation, and fracture dip angle,
have rarely been investigated and are researched in detail in this paper.

The properties of fractures at the meter scale are mostly characterized by using pres-
sure transient testing, which is also widely used to estimate reservoir pressure, reservoir
permeability, and wellbore conditions (e.g., well completion, wellbore damage, and well-
bore storage) and detect faults and sealing boundaries in conventional oil and gas wells by
observing the pressure responses resulting from the change in the production rate [20,21].
However, the conventional pressure transient testing method is proposed based on the
assumptions of a single-phase flow in a homogeneous infinite reservoir with constant fluids
and reservoir properties. These assumptions are obviously not suitable for unconventional
fractured reservoirs that have complex fractures at various scales with different fracture
distributions, fracture spacings, fracture conductivities, fracture orientations, and fracture
geometries. Therefore, the utility of pressure transient testing to obtain the properties of
fractures in unconventional fractured reservoirs is a challenge for petroleum engineers.
Pressure transient testing interpretation for unconventional fractured reservoirs is quite
difficult due to the existence of complex fracture networks, which give rise to the appear-
ance of numerous complex flow regimes reflected in pressure transient testing data. The
classical pressure transient analysis for fractured reservoirs is based on the dual porosity
model [22], which causes a distinct “V”-shape in the middle time region of the pressure
derivative [23–25]. This is due to recharge, which occurs because the fluids in the frac-
tures are produced at a faster rate than they are replaced from the matrix [26]. Classical
theory predicts that this recharge effect increases with increasing fracture-matrix perme-
ability contrast and that the width and depth of the “V” in the pressure transient allow
us to back-calculate the fracture-matrix permeability contrast and the difference in fluids
stored in the fracture and matrix [23,24]. Numerous research outcomes about a specific
topic—the effects of fractures on pressure transient testing behaviors—have been published.
Nobakht, Clarkson, and Kaviani [27] discussed the effects of reservoir types and induced
hydraulic fracturing geometries. A series of type curves were developed to capture the
flow regimes for various horizontal well lengths, fracture numbers, fracture lengths, and
fracture spacings. Kuchuk and Biryukov [28,29] proposed a semianalytical method to inves-
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tigate the pressure transient behaviors of continuously and discretely naturally fractured
reservoirs and found that more than ten flow regimes may exist in fractured reservoirs.
Deng et al. [30] presented an analytical solution for a fractured well with an eccentric
well location in composite reservoirs and considered the well location and multi-region
radial composite systems of a fully or partially penetrating fractured well. Chen et al. [31]
presented an efficient semianalytical model for pressure-transient analysis in fractured
wells by considering arbitrarily distributed fracture networks. Liu et al. [32,33] proposed
a discrete fracture–matrix method based on a numerical well testing model to study the
pressure transient behavior of discretely distributed natural fractures in a 2D reservoir. Ad-
ditionally, in their sensitivity analysis, the “dip” on the pressure derivative is an important
signal to identify the properties and the impacts of natural fractures. However, because of
the limitations of existing analytical and semianalytical methods, most of the considered
fracture characteristics are simplified, and some new features of the flow regimes identified
in the derivative plots in naturally fractured low-permeability reservoirs could not be
described and clarified clearly [34,35]. Numerical well testing is an effective tool to solve
this problem [36,37]. It can compute a complicated model more accurately, especially by
using a finite element method-based numerical simulation that can simulate models with a
variety of complex structures or fractures and flow patterns in unconventional reservoirs,
such as carbonate reservoirs.

It is proposed to integrate static data, including seismic, wireline logs, core, and
geological data, and dynamic data, including well test data and production data, to char-
acterize the fractures near the wellbore at the meter scale [38]. However, most of the
existing well-test models for transient analysis in fractured reservoirs, using either analyti-
cal or numerical methods, are based on continuum models or simplify the fractures to a
high-permeability matrix, which cannot accurately describe the actual complex features in
unconventional fractured reservoirs [37]. Therefore, further studies are needed to character-
ize the fracture characteristics of unconventional fractured reservoirs. This paper considers
more fracture parameters in unconventional fractured reservoirs and studies their effects
on reservoir seepage through numerical pressure transient tests. Based on all the collected
data, an integrated near-wellbore model of coal seam gas (CSG) reservoirs was built to
investigate the pressure transient behaviors of fractures and better characterize naturally
fractured reservoirs in this paper. The in-house developed finite element method-based
code PANDAS (Parallel Adaptive Nonlinear Deformation Analysis Software) is used in
this paper for the related numerical simulation of all the proposed models [39–42]. It was
first verified by comparison with the available analytical solutions and numerical results
obtained from Eclipse. Then, the sensitivity of various fracture parameters on pressure
transient testing behaviors in low-permeability coal seams was investigated numerically
and visualized using velocity and pressure profiles. Some new features in the flow regimes
of the Bourdet derivative plots of the bottom-hole pressure were presented and discussed.
Finally, based on the available geological and geophysical data from the Dalwogan 2 well
in the Surat Basin, including image logs, core descriptions, wireline logs, and well test data,
a finely characterized fracture near-wellbore model was built and analyzed to demonstrate
the necessity of further investigating the effects of fractures on pressure transient testing in
low-permeability CSG reservoirs and the fine characterization of heterogeneous coal seams
in geological models.

2. Numerical Modeling

A numerical simulation of the finite element method was applied to investigate the
effects of fractures on pressure transient testing behaviors in near-wellbore regions of a CSG
reservoir. PANDAS, an in-house finite element method-based code, is an advanced multi-
physics coupling software that has been applied in various scenarios, including interacting
fault system dynamics and geothermal and unconventional reservoir analysis [39–42]. The
fluid module of PANDAS is extended and applied to investigate the pressure transient
testing behaviors in naturally fractured low-permeability coal seams.
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2.1. Equation of Continuity

It is assumed that the formation is nondeformable with constant porosity and per-
meability. The formation and the fluid have small and constant compressibilities. The
formation is assumed to be homogeneous and isotropic in one material except for the
fractures. The gravity effect in our models is negligible because the thicknesses of all
models are less than 10 m. Because the focus of this paper is on the effects of fractures on
pressure transient behaviors, CSG adsorption and desorption are ignored. Only the low
permeability and complex fracture characteristics of CSG reservoirs are considered and
analyzed here, as detailed below, using PANDAS.

For a single-phase fluid flowing in a porous medium, the differential continuity
equation is written as:

∂(ρφ)

∂t
+∇(ρv) = qρ (1)

where ρ is fluid density; φ is formation porosity; v is fluid velocity, and q is flow rate.
Darcy’s law is:

v = − k
µ
(∇P) (2)

where k is the formation permeability; µ is the viscosity, and P is the pressure.
Combining Equations (1) and (2), the equation of continuity is expressed by pressure as:

∂(ρ∅)

∂t
−∇

[
ρk
µ
(∇P)

]
= ρq (3)

The inner boundary condition is a constant flow rate. The flow rate varied from negative to
positive depending on the well test methods. The outer boundary condition is constant
pressure in our models.

2.2. Validation of the Numerical Model

Chupin et al. [43] recommended that a near-wellbore region (approximately 10 m to
100 m) around the wellbore in a low-permeability CSG reservoir should be investigated,
taking into account the flow regions of the fast-flow pressure transient testing and com-
puting expense. In this paper, the radius of our following models was chosen as 50 m. To
validate our code, a drawdown test was simulated, and the results were analyzed.

2.2.1. Bottom-Hole Pressure Validation

A numerical model was built to simulate a pressure drawdown test, and the obtained
bottom-hole pressure was compared with the analytical solution and numerical results
from the commercial numerical software Eclipse. The primary input data are listed in
Table 1. For a more detailed description of the model, please refer to Ramey Jr. [44]. The
pressure and velocity distributions at 6.5 hours are shown in Figure 1a,b.

Table 1. Well and reservoir parameters.

Parameters Values Parameters Values

Wellbore radius, ft 0.25 Permeability, mD 48
Net thickness, ft 17 Reservoir pressure, psi 2810

Porosity 0.2 Formation volume factor 1.0
Compressibility, psi−1 1.0 × 10−6 Flow rate(surface), STB/D 500

Viscosity, cp 1.0

Analytical solutions of the diffusivity equation for a pressure drawdown test in an
infinite-acting reservoir can be obtained by taking the well as a line source [45]. The
bottom-hole pressure Pw can be approximated by

Pw = Pi − 162.6
qBµ

kh

(
logt + log

k
∅µCtr2

w
+ 0.867S− 3.2274

)
(4)
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where Pi is the initial reservoir pressure; B is the formation volume factor; h is the formation
thickness; Ct is the total compressibility of the fluid and formation, and S is the skin factor.
Other parameters are the same as those introduced above. Figure 2 shows the comparison
of the bottom-hole pressure change over the flow time obtained from the mentioned three
methods. The result shows that during the steady-state radial flow, the numerical results
from PANDAS and Eclipse and the analytical solution (Equation (4)) match each other
very well.
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Figure 2. Comparison of semilog plots of bottom-hole pressure during the pressure drawdown test
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2.2.2. Permeability Calculation and Validation

After the numerical drawdown test, the reservoir permeability can be determined by
analyzing the bottom-hole pressure and the production rate. If the interpreted permeability
is equal to the input permeability in our model or their difference is less than 10% of the
input value, the simulated results are accurate [46,47]. In log-log coordinates, based on
the bottom-hole pressure difference and pressure derivative obtained by PANDAS, the
radial flow regime can be identified, and then the reservoir permeability is calculated to
be 48.1219 mD. The difference between the interpreted permeability and the input value
is 0.1219 mD, less than 1% of 48 mD. Therefore, the simulated results from PANDAS are
accurate and can be used to simulate the pressure transient testing process.
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2.3. Model Parameters

When the geological conditions are complex, more grids are needed for depiction,
and more computing resources are required. Therefore, a symmetrical case was assumed,
and only one-fourth of the rectangular model was built to study the pressure transient
behaviors of naturally fractured low-permeability coal seams in this paper to reduce the
computing time and cost (Figure 3). The size of the model in the X and Y directions
was 13.5 m × 13.5 m. In the following models, the inner boundaries (Qw) have a constant
injection rate or no flow rate, and the outer boundaries (Pe) have a constant pressure.
The initial condition is the initial reservoir pressure. The input data in the models are
summarized in Table 2. Since vertical wellbores are the most common wellbore types used
for CSG development [48,49], all numerical models built in this paper are vertical wellbores.
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pressure and flow rate (top view); (c) Magnification of the black block in (a); (d) A heterogeneous
coal package (cross-section).

Table 2. Well and reservoir parameters for all models in Section 3.

Parameters Values Parameters Values

Wellbore radius, m 0.10 Matrix permeability, mD 0.048
Net thickness, m 1.90 Reservoir pressure, Pa 5.954 × 106

Porosity 0.02 Formation volume factor 1.0
Compressibility, Pa−1 3.67 × 10−11 Flow rate(surface), m3/d 0.125

Viscosity, Pa.s 1.0 × 10−3 Fracture permeability, mD 4.8
(Unless otherwise prescribed)

3. Results and Discussion
3.1. Single-Fracture Parametric Study

Single fractures are the basic component of naturally fractured coal seams. Various
fracture parameters, including fracture geometry, fracture location, fracture permeability
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relative to the matrix permeability, and fracture dip angle, affect the flow in coal seam
gas reservoirs. These effects were investigated using numerical pressure transient testing
in this section. Kuchuk and Biryukov [50] applied the semianalytical method to reveal
and emphasize its critical effects by analyzing derivative plots. Therefore, the Bourdet
derivative plots of the bottom-hole pressure were presented, and velocity and pressure
profiles were used to explain the effects.

3.1.1. Effect of Relative Fracture Location on the Test Well

Whether or not the fractures intersect the wellbore has a significant impact on pressure
transient behaviors. In some wells, wellbores are intersected by fractures. However, most
natural fractures are located near the wellbore but do not intersect the wellbore. The
propagation process of the pressure gradient near the wellbore during water injection and
the variation of bottom-hole pressure with shut-in time were studied. When the wellbore
was intersected by a fracture, the pressure gradient propagated with the water injection.
The fluid quickly filled the fracture (Figure 4a). Then, the fracture linear flow dominated the
pressure transient behavior (Figure 4b). Later, the radial flow regime occurred (Figure 4c).
Figure 4d shows that the longer the fracture, the larger the swept area. In other words,
the longer the fracture, the higher the fluid recovery. However, when the fracture did
not intersect the wellbore, the pressure propagation process was quite different. The
formation’s radial flow regime was observed until the fracture was encountered (Figure 5a).
Then, linear fracture flow occurred (Figure 5b) and became apparent (Figure 5c). Finally,
the flow reached another radial flow regime (Figure 5d).
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Figure 6 shows the pressure difference and bottom-hole pressure derivatives of the
above two models after shut-in in the well. Figure 6a shows that serious fluctuation of
the bottom-hole pressure occurred in the late flow period after shut-in in the well, and the
equivalent formation permeability increased from the matrix permeability of 0.048 mD
to 0.0855 mD due to the contribution of the fracture. Figure 6b shows that the formation
permeability increased from 0.048 mD to 0.0512 mD due to the existence of the fracture
near the wellbore. By comparing Figure 6a,b, it can be seen that when a small pressure
difference occurred in the near-wellbore region, fluid in a fractured wellbore quickly filled
the fracture and then reached a radial flow regime, but when unsteady flow occurred in the
later stage of flow, the storage effect of the wellbore was significantly reduced.
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3.1.2. Effect of Fracture Permeability Relative to Matrix Permeability

Fracture permeability is one of the most significant parameters that affect the capacity
of fractures to allow fluids to flow. Theoretically speaking, the higher the fracture per-
meability, the greater the flow capacity. However, fracture permeability is mostly limited
in CSG reservoirs. Therefore, it is necessary to study the effects of fracture permeability
on the flow behavior in low-permeability coal seams. A fracture was located near the
wellbore (Figure 7a). The fracture half-length was 3.5 m, and the fracture width was 0.4 m.
The matrix permeability was 0.048 mD, and the fracture permeabilities were 0.048 mD,
0.096 mD, 0.48 mD, 4.8 mD, and 48 mD. The ratio of the fracture permeability to the matrix
permeability was denoted as kf/km. The results shown in Figure 7b indicated that the
derivative decreased with an increase in kf/km. However, when kf/km was less than 10,
kf/km had little effect on the derivative, and after kf/km increased over 100, the derivative
did not vary much. This means that when the permeability of the coal seam matrix is
extremely low, a fracture with relatively high permeability cannot significantly improve
the formation flow capacity, and the fracture permeability is not the main factor affecting
the formation flow capacity.
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3.1.3. Effect of Fracture Dip Angles

Several inclined fracture models were built to see how pressure transient behaviors
respond to these fractures. Four models contained fractures with dip angles of 0◦, 30◦, 60◦,
and 90◦ (Figure 8a). The fracture width was 0.4 m, and the fracture height was 0.05 m. The
half-length of the fracture with a dip angle of 90◦ was the same as the formation thickness
of 5.00 m, and the half-length of the other fractures was 5.47 m. The boundary conditions
were the same as in the above models. Then, a water injection/falloff test was simulated in
each model. Pressure profiles and velocity profiles were extracted to show how fractures
with various dip angles affect the flow in the four models (Figure 8b,c).
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Figure 8 shows that as the dip angle increased, the area affected by high-permeability
fractures increased. When the fracture was perpendicular to the wellbore, the high-
permeability flow occurred almost exactly in the fracture. When the dip angle was 30◦,
the area affected by the high-permeability fracture increased. However, when the dip
angle was 60◦, the high-permeability flow occurred not only on the fracture side around
the wellbore but also on the other side. Additionally, when the dip angle was 90◦, the
high-permeability flow occurred equally on both sides of the fracture. After analyzing
the bottom-hole pressure obtained from the falloff test, the relationship between pressure
difference and flow time was plotted in log-log coordinates (Figure 9). Figure 9 shows
the effects of fractures with different dip angles on the pressure difference in the falloff
test. The early flow time greatly increased as the dip angle increased. Therefore, fractures
with smaller dip angles are beneficial for fluid flow over a short period of time. However,
fractures with larger dip angles are helpful in increasing the swept area and enhancing
gas recovery.
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3.2. Fracture Network Parametric Study
3.2.1. Effect of Fracture Spacing

Two parallel high-permeability fractures were added to the near-wellbore area in
the model (Figure 10a). Figure 10b shows the effect of the fracture distance between the
fracture and the wellbore. The derivative decreased as the distances decreased. In other
words, when the fracture does not intersect the wellbore, the contribution of fracture
permeability to formation permeability is highly dependent on the distance between
the fracture and the wellbore. If a fracture is located far away from the wellbore, its
contribution to the formation’s permeability is much less than that of the closer one. Then,
one fracture was located 1.5 m from the wellbore, and another fracture was gradually
moved farther away from the wellbore at distances of 1.00 m, 3.00 m, and 8.00 m from the
fixed fracture. Figure 10c shows the effect of different fracture spacings on the derivative. It
shows that fracture spacing has a significant effect on formation permeability in extremely
low-permeability formations. As fracture spacing increased, the formation permeability
decreased sharply.
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Figure 10. (a) Near-wellbore model with two parallel fractures; (b) A comparison of the derivative
plots for models with different distances between the fracture and the wellbore; (c) A comparison of
derivative plots with different distances between two parallel fractures.

3.2.2. Effect of Fracture Network Orientation

Since fracture orientations vary widely in coal seam reservoirs at the wellbore scale,
many techniques have been proposed to detect fracture orientations [51]. This section
investigated numerically how different fracture orientations affect pressure transient be-
haviors. Different fracture orientations were set in the model (Figure 11). The fracture
orientation is perpendicular to the flow direction in the formation in Figure 11a, while the
fracture orientation is parallel to the flow direction in Figure 11b. Moreover, Figure 11c is
the combination of the models in Figure 11a,b. Red represents the matrix in the formation;
other colors represent fractures with different orientations. The blue points in the bottom
left corner are the wellbores.
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Figure 12 indicates that the orientation of fractures near the wellbore plays a key
role in the formation’s conductivity. When the fractures were perpendicular to the flow
direction, the derivative gradually decreased after the early time period and then had
an upward trend. When the fracture parallel to the flow direction dominated the whole
flow in the formation, the derivative of bottom-hole pressure decreased with two plateaus.
This feature is usually regarded as the typical identification character of multilayers in
pressure transient testing interpretation. The reason it also appears in fracture networks
could be explained by analyzing the velocity profiles. As shown in Figure 13a, when the
fracture orientation was perpendicular to the flow direction, the velocities in the three
fractures increased sequentially along the direction of fluid diffusion, and the flow swept
from the wellbore to the reservoir. In other words, the majority of the formation contributes
to the whole flow. However, the flow in Figure 13b at first only occurred on the three
paralleled fractures, which is quite similar to the high-permeability layers in multilayer
flow. The formation velocity around fractures was almost unchanged. Therefore, two
plateaus occurred in the derivative plots of both multi-layered formations and specific
fractured formations.
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3.3. Effects of Horizontal Fracture Networks

The layers that are composed of weak minerals are easily fractured or deformed during
the injection or production period, which is likely to cause high vertical heterogeneity in
coal seams. The average permeability calculated for the tested multilayer, including inter-
vals, usually overstates the expected individual single-seam outcomes [52]. This section
studies the effect of the distribution of horizontal fractures (thin, high-permeability layers)
on pressure transient tests. The homogeneous model was built as the reference model. The
permeability was 0.048 mD. Then, the other models with horizontal fractures were built
with the same average permeability as the reference model. The average permeabilities
for these three heterogeneous models were calculated using the arithmetic mean method,
taking the thickness weight into account [53]. The first model had two layers with thick-
nesses of 0.43 m and 1.47 m. Their permeabilities were 0.078 mD and 0.039 mD, respectively
(Figure 14a). The second model had three layers with thicknesses of 0.77 m, 0.70 m, and
0.43 m. Their permeabilities were 0.0918 mD, 0.023 mD, and 0.0459 mD, respectively
(Figure 14b). In the third model, the layer with 0.078 mD permeability in the first model
was divided into eight thinner layers and distributed between the higher permeability
layers (Figure 14c). The results show that the velocity in fractures increased faster, and
fractures dominated the flow at the early flow time with fast-moving flow boundaries.
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Figure 14. Velocity profiles of (a) the two-layer model, (b) the three-layer model, and (c) the multilayer
model in the x-z section.

Figure 15 shows the derivative plots and pressure profiles of the two-layer model and
the three-layer model. The pressure profiles have the same shape as the derivative in each
model, which reflects the change in permeability in the vertical direction. Figure 15a shows
a clear property for a two-layer model with two radial flow periods that can be identified
in the derivative plot. The effective formation permeability is lower than that of the high-
permeability layer but higher than that of the low-permeability layer. This is because of
the interacting effect between the low-permeability layer and the high-permeability layer.
Similarly, Figure 15c shows a typical feature of the three-layer model.
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Parameters Values Units 

Model radius, re 100 m 

Formation thickness, h 8.3 m 

Coal porosity, ϕ1 0.02  

Coal permeability, k1 15.5 mD 

Sandstone porosity, ϕ2 0.1  
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Figure 15. (a) The derivative plot of the two-layer model; (b) The pressure profile of bottom-hole
pressure for the two-layer model; (c) The derivative plot of the three-layer model; (d) The pressure
profile of bottom-hole pressure for the three-layer model.
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3.4. Application of the Finely Characterized Near-Wellbore Model

Conventional geological models are usually at the field scale of tens of kilometers
with an extremely coarse grid that is acceptable for homogenous conventional oil and
gas reservoirs. However, they may not be suitable for naturally fractured, heterogeneous,
low-permeability coal seams. All the above studies have shown that both horizontal and
vertical fractures have significant influences on pressure transient behaviors and how each
fracture parameter affects the derivative of the pressure transient analysis. Considering
the complex fracture distribution in CSG reservoirs, a finely characterized near-wellbore
model was developed. In this section, a workflow based on the above research results was
developed and applied to improve the accuracy of the fractured near-wellbore model of
the Dalwogan 2 well. All the original static and dynamic data for the Dalwogan 2 well in
this section was collected from Qdex [54].

The Dalwogan 2 well is located in the northeastern Surat Basin in southeastern Queens-
land. Three intervals were used in the drill stem tests (DST) at this well. This section
investigated DST 1, which operated in the interval of 549.6–558 m. This interval is in the
Upper Juandah Coal Measures, which belongs to the Walloon Subgroup [55]. Walloon
coals typically form thin plies interbedded with claystone and siltstone beds to form thick
coaly packages. Therefore, it is necessary to consider vertical heterogeneity in geological
models. According to the geological description of the 549.6–558.0 m formation based
on the drill stem test data (Figure 16), the tested interval is composed of 4.4 m siltstone,
0.8 m sandstone, 0.4 m shaly coal, and 2.6 m coal. Image logs can detect a large quantity of
fracture information near the wellbore. According to the interpreted fractures in Figure 16,
the fracture model of the actual formation thickness was built (Figure 17). The initial
reservoir pressure was 5.45 MPa (Figure 18). Table 3 summarizes the available parameters
for the Dalwogan 2 well in the Surat Basin.
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Table 3. Input properties of the near-wellbore model for the Dalwogan 2 well.

Parameters Values Units

Model radius, re 100 m
Formation thickness, h 8.3 m

Coal porosity, φ1 0.02
Coal permeability, k1 15.5 mD

Sandstone porosity, φ2 0.1
Sandstone permeability, k2 15.5 mD

Siltstone porosity, φ3 0.01
Siltstone permeability, k3 0.015 mD

Shaly coal porosity, φ4 0.02
Shaly coal permeability, k4 1.55 mD

Fracture porosity, φf 0.05
Fracture permeability, kf 240 mD

Initial reservoir pressure, pe 5.45 MPa
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After the simulated pressure buildup test in the near-wellbore model, which is the
same as what has been carried out in the field, and monitoring the bottom-hole pressure,
the history matching results of the measured bottom-hole pressure and simulated results
for the fracture model are shown in Figure 18. The bottom-hole pressure from the pressure
gauge and the fractured numerical model match very well with each other except in the
middle flow time during the pressure buildup period. To show the influence of fractures
on the bottom-hole pressure during the DST test, a homogeneous near-wellbore model was
also built with a lower permeability of 15.5 mD. The comparison of bottom-hole pressure
from the fractured model and homogeneous model is shown in Figure 19. In the early
stage of pressure buildup, the bottom-hole pressure of the fractured model is greater than
that of the homogeneous model. In the later stage, the gap between the two is gradually
narrowed, and the pressure is approximately restored to the initial reservoir pressure.
Figures 18 and 19 show that a finely characterized fracture model using history matching
can capture more pressure transient behaviors than the homogeneous model.
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4. Conclusions

By using the in-house developed finite element software PANDAS, this paper ana-
lyzed the effect of various fracture parameters, including fracture location, the ratio of
fracture permeability to matrix permeability, fracture dip angle for single fractures and
fracture spacing, and fracture orientation for fracture networks, which has important guid-
ing significance for the study of unconventional fractured reservoirs, such as carbonate
reservoirs. A few conclusions are drawn as follows, based on the present research:

(1) Fractures intersecting the wellbore can decrease the wellbore storage, but they may
cause unstable flow at the late flow time when a minor pressure gradient occurs.

(2) A longer fracture can increase formation permeability and obtain higher gas recovery
because it can obtain a larger swept area in the formation than a shorter fracture.
However, the increase in fracture spacing and the distance between the fracture and
the wellbore significantly decrease the formation permeability in low-permeability
coal seams.

(3) The ratio of kf/km equal to 100 is the optimized ratio of fracture permeability to
matrix permeability in our models. In other words, the high-permeability fractures
are limited in improving the formation permeability when the matrix permeability is
extremely low.

(4) The swept area when fractures are perpendicular to the flow direction is much larger
than when fractures are parallel to the flow direction; however, the latter model
obtains a higher formation permeability.
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(5) The fractures with smaller dip angles can allow fluids to flow more quickly to the
wellbore compared to the fractures with large dip angles; however, the latter can
obtain a larger affected (swept) area.

(6) A fractured near-wellbore model is built and applied to match the history of the
drill stem test in the Dalwogan 2 well in the Surat Basin. The previous parametric
study results helped identify the key drivers for history matching and improved
the efficiency of fracture modeling. Compared to the conventional homogeneous
geological model, the bottom-hole pressure obtained from the fracture model matches
very well with that measured in the field. Therefore, fractures in naturally fractured
low-permeability coal seams must be accurately characterized and described in the
near-wellbore model.
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