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Abstract: Battery aging is one of the key challenges that electrochemical energy storage faces. Models
for both cycling and calendar aging are valuable for quantitatively assessing their contribution
to overall capacity loss. Since batteries are stored and employed under varying conditions of
temperature and state of charge in their real-life operation, the availability of a suitable model to
anticipate the outcome of calendar aging in lithium-ion batteries under dynamic conditions is of great
interest. In this article, we extend a novel model to predict the capacity loss due to calendar aging
by using variable-order fractional calculus. For this purpose, some theoretical difficulties posed by
variable-order definitions are discussed and compared by applying them to fit experimental results
with a multi-parameter optimization procedure. We show that employing a variable-order model
allows for a significant improvement in accuracy and predictive ability with respect to its constant-
order counterpart. We conclude that variable-order models constitute an interesting alternative for
reproducing complex behavior in dynamical systems, such as aging in lithium-ion batteries.

Keywords: Li-ion battery; calendar aging; fractional calculus; variable order

1. Introduction

Rechargeable lithium-ion batteries are regarded as the leading technology for electro-
chemical energy storage [1,2], and their pre-eminence is expected to increase in the coming
years due to the improvement in performance and the forecasted decrease in costs [3].
Despite the important advances achieved in recent years, the battery long-term health is
still a major concern and remains a key research topic [4–7]. There is plenty of experimental
evidence that the performance of lithium-ion batteries fades not only as a result of charging
and discharging, which is referred to as cycle aging [8,9], but also when they are stored with
no applied current for long periods of time, which is known as calendar aging [5,10,11].
Although both aging types are relevant and require extensive research, this article is fo-
cused on calendar aging. Furthermore, it may also be superimposed to the capacity loss
associated with cycled operation when electric current is applied [12].

Calendar aging is usually investigated by storing the battery cell inside a thermal
chamber at a chosen ambient temperature and also setting a specific state of charge.
Its main effects are a reduction in the remaining usable capacity, as well as an increase in
internal resistance [5]. The temperature and state of charge are thus kept constant except for
short periods, in which variations in capacity and resistance are measured. In many experi-
ments, a set of battery cells is studied under several combinations of these parameters in
order to obtain their functional dependence on them so as to quantitatively determine their
influence [13–15]. In some pioneering papers, Broussely et al. [16] observed a quadratic
dependence of storage time on capacity loss for different Li-ion battery chemistries, whereas
Bloom et al. [11] showed that the area-specific impedance and power fade data followed
a general Arrhenius equation proportional to the square root of time. Many authors
have also observed a similar power-law dependence with an exponent equal to or sim-
ilar to 0.5 [11,13,15,17–23], while other authors proposed an exponent in the region of
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0.75 [14,24–26], so there is no unambiguous agreement on the value of this parameter. This
power-law relationship is multiplied by a factor dependent on the state of charge and
temperature, and several semiempirical models have been used with some free parameters,
which, despite having a physical justification [27], are usually determined by fitting to
experimental data [9,13,17–19]. The temperature dependence is often assumed to follow
an Arrhenius-based semiempirical model [14], although other dependencies have also
been proposed [12,22]. However, in normal operation, a battery works under dynamic
conditions with a variable state of charge and temperature [5,21], and various models have
been developed to predict the calendar aging of Li-ion batteries under these varying storage
conditions [10,13,17–19,28–32]. Even during cycled operation, calendar aging processes
may also take place, and, as a result, cycle and calendar aging are coupled. In order to
quantify the contribution of each mechanism to total cell degradation, the effect of calendar
aging can be subtracted from overall aging and the pure cycling effects can be analyzed [13],
but this requires modeling calendar aging under said dynamic conditions [17–19,29]. We
have recently proposed a model based on fractional calculus for this purpose [32].

The main idea behind the model presented in [32] is that many of the systems ex-
hibiting experimental power-law behaviors are typically described by fractional-order
models [33,34], so that the similarity between power-law behavior and fractional-order
models has motivated the frequent association between them [35]. Hence, the power law
dependence with time observed in calendar aging results can be the solution of a fractional
order differential equation as well, in a similar way to other applications related to the
modeling of fatigue or damage [36]. One example is the creep or time-dependent defor-
mation of rocks under a load lower than their short-term strength [37]. Calendar aging is
thus a novel application of fractional calculus. Nevertheless, fractional-order models have
already been used in battery modeling, mainly to represent the electrical behavior of battery
cells, the relating voltage and the current both in the frequency and time domains [38–40].
The non-integer behavior has been unequivocally observed in electrochemical impedance
spectroscopy (EIS) measurements [38,41], in which the frequency response of the cell is
characterized. Fractional-order equivalent circuit models also lead to fractional-order dif-
ferential equations that can be solved in the time domain [42,43], being specially cautious
about the correct initialization since the result of fractional-order differential equations
depends on the complete history of the system [44]. To aid in this task, we have recently
proposed a computationally efficient approximation to the fractional-order circuit element
known as the ZARC [45], and have used it to develop a novel dual fractional-order extended
Kalman filter for an improved estimation of the battery state of charge [46]. However, in
the novel application of fractional calculus proposed in [32], it is not the electrical magni-
tude but the battery capacity loss due to aging which obeys a fractional-order differential
equation. The model obtained this way was applicable under dynamic storage conditions
observed in real-life operation, provided higher accuracy than previous semiempirical
models, and was also able to reproduce the non-monotonic behavior that is observed when
the state of charge or temperature are changed considerably.

However, despite the advantageous performance of the calendar aging model in [32],
it can be improved by extending it to a variable-order model. The previous model assumed
a constant-order behavior, but the order exponent that provided a good agreement with
the experimental capacity loss for short storage times was different from the optimal order
exponent obtained for long storage periods, which suggested that the order exponent
should vary with time itself. This idea has also been applied to other contexts in which
the constant-order fractional models were not able to address some types of physical
phenomena, and the order exponent itself is a function of either dependent or independent
variables [47]. This is the case for mechanical fatigue or fracture in which variable-order
fractional models showed a satisfactory behavior [48,49]. Mathematically, variable-order
fractional calculus was proposed as an extension of its constant-order counterpart [50].
A detailed analysis and some useful definitions were provided in [51], which we will use
to propose an extended model for capacity loss due to calendar aging in this paper, so
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that the prediction capability of the model reported in ref. [32] may be enhanced. This is
the main contribution of this article, in which we review a recent model that represents a
novelty in the battery aging literature in itself, and extend and improve it, also discussing
its predictive capability.

The outline of this article is as follows. Section 2 briefly reviews the fundamentals
of variable-order fractional calculus and extends the constant-order fractional model for
calendar aging under dynamic conditions to the case of variable order. The final model,
dependent on five parameters, as well as the optimization procedure used to determine
said parameters, is described in Section 3. The application of this method to a dataset
of experimental results is detailed in Section 4. The parameter values obtained in the
optimization processes are discussed in Section 5, and finally some conclusions are drawn
in Section 6.

2. Fractional-Order Calendar Aging Model under Dynamic Conditions
2.1. Constant-Order Model

In this subsection, we review the fractional-order model proposed in [32] to predict
the capacity loss of a battery cell under dynamic conditions. The starting point was the
widely employed power-law dependence of the capacity loss [11,13–15,18,20,21,24]

L(t) = K(SOC, T) · tz , (1)

with the capacity loss, L(t), defined as

L(t) =
Q0 −Q(t)

Q0
, (2)

where Q(t) is the capacity at time t and Q0 is the initial capacity. Function K(SOC, T)
depends on the state of charge, SOC, and the temperature, T. It is assumed to be a constant
in the time interval (0, t).

By using fractional calculus, we observed that the power-law dependence of the
capacity loss L(t) given in (1), is the solution of Equation (3) below [42,43]

dzL(t)
dtz = Γ(z + 1)K(SOC, T), (3)

where Γ(z) is the well-known Gamma function [43].
We proposed to generalize Equation (3) to a case in which function K is not constant.

For this purpose, we assumed that the SOC and T dependence of function K(SOC, T),
which had been experimentally determined under static conditions, could also be used
under dynamic conditions, when the state of charge and the temperature are changed.
Time was then discretized in a series of subintervals [0, t1], (t1, t2], (t2, t3], . . . , (tk−1, tk], and
the function K(SOC, T) was approximated by a constant value within each subinterval,
with values K1, K2, K3, . . . , Kk, respectively. Equation (3) was then integrated by using the
Riemann–Liouville definition of the fractional integral of order z, D−z f (t) [43], given in
Equation (4).

D−z f (t) =
1

Γ(z)

∫ t

0

f (τ)

(t− τ)1−z dτ. (4)

The result is

L(t) = z
∫ t

0

K[SOC(τ), T(τ)]
(t− τ)1−z dτ, (5)

where the relationship

Γ(z + 1)
Γ(z)

= z, (6)
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has been used.
By subdividing the interval [0, tk] into its subintervals, and using the value of K in

each of them, the result at time tk is

L(tk) = z
k

∑
j=1

Kj

∫ tj

tj−1

dτ

(tk − τ)1−z , (7)

and the result for the fractional-order model is given in (8).

L(tk) =
k

∑
j=1

Kj
[
(tk − tj−1)

z − (tk − tj)
z]. (8)

Equation (8) summarizes the main result of our previous model in ref. [32], where
we demonstrated that it produces a qualitative improvement over previous models for
calendar aging under dynamic conditions [17,19]. A remarkable feature of (8) is that
it is not necessarily monotonic, since the last time instant, tk, appears in all the terms.
Therefore, the complete history of storage conditions have an influence on capacity loss,
thus incorporating into the model the memory behavior that is characteristic of fractional
calculus. This is a qualitative advantage over previous models, which were not able to
predict the non-monotonic behavior. However, we have observed that the quantitative
accuracy can be further improved by extending the model to variable order. This augmented
model reported in this article is a novel result and will be detailed in the rest of this section.

2.2. Variable-Order Fractional Calculus

Variable-order fractional calculus was proposed as an extension of its constant-order
counterpart [50]. A detailed analysis and some useful definitions were provided in [51].
Definitions of fractional derivatives used in this article start from the Riemann–Liouville
fractional integral of order z, defined in [42,43], which were extended to variable order
in [51]. In that work, the derivative of order −z(t), or equivalently the integral of order
z(t), was defined as

0d−z(t)
t f (t) =

∫ t

0

(t− τ)z(t,τ)−1

Γ[z(t, τ)]
f (τ)dτ. (9)

Lorenzo et al. [51] distinguished several special cases of Equation (9):

• Case no memory of order

0d−z(t)
t f (t) =

1
Γ[z(t)]

∫ t

0
(t− τ)z(t)−1 f (τ)dτ (10)

• Case memory of order

0d−z(t)
t f (t) =

∫ t

0

(t− τ)z(τ)−1

Γ[z(τ)]
f (τ)dτ (11)

or

0d−z(t)
t f (t) =

∫ t

0

(t− τ)z(t−τ)−1

Γ[z(t− τ)]
f (τ)dτ (12)

Lorenzo et al. [51] also considered the case in which the order exponent is generalized
to any function z[(S(t))]. However, we only consider in this article the case in which the
exponent depends explicitly on time, S(t) = t, since it is enough to achieve a remarkable
improvement in the degree of agreement with the experimental results, as we will show in
the next section.
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We now discuss the consequences of the variable order in the static case, in which a
constant value is assumed for function K(SOC, T) in the time interval (0, t), and we will
discuss the dynamic case in the next subsection.

In the case of no memory of order, Equation (10) provides a result similar to (4), so that

L(t) = K(SOC, T) · tz(t) . (13)

To illustrate the effect of the time dependence of the order exponent, we assumed the
simplest case of a linear function:

z(t) = z0 + dzt , (14)

The results for different choices of dz are shown in Figure 1. z0 is adjusted to reach
the same capacity loss in the four curves after a storage period of one year. The time
dependence of the order exponent becomes apparent in the difference in curvature.

Figure 1. Capacity loss versus time for four different values of dz, expressed in h−1. z0 is adjusted to
reach the same capacity loss after one year of storage. K = 5× 10−4, with time expressed in hours.

When the order exponent z(t) is not constant, the dimensions of the coefficient
K(SOC, T) become an issue [52]. To avoid this, a reference time can be selected so that K is
dimensionless and the capacity loss is defined as:

L(t) = K(SOC, T) ·
(

t
tre f

)z(t)

, (15)

where tre f is the employed time unit. However, if K(SOC, T) does not depend explicitly
on time with one choice of unit of time, it will if another time unit is chosen. For example,
with the linear dependence of the exponent given in Equation (14):

L(t) = Kh(SOC, T) ·
(

t
1 hour

)z01+dz1(t)
, (16)

with t expressed in hours, or:

L(t) = Kh(SOC, T) · (24)z01+dz1(t) ·
(

t
1 day

)z01+dz1(t)
, (17)

with t expressed in days. The additional time dependence can lead to modified para-
meter values

L(t) = Kd(SOC, T) ·
(

t
1 day

)z02+dz2(t)
(18)
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Consequently, if Kh(SOC, T) does not depend on time, Kd(SOC, T) does, or an effective
constant Kd(SOC, T) may be chosen with a different exponent.

The effect of time units is shown in Figure 2. Curves corresponding to Equations (16)
and (18) closely match each other but the time dependence, z(t), is different in the two
cases. We have chosen Kh = 3× 10−4, z01 = 0.5, and dz1 = 5.42× 10−6 h−1 in Equation (16)
to obtain a capacity loss of 10% after two years, and have fitted the parameter values to
obtain a good agreement with Equation (18), obtaining Kd = 1.506× 10−3, z02 = 0.5, and
dz2 = 1.88× 10−4 day−1. The curves obtained by choosing z02 = z01 and dz2 = dz1 are also
shown for comparison in two cases, with Kd = Kh · (24)z01 and Kd = Kh · (24)zmax , with
zmax = z01 + dztmax, respectively. According to this discussion, we have chosen tre f = 1 h
in calculations in this paper, and will omit it explicitly in most expressions, although we
will use t in days as the unit in the horizontal axis of graphs for better visibility.

Figure 2. Capacity loss versus time for Equations (16) with Kh = 3 × 10−4, z01 = 0.5, and
dz1 = 5.42× 10−6 h−1, and (18) with Kd = 1.506× 10−3, z02 = 0.5, and dz2 = 1.88× 10−4 day−1.
Curves with Kd = Kh · (24)zmin and Kd = Kh · (24)zmax , being zmin = z01 and zmax = z01 + dztmax,
respectively, are shown for comparison.

2.3. Variable-Order Model

In this subsection, we extend the model detailed in Section 2.1 to the case of variable
order defined in Section 2.2 by introducing the time dependence of exponent z directly in
the discretized result (8).

To use Equations (10)–(12) under dynamic conditions, we discretized time in a series
of subintervals, and we approximated the function K(SOC, T) by a series of constant values
K1, K2, K3, . . . , Kk, respectively, as in ref [32]. Hence, in the case of no memory of order, at
the end of kth interval, Equation (10) becomes

L(tk) = z(tk)
k

∑
j=1

Kj

∫ tj

tj−1

(tk − τ)z(tk)−1dτ, (19)

giving a result for the variable-order fractional model similar to (8), but with exponents
dependent on time, as follows

L(tk) =
k

∑
j=1

Kj

[
(tk − tj−1)

z(tk) − (tk − tj)
z(tk)

]
. (20)

We consider now the case of memory of order. As mentioned in the previous section,
instead of directly using Equations (11) or (12) that extend the Riemann–Liouville integral,
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which are much more computationally expensive to apply, we extended the integrated
result (8), obtaining analogous results to Equation (20). The corresponding equations are

L(tk) =
k

∑
j=1

Kj

[
(tk − tj−1)

z(tj−1) − (tk − tj)
z(tj)

]
, (21)

and

L(tk) =
k

∑
j=1

Kj

[
(tk − tj−1)

z(tk−tj−1) − (tk − tj)
z(tk−tj)

]
, (22)

respectively.
The three resulting equations, namely (20), (21), and (22), will be compared to experi-

mental results below.

3. Validation Method

In order to complete the model and be able to compare the variable-order results with
experimental data in the general case of dynamic conditions, we had to choose a form for
the function K(SOC, T). This function can be factored as a product of two terms, one of
them dependent on temperature and the other expressed as a function of state of charge.
A Tafel-type function was chosen to write the state-of-charge dependence in terms of the cell
potential [13,15,19], while an Arrhenius-type dependence was assumed for the temperature
term. [11,20] .

For this purpose, we have chosen the model used by Schimpe et al. [13], given in (23).

K(SOC, T) = kRe f exp

(
αF(Ua,re f −Ua)

RgTre f

)
exp

(
− Ea

Rg

(
1
T
− 1

Tre f

))
, (23)

where Rg = 8.314 J/(mol ·K) is the universal gas constant and F = 96485.3 C/mol is the
Faraday constant. Ua is the anode voltage, taken from Safari et al. [53]. The reference
potential Ua,re f is set to Ua(SOC = 50%) = 0.123 V and Tre f = 298.15 K.

This function of SOC and T was obtained for static conditions, but we assumed that it
can also be used when the state of charge and the temperature change, as also assumed
by several authors [13,17,18,29,30]. To fit the experimental results under these dynamic
conditions, we left three free parameters: the scale factor kre f , parameter α for the SOC
dependence, and the activation energy, Ea, for the temperature dependence. Furthermore,
to apply the variable-order model, the simple linear dependence of the order exponent on
time given in Equation (14) was assumed. Therefore, in addition to the three parameters
of the semiempirical K(SOC, T) model, we had two additional parameters, z0 and dz.
The complete final model thus depends on five parameters (kre f , α, Ea, z0, dz) that can be
determined by a multiparametric optimization procedure.

To find the optimal values of said five parameters, we used the nature-inspired meta-
heuristic Cuckoo search algorithm [54,55]. This procedure has been shown to be simple and
perform similar to and even better than other metaheuristic algorithms [56]. This metaheuris-
tic method is based on the brood parasitism of some cuckoo species. Some of its advantages
are that it requires one single internal parameter, pa, defined as the fraction of worse solutions
which are abandoned in each iteration, and being enhanced by the Lévy flights rather than
by simple isotropic random walks. This algorithm has already been used with a different
purpose in the context of fractional-order circuits [57], and we have chosen it as a suitable
option for our optimization goal. The pseudo-code of the algorithm [58], applied to a general
minimization problem, has been represented as a flowchart in Figure 3. In the context of our
specific optimization problem, we have selected a population size of n = 25 and a fraction of
abandoned nests of pa = 0.25.
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Figure 3. Flowchart for the Cuckoo search algorithm for a minimization problem [58].

The average root mean square error divided by the average of the experimental data
values was chosen as the objective function.

εrms =

√
∑N

j=1

[
L(model)

j − L(exp)
j

]2

∑N
j=1 | L(exp)

j |
, (24)

where L(model)
j are the values of capacity loss provided by the model and L(exp)

j are the
experimental capacity losses.

Given the expression in Equation (23), the resulting model actually consists of two
parts: Equations (20)–(22), which provide a way to account for dynamic conditions and
constitute the main contribution of our work, and Equation (23) for the function K(SOC, T),
which has been taken from the literature. Analyzing variable-order models for calendar
aging in batteries is a challenging task, since long measurement periods are required for
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the effects of the varying exponent to be noticeable. There are not many experimental
datasets extending for several years with changing storage conditions in the literature,
several of which were reviewed in ref. [32]. We tested the full model in that work for
different datasets, although with constant a order, observing the high parameter variability
that is usual in the literature. Therefore, if data from different cells were taken into account,
different parameter values would most likely be obtained in the optimization process. For
these reasons, we have selected in this article the dataset that offers the greatest variety
of conditions, published by Lucu et al. [6]. This dataset provides the evolution of the
remaining capacity of a 20 Ah pouch cell, with a positive electrode of lithium nickel–
manganese–cobalt (NMC 4:4:2) and a graphite negative electrode, measured for three years
under a wide variety of storage conditions that were changed every month. The state of
charge and temperature profiles have been taken from ref. [6] and are shown in Figure 4.

Figure 4. Profiles of SOC and T used in this article to compare the experimental capacity loss
produced by calendar aging with the results predicted by our variable-order model. These profiles
were used by Lucu et al. and have been reproduced from ref. [6].

The selected experimental data have been used as a whole to obtain the optimal set of
model parameters that produces the minimum root-mean-square error. However, in order
to demonstrate the predictive ability of the model, the data measured for only a fraction
of the storage time has also been employed for parameterization, while the remaining
data, with different storage conditions, have been used for validation. The results of these
optimization procedures are detailed in Section 4.

4. Comparison with Experimental Results

Equations (20)–(22) have been compared to experimental results. To this end, the set
of experimental data described in the previous section was chosen.

The results of the relative capacity with respect to the initial capacity ((1− L(t))× 100)
are shown in Figure 5 for the cases of constant order and variable order, together with
the experimental results. The modeled curve for the constant order case shows a higher
error than the curve for the variable-order curve, as expected since we have introduced
an additional parameter, and the relative error for the initial points is high in the constant
order case, while the result for the variable-order model is quite good despite the high
variability in the experimental data. The parameter values obtained in the optimization are
shown in Table 1. Different values for the activation energy are obtained in the constant
order and the variable order cases. Although we do not have a priori information about the
value of this parameter, the result obtained in the variable order case is closer to the value
obtained by Schimpe et al. [13] (Ea = 20,592 J/mol). However, this issue will be discussed
in more detail in Section 5.
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Figure 5. Experimental results from Lucu et al. [6] for capacity, and approximations obtained with
the fractional-order model in the cases of constant order (top) and variable order (bottom).

Table 1. Parameter values for the best agreement with the experimental results of Lucu et al. [6], with
a linearly time-dependent order.

Order kre f α Ea [J/mol] z0 dz [h−1] εrms

Constant 6.33× 10−6 2.181 51,810 0.687 0 5.05%
Variable 5.49× 10−4 0.701 29,025 0.300 5.60× 10−6 2.94%

We now consider the case of memory of order. As mentioned in the previous section,
instead of using Equations (11) or (12) that extend the Riemann–Liouville integral, we
extended the integrated result, obtaining Equations (21) and (22). The resulting parameter
values are shown in Table 2. Although the root-mean-square error is somewhat higher than
in the case of no memory of order, the appearance of the curves is quite similar to those
plotted in Figure 5 (bottom), so they are not shown here.

Table 2. Parameter values for the best agreement with the experimental results of Lucu et al. [6], with
a linearly time-dependent order in the case of memory of order.

Case kre f α Ea (J/mol) z0 dz (h−1) εrms

z(τ) 5.92× 10−5 0.0983 10,543 0.658 1.67× 10−5 3.21%
z(t− τ) 1.68× 10−3 0.989 26,079 0.134 7.09× 10−6 3.53%

Finally, the ability of the model to predict long-term aging is analyzed. To do this,
the experimental data are fitted with the optimization procedure for a period of time, and
then the model with the resulting parameters has been used to predict the capacity loss
for the rest of the storage time. The parameter values obtained by fitting the experimental
results measured for 541 days (about a year and a half) are used to predict the capacity loss
thereafter. The result is shown in Figure 6 and Table 3. As observed, the root-mean-square
error increases over time so that if the obtained parameter values are used to predict the
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capacity loss up to 725 days (about two years), the error is between 4.8% and 8.3%, while
if they are used to predict the whole series of 1050 days (almost three years), the error
increases to the range 6.9–12.7%.

Figure 6. Experimental results from Lucu et al. [6] for capacity, and approximations obtained with the
fractional-order model by fitting the experimental results measured in the first 541 days. Prediction is
shown for the rest of the storage time. (top) z(t), (middle) z(τ), and (bottom) z(t− τ).

Table 3. Parameter values for the best agreement with the experimental results of Lucu et al. [6] for a
fit period of 541 days followed by a prediction period.

Case kre f α Ea (J/mol) z0 dz (h−1) εrms (725 Days) εrms (1050 Days)

z(t) 7.59× 10−4 0.930 17,037 0.235 8.38× 10−6 8.26% 12.7%
z(τ) 2.11× 10−4 0.239 51,493 0.508 1.84× 10−5 5.84% 9.06%
z(t− τ) 1.45× 10−3 0.981 21,675 0.155 8.11× 10−6 4.82% 6.49%

Nevertheless, when more data are available, they can be used to improve the prediction
capability of the model. As shown in Figure 7 and Table 4, when data from the first
725 days are used to obtain the parameter values, the prediction for the whole data series
of 1050 days improves noticeably, resulting in a root-mean-square error of 3.3–3.7%. The
best result is also obtained here for the non memory of order case, which reinforces the
choice of this definition for the present model, although the memory of order definitions
seem to work better in Table 3, so this decision cannot be considered final and analysis of
more datasets would be necessary to adopt it.
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Figure 7. Experimental results from Lucu et al. [6] for capacity, and approximations obtained with the
fractional-order model by fitting the experimental results measured in the first 725 days. Prediction is
shown for the rest of the storage time. (top) z(t), (middle) z(τ), and (bottom) z(t− τ).

Table 4. Parameter values for the best agreement with the experimental results of Lucu et al. [6] for a
fit period of 725 days followed by a prediction period.

Case kre f α Ea (J/mol) z0 dz (h−1) εrms (1050 Days)

z(t) 9.61× 10−4 0.575 15,080 0.268 4.96× 10−6 3.30%
z(τ) 2.35× 10−4 0.259 7328 0.493 1.390× 10−5 5.15%
z(t− τ) 1.61× 10−3 0.765 17,152 0.179 6.41× 10−6 3.67%

5. Discussion on Results and Limitations

Despite the simple assumption of a linear dependence of the order exponent z(t)
with time, a reasonable agreement is achieved between the variable-order fractional model
for capacity loss due to calendar aging and the experimental results, both in the cases
of memory of order and no memory of order. In spite of this, we can conclude that the
memory of order definition shown in Equation (11) should be discarded in this application
for the reasons detailed below. First, it is challenging to employ accurately, since the
integral in (11) requires costly numerical methods even in the case of a constant K function.
In order to achieve the result in (21), we have treated the variable exponent z(τ) as a constant
value within each subinterval (tj−1, tj) and substituted it by its values at the subinterval
extremes. This assumption is not needed with the definition in Equation (10) to obtain
Equation (20). Secondly, the parameter values obtained with the optimization procedure,
shown in the middle rows of Tables 3 and 4, differ noticeably from those calculated in
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the other two cases, and the root-mean-square error is higher in Table 4. Although the
error in Table 3 is lower with respect to the non-memory-of-order case (first row), the
optimal result provided by the Cuckoo search algorithm shows severe fluctuations in
Figures 6 and 7 (middle), while the oscillations in the other two cases are milder. These high
fluctuations constitute an additional reason to advise against using the memory of order
definition. Given the better predictive ability of the non memory of order case obtained
with Equation (20) and shown in the first row of Table 4, we suggest employing it in the
application of this model. Although the third case (with the mathematical expression given
in Equation (22) and results in the third row of Tables 3 and 4) exhibits a similar degree of
accuracy, we still recommend using the non memory of order definition, since Equation (22)
is also an approximation to definition (12), similar to that used to solve (11).

Regarding the predictive capability of the model, the results are acceptable, although
the error increases over time and the long-term prediction from a limited set of data points
is only qualitative. However, when more data are incorporated into the optimization, the
prediction capability increases significantly. This is observed in Figure 7 and Table 4, where
after using the two-year data series, the prediction for the third year gives satisfactory
results, notably in the case of no memory of order, as discussed above.

Another possible limitation is related to the choice of the semiempirical model for
function K(SOC, T). We have used Equation (23) that considers the SOC dependence of
the negative electrode potential in an exponential function of αF(Ua,re f −Ua). A similar
dependence was chosen in ref. [19], but other proposals exist in the literature, such as a
simple linear dependence [10] or an activation energy in the Arrhenius term dependent on
SOC [22]. This work has focused on the applications to dynamic storage conditions, and
has not factored in either the underlying physics behind the semi-empirical model or the
effect of considering different semiempirical options. Consequently, it is difficult to account
for the results provided by optimization procedures based on the exploration of large
search spaces such as the Cuckoo search algorithm. An example of this is the variability
in parameter α of the SOC-dependent term that has been obtained in the different cases
analyzed in Section 4, which has been considered here as a purely empirical parameter.
Similar considerations could be made about the other three semi-empirical parameters, kre f ,
z0, and dz. In fact, the high variation in one parameter may compensate for the differences
in the other empirical parameters in order to minimize the error, but justifying the behavior
of any of them separately is non-trivial. Activation energy, on the other hand, can be
considered to have a more understandable physical meaning. However, there is also no
general agreement on this parameter and a wide range of values has been reported in
the literature, as shown in Table 5. By applying the different definitions of the variable-
order Riemann–Liouville integral, a high dispersion in the activation energy has also been
obtained in this article. The non memory of order case provides values between 15,000 and
30,000 J/mol, which are consistent with the value of 20,592 J/mol determined in [13] with
the model of K(SOC, T) used here. Furthermore, we have not assumed a dependence of
the activation energy on the SOC as proposed by several authors [17,59,60] in order not to
increase the number of free parameters.

As a final remark, we should stress that although a semiempirical, physics-based
model has been used for K(SOC, T), the model presented here is rather mathematical, and
any inquiry into the physical principles of this behavior is outside the scope of this article.
However, we encourage researchers to delve into the physical origins of this model, since
greater physical insight could guide multi-parameter fitting in such a way that the resulting
high variability in the parameters would decrease. Without that knowledge, seemingly
different parameter sets could lead to similar-looking results with little difference in the
root-mean-square error, with no clear set of criteria to choose between them. Investigation
on the physical origin of the several parameters involved in the semiempirical model,
and on other alternatives for the K(SOC, T) function, remain open research topics. The
validation of the model against other datasets with specifically designed variable storage
conditions would also provide additional physical insight. Another pending research task
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is to integrate the presented model with models for cycle aging, in order to develop a
complete aging model.

Table 5. A selection of activation energy values proposed in the literature.

Ea (kJ/mol) Positive Electrode Ref.

50–55 kJ/mol NCA [59]
43.6 kJ/mol NMC [61]
47–60 kJ/mol NMC [8]
52.1 kJ/mol, 182 kJ/mol LFP [10]
35.64 kJ/mol LFP [21]
58.0 kJ/mol NMC [14]
56.94–73.37 kJ/mol LFP [17]
52.86 kJ/mol NCA [17]
84.88 kJ/mol LFP [12]
27.7–28.7 kJ/mol NMC [19]
17.13 kJ/mol LFP [18]
79.57 kJ/mol NMC [12]
20.59 kJ/mol LFP [13]
42.7–44.9 kJ/mol NMC [60]
36.36 kJ/mol NMC [24]

6. Conclusions

In their real-life performance, lithium-ion batteries are stored in the absence of electric
current for prolonged periods of time in a variety of conditions of state of charge and
temperature, and are thus subjected to calendar aging under dynamic conditions. Even
when current is applied, the effects of calendar aging may be superimposed to those of
cycle aging, and it is therefore useful to have an accurate model which is valid under these
varying conditions. A recent model based on fractional calculus was developed for this
purpose, which was able to predict the experimentally observed non-monotonic behavior
when the state of charge or the temperature are changed significantly. However, the
accuracy of the previous model may be considerably improved if it is extended by including
variable order in the fractional order formulation. Variable order requires additional
definitions and poses theoretical difficulties that have been discussed in this paper in the
context of its application to calendar aging.

The resulting semiempirical model proposed in this article leaves five free parameters
to be determined by a multi-parameter fit to the experimental results. A metaheuristic
procedure has been used to determine the parameter values that predict the response of
a rich experimental dataset available in the literature, and the capability of the model
to predict future behavior has also been discussed. Although this model presents an
unambiguous advantage, it cannot be considered a finished proposal, and further research
is required regarding the availability of new datasets as well as the physical origins of
the non-monotonic behavior of calendar aging. Another interesting suggestion for future
research is the unification of the proposed calendar model with cycle aging models, aiming
to construct a more comprehensive aging model.
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Nomenclature

Nomenclature employed in this article.

Nomenclature Description
α Parameter for the SOC dependence in K(SOC, T) semiempirical model
dz Slope of order exponent vs. time
da Fraction of abandoned nests in Cuckoo search algorithm
dz1 Slope of order exponent vs. time with time reference equal to one hour
dz2 Slope of order exponent vs. time with time reference equal to one day
D−z Riemann–Liouville integral of order z

0d−z(t)
t Riemann–Liouville integral with variable order z(t)

Ea Activation energy
εrms Root-mean-square error
f General function in integral definitions
fi Fitness in Cuckoo search algorithm
F Faraday constant
Γ Gamma function
kre f Pre-exponential factor in K(SOC, T) semiempirical model
K Aging rate, also named stress factor. It is a function of SOC and temperature
Kd K function with time unit equal to one day
Kh K function with time unit equal to one hour
Kj Constant K function within subinterval (tj−1, tj)

L Capacity loss

L(exp)
j Experimental capacity loss measured at t = tj

L(model)
j Capacity loss provided by the model at t = tj

n Number of nests (population size) in Cuckoo search algorithm
Q Battery cell capacity
Q0 Capacity of a non-aged cell
Rg Universal gas constant
SOC State of charge
t Time
tj Limits of the time subintervals
tmax Maximum time of measurement
tre f Time reference used as a unit of time for calculation of capacity loss
T Absolute temperature
Tre f Reference temperature in semiempirical K model
τ Dummy variable in Riemann–Liouville integrals
Ua Negative electrode potential as a function of SOC
Ua,re f Reference electrode potential in semiempirical K model
z Order exponent
z(t) Time-dependent order exponent
z[S(t)] Order exponent dependent on an arbitrary function
z0 Order exponent at time t = 0
z01 Order exponent at t = 0 with time reference equal to one hour
z02 Order exponent at t = 0 with time reference equal to one day
ZARC Fractional-order circuit element
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