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Abstract: Nitrogen adsorption experiments have been extensively applied to shale pore structure
research and evaluation. The pore structure can be quantitatively characterized in accordance with
the nitrogen adsorption–desorption isotherm using various calculation models, whereas the results
obtained using different models can more effectively indicate the pore characteristics of shale remains
unclear. Further, there has not been any unified process in the optimization of calculation models
for pore size distribution (PSD). In this study, the Barret–Joyner–Halenda adsorption (BJH-AD) and
BJH desorption (BJH-DE) models were used with Longmaxi Formation shale as an example. Subse-
quently, the density functional theory (DFT) calculations were conducted on different shale lithofacies
samples. Next, the pore structure parameters and heterogeneity obtained using different models
were compared, and the consistency parameters of different models were obtained in accordance
with Cronbach’s alpha. The results indicated that the pore structure parameters obtained using
the BJH-AD model were underestimated since the macroscopic thermodynamic theory was not
applicable to this study. The DFT model showed multiple peaks in the range of 1–10 nm, whereas
the BJH-DE model had a significant artificial peak in the range of 3.8 nm due to the tensile strength
effect, thus suggesting that the DFT model is more capable of characterizing the pores with a pore
size 10 nm lower than the BJH model. The PSD curves generated using the three models exhibited
multifractal characteristics, whereas the results of the heterogeneity achieved using different models
were different. Moreover, the consistency of the results of different models can be studied in depth
by combining Cronbach’s alpha with various heterogeneity parameters. The DFT model exhibited
high consistency in pore structure parameters and pore heterogeneity, thus suggesting that the DFT
method of N2 is the optimal physical adsorption data analysis method in the shale mesoporous range.
Accordingly, the nitrogen adsorption curve, the hysteresis loop shape, multifractal parameters, and
Cronbach’s alpha were integrated to generate a working flow chart of the nitrogen adsorption model
for N2-adsorption-model optimization.

Keywords: shale; pore structure; N2 adsorption; multifractal; pore structure; Cronbach’s alpha

1. Introduction

Since the development and production of shale gas in the Barnett shale block in Texas,
shale gas has attracted significant attention worldwide [1–4]. Through more than 20 years
of development, key drilling technologies such as drilling geological guidance and efficient
three-dimensional development have been gradually developed from conventional drilling
techniques [3–6]. As an unconventional energy source, the commercial production of
shale gas has changed the world’s natural gas trade pattern and has an important place
in the energy structure [3–7]. On the one hand, shale is a potential reservoir space for
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hydrocarbons; on the other hand, it is a potential target for CO2 sequestration, which can
effectively relieve atmospheric CO2 concentrations [7–14].

In the context of shale gas development, the United States primarily exploits shale gas
deposits at burial depths between 1000 and 2000 m in tectonically simple areas, where a
significant cumulative thickness and a relatively concentrated layer system have formed.
The geological conditions of the Appalachian Basin in the eastern United States are relatively
straightforward, with depths rarely exceeding 3000 m, which makes shale gas development
less challenging. However, shale gas production formations in China are characterized by
rapid changes in sedimentary phases, petrography, and complex sedimentary tectonics,
and the quality of different types of shale varies considerably [5,7]. The Wufeng–Longmaxi
Formation, for example, is relatively deep, mostly within the range of 2500–4000 m, and
that coupled with the complex topography and high formation pressure and temperature
makes exploration and development more challenging [3–5,7].

Shale pore structure characterization is significant for shale reservoir evaluation and
development [9,11,13,15–21]. However, shale reservoirs are unlike conventional oil and gas
reservoirs because of their heterogeneity, low permeability, diverse pore forms, complex
pore networks, and extensive and complex pore size distribution (PSD) characterization.
The International Union of Pure and Applied Chemistry (IUPAC) classifies the aperture
diameter into macropores (>50 nm), mesopores (2–50 nm), and micropores (<2 nm), which
is widely used [11,15,16,20,21]. There are several experimental methods to characterize the
pore structure of shale reservoirs. Microscopic image analysis, including scanning electron
microscopy (SEM) and atomic force microscopy (AFM), can identify pores larger than
5 nm, but its resolution and observation range are limited [1,6,15,21–23]; invasive methods
include high-pressure mercury injection pore (HPMI) and gas (CO2 and N2) adsorption
experiments, in which high-pressure mercury injection experiments are prone to damage
the samples [11,15,17]. Non-invasive methods, such as nuclear magnetic resonance (NMR),
small-angle and ultra-small-angle neutron scattering (SANS/USANS), and computed
tomography (CT), are also used [24–26]. CT scanning is complex and expensive, and
the SANS method has poor measurement results for large-scale rock samples. The NMR
method cannot effectively characterize nanoscale pore structure characteristics, which are
also affected by paramagnetic compounds [20,25,26].

The field of physical adsorption of porous materials has advanced significantly since
1985, owing to the development of nanoporous materials, high-resolution adsorption ex-
periments that use various subcritical fluids, and the application of various microstructural
computational models [27–30]. Among various experimental methods for shale reservoirs,
gas adsorption has been widely applied for surface analysis and structural characterization
of nanoporous materials, capable of characterizing porous media materials of less than
200 nm. The presence of a large number of nanoscale pores in shale makes gas adsorption
a suitable method for characterizing shale reservoirs [7,14,31]. Due to the difference in
gas-saturated vapor pressure, the nitrogen adsorption method is more appropriate for
mesopore size distribution analysis, while the CO2 adsorption method has advantages
in measuring micropore size distribution [8,17,29,30,32]. Gas adsorption is not only a
non-destructive and relatively convenient method for shale pore structure analysis but
also provides a series of information such as pore volume, pore surface area, and PSD
under different pore diameters, which effectively reflect the heterogeneity characteristics of
shale samples [15,29,30,33–41]. Different inversion models are used to obtain relevant pore
structure data based on the measured gas adsorption isotherm data. Various theoretical
models are employed to calculate pore structure parameters using gas adsorption experi-
ments, including Barrett–Joyner–Halenda (BJH), density functional theory (DFT), Monte
Carlo simulation method (MC), Brunauer–Emmett–Teller (BET), Dubinin–Astakhow (DA),
Horvath–Kawazoe (HK), and others [42–48]. The BJH and DFT models are commonly
employed to characterize the pore structure of shale, as evidenced by numerous stud-
ies [31,32,38]. Previous studies have typically utilized one of the aforementioned methods
to analyze shale pore structure [13,15–21,41]. However, there is no uniform model-selection
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standard for processing experimental data on shale gas adsorption, which leads to incom-
parability between different research data. More importantly, it is not clear that the results
calculated by different models can better reflect shale pore characteristics. Using the devia-
tion model to describe pore structure can lead to the underestimation or overestimation of
reserves, or enhanced oil recovery (EOR) failure, with further economic losses [37].

Many recent works have been conducted on selecting the nitrogen adsorption model.
Ravikovitch et al. [45] found that the CO2 adsorption DFT model was consistent with the
MC method in the 0.3–1.5 nm diameters, suggesting the use of the CO2 adsorption DFT
and MC model to study micropore characteristics. Thommes et al. [29] systematically
summarized the development history of physical adsorption. Many researchers have
compared different methods for characterizing the pore structure of shale reservoirs. For
instance, Wang et al. [29] determined that a combination of CO2 (273 K) adsorption and
argon/nitrogen adsorption, respectively, was the standard method for characterizing micro-
nanopores. Li et al. [35] compared the pore size distribution (PSD) obtained by the DFT
model and the BJH model from the adsorption and desorption curves and found that
the PSD curves produced by the BJH model and the DFT model were roughly the same.
Similarly, Wei et al. [31] compared different gas adsorption models of shale in the Wufeng–
Longmaxi Formation and concluded that the non-local density functional theory (NLDFT)
method of N2 and CO2 was the most suitable method for analyzing shale gas physical
adsorption data. This method has the most appropriate detection range (0.33–100 nm) and
has high reliability and accuracy across the entire aperture range. Hazra et al. [49] compared
experimental methods for measuring surface area and pore size distributions, including
the BET, BJH, and DFT methods. Chandra et al. [50] conducted a systematic analysis of
Barakar shale and concluded that the grand canonical Monte Carlo (GCMC) model had
a better fit than the DFT model in CO2 adsorption curves calculating PSD. The former
may be the preferred method for estimating the PSD of shale micropores. Additionally,
He et al. [40] used the corrected BJH algorithm to calculate the pore size corresponding
to the initial point of capillary evaporation of the desorption curve and compared the
calculated and measured pore diameters. The error range of the results was within 5%,
which verifies the accuracy of the improved BJH algorithm. Pang et al. [32] showed that the
Monte Carlo (MC) model had a broader response range and fewer fitting errors than the
DFT model, indicating that the MC model was superior to the DFT model in characterizing
the microporous structure using CO2 adsorption data.

The fractal theory has found wide application in the characterization of porous media,
including the analysis of pore structure heterogeneity [15,16,20], electrical conductivity [51],
and permeability [52]. In the realm of shale reservoirs, the fractal theory represents a pow-
erful tool for pore structure analysis. Researchers have successfully combined the fractal
theory with scanning electron microscopy (SEM), low-pressure gas adsorption, micro-CT,
high-pressure mercury injection (HPMI), and small-angle neutron scattering (SANS), and
have demonstrated that the fractal dimension is a useful parameter for characterizing
pore structure [13,15,16,19,20,25,53]. However, due to the pores in shale reservoirs not
being uniformly distributed, a single fractal dimension is insufficient for comprehensively
characterizing the entirety of the pore structure.

Multifractal theory, as an extension of fractal dimension, enables the acquisition of both
global properties and local information by analyzing the probability density fluctuations.
This approach has been demonstrated to yield more precise pore structure information in
numerous studies [16,26,53–57]. Furthermore, multifractal analysis can describe random
fluctuations of aperture in specific intervals and characterize aperture distribution showing
various types of self-similarity [54,57,58]. Previous scholars have carried out PSD and NMR
T2C value analysis using multifractal theory [26,55], but few comparative studies have been
carried out on different nitrogen adsorption models. Using multifractal theory to opti-
mize different nitrogen adsorption models is the fundamental problem in revealing shale
PSD characterization.
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In this study, ten shale samples of the Longmaxi Formation in the Sichuan Basin
are selected. Nitrogen adsorption experiments, mineral composition, and geochemical
parameters of shale samples are carried out. BJH-AD, BJH-DE, and DFT models are used to
calculate pore structure parameters such as PV, SA, and PSD. The multifractal dimension
parameters are calculated for different PSD models. A series of multifractal parameters
are used to test the consistency, and the applicability of different pore structure calculation
models is compared and analyzed. Finally, a set of model-selection optimization methods
for shale pore size characterization is proposed.

2. Geological Description of the Field

The Sichuan Basin is located in the western Yangtze metaplatform, surrounded by folds
and faults, and shows a rhomboid shape covering an area of about 18 × 104 km2 [59,60]
(Figure 1a). As the primary petroliferous and hydrocarbon-bearing basin, the basin is the
most substantial reserve of shale gas resources in China and has experienced large-scale
exploration forming the development of conventional and unconventional natural gas re-
serves. Its tectonic movement and sedimentary evolution includes five stages: Caledonian,
Hercynian, Indosinian, Yanshanian, and Himalayan [13,60,61]. Before the late Cretaceous,
the south of the Sichuan Basin was dominantly characterized by subsidence and minor up-
lift. Processing the Yanshanian and Himalayan movements, the Jurassic–Early Cretaceous
formation has been eroded with extrusion deformation and assize depth uplift [13,61]. The
northwest and southwestern gentle structure zones uplifted during the Caledonian orogeny
compresses. A series of sea-level changes, mass extinctions, and glaciations occurred in
the Upper Ordovician–Lower Silurian [62], which led to a low-energy, anoxic sedimentary
environment [61]. The Wufeng–Longmaxi shale was deposited and preserved with an
amount of OM on the deep-water shelf of the Yangtze block [59–61] and developed the
most critical shale gas exploration and exploitation target stratum, which is characterized
by abundant organic matter, high-over thermal maturity, and large thickness, showing the
shale gas potential [19,26,59,61].
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gas field.

The Changning gas field is located south of the Sichuan Basin, including the Jianwu
low-dipping gentle syncline and exposed Triassic–Silurian strata, which is the dominant
commercial shale gas production region in the Sichuan Basin (Figure 1b). Affected by
water level changes periodically, the Longmaxi shale displays the variable sedimentary
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microfacies characteristic, which is composed of dark grey-black siliceous and calcareous
shale to the grey-green argillaceous shale of the Longmaxi Formation [59,60]. The thickness
of the Longmaxi Formation in the southern Sichuan Basin is stable at approximately
400~600 m, and the current buried depth ranges from 2300 to 3000 m after exhumation.
Furthermore, the paleoenvironment changes from the bottom, reducing condition to top
segment oxidizing condition, which leads to the different characteristics of hydrocarbon
generation potential and gas content [60].

3. Samples and Experimental Methods

In this investigation, we conducted a mineralogical and organic matter geochemical
analysis of the shales from the Wufeng–Longmaxi Formation located in southern Sichuan.
The purpose was to elucidate the characteristics of the shale matrix composition. We utilized
nitrogen adsorption experiments to generate pore size distribution curves using three
different adsorption models (BJH-AD, BJH-DE, and DFT). Subsequently, we employed a
combination of the multiple fractal theory and nitrogen experiments to compute and derive
the inhomogeneity parameters of the shale pore structure. To evaluate the accuracy of the
various adsorption models, we utilized the Cronbach coefficient to assess the consistency
of the multidimensional inhomogeneity parameters.

3.1. Sample Location and Collection Criterion

In this study, a total of 10 samples were obtained from the lower part of Lower Silurian
Longmaxi Formation typical wells from Changning area shale and studied XRD and TOC
to identify their mineral composition and geochemical characteristics. The sample selection
criterion depends on various TOC and mineral compositions to ensure all lithofacies
categories have corresponding samples. Sampling burial depths are 2490.5~4355.4 m,
and the sampling well locations are marked in Figure 1b. In this study, the samples
were primarily sourced from three wells, namely N16, N11, and NX2. Wells N16 and
N11 were drilled to relatively shallow depths of less than 2500 m, while well NX2 was
drilled to a greater depth of 3900 m. Based on the LP-N2 analyses, all samples were
calculated with multiple PSD models, including BJH-AD, BJH-DE, and DFT, for selecting
the optimization method.

3.2. Mineralogical and Geochemistry Study

The mineral percentage analysis is determined using a Bruker D8 PHASER X-ray
diffractometer with less than 200 mesh powder. The crushed samples were mixed with
ethanol to place in the glass slides for measurement. Primarily, the scanning measurement
parameter is performed at 40 kV and 30 mA with Cu Kα radiation and 4◦/min scanning
speed ranging from 2 to 70◦. TOC was measured using a Leco CS230 carbon/sulfur analyzer
from each sample, according to the Standard GB/T19145-2003. During the measurement
preparation, the samples were pretreated with hydrochloric acid (1:9 HCl: water) at 80 °C
for 48 h to remove carbonates and washed several times to eliminate the residual HCl.
Then, the remaining part was dried out at 343.15 K to obtain the value of the TOC.

3.3. Low-Pressure Gas Adsorption

The use of N2 adsorption gas at low temperature and pressure has become a widespread
method for measuring the pore structure of shale [15,41]. Powdered shale samples, weigh-
ing between 3 and 5g, were ground into 50 mesh particle sizes and degassed and outgassed
at 383.15 K under vacuum for approximately 24 h to eliminate any adsorbed moisture or
volatile matter. The Micromeritics ASAP 2020 apparatus was used to generate nitrogen
adsorption isotherms, obtained from the relative pressure range of 0.01 to 0.99 at 77.3 K.
Specifically, the term “micropore-mesopore” represents pores within the diameter range
of 0.7 to 60 nm. The experimental conditions and standards for this study have been
thoroughly discussed by He et al. [39].
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3.4. Application of the BJH and DFT Method
3.4.1. BJH Method

The calculation of pore volume and surface area in shales with different lithofacies
can be performed using a model that utilizes three approaches: BJH-AD, BJH-DE, and
DFT. The BJH method is typically employed to determine the PSD of mesopores and some
macropores within the range of 2 to 100 nm [38,43,63,64]. Low-pressure gas adsorption
experiments measure two mechanisms of gas adsorption, namely, the physical desorption
from the pore wall and the capillary evaporation inside the capillary volume [40]. During
gas adsorption, the adsorbed gas initially forms a monolayer–multilayer adsorption layer
on the adsorbent surface, and the thickness of the adsorption layer varies with gas pressure
and surface. This thickness can be calculated from the Halsey equation or the actual
isothermal adsorption curve, which establishes the thickness of the physical desorption
layer as a function of the relative pressure. The Kelvin equation can be used to calculate the
PSD by analyzing the capillary coalescence of nitrogen within the pores. The BJH algorithm
assumes that all pores are open columnar and considers that all pores of the same radius
respond to changes in relative pressure [64]. More detailed experimental conditions and
standards for this experiment have been discussed by He et al. [39]. In this way, the PSD
can be calculated from the measured sample adsorption and relative pressure, and then the
SA and PV can be calculated from the multilayer thickness of the adsorbed layer (t) [65]:

t = Lm[
2γVm

RT ln P/P0
] (1)

where Lm is the thickness of the monolayer of liquid sorbent (nm); Vm is the molar volume
of gas covering a monolayer of solids (m3); P/P0 is the relative pressure in equilibrium
with a meniscus; R is the universal gas content; T is the absolute temperature (K); and γ
is the surface tension of the gas condensate (N/m). The BJH method assumes that the
pore diameter is equal to the sum of the multilayer adsorption thickness (t) and the radius
obtained from the Kelvin equation (Equation (1)). In case of using an adsorption branch,
the PSD can be determined by the following equation:

log(P/P0) =
2γVm

(r− ta)RT
(2)

However, if the desorption branch is used instead, the pore radius can be estimated
from the obtained data:

log(P/P0) =
2γVm

(r− td)RT
(3)

where P0 represents saturated vapor pressure; P represents the pressure where vapor
condenses in a pore of width r; P/P0 is the relative pressure in equilibrium with a meniscus;
γ is the surface tension; Vm is the molar volume of the liquid; R is the universal gas
content; r is the radius of the meniscus formed in the pore; T is the absolute temperature;
and ta and td are the thicknesses of the adsorbed multilayer film during adsorption and
desorption, respectively.

3.4.2. DFT Method

In 1989, Seaton et al. introduced the use of DFT for calculating PSD from adsorption
isotherms, providing a more flexible and rational approach than traditional methods based
on the Kelvin equation [44]. They developed a method for analyzing nitrogen adsorption on
porous carbons based on the local mean field approximation [66]. Later, Lastoskie et al. [67]
made a significant advancement by implementing the non-local density functional theory
(NLDFT) model, along with the Tarazona smoothed density approximation, to accurately
simulate nitrogen adsorption on carbon. Initially designed for simple slit geometries in acti-
vated carbons, NLDFT has since expanded into a comprehensive library of computational
methods capable of simulating various pore structures and adsorbates, representing a
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range of characteristic pore morphologies. Neimark et al. [68] and Ravikovitch et al. [69,70]
confirmed the validity of the NLDFT model for adsorption on MCM-41, which served as the
basis for developing tailored DFT techniques suitable for mesoporous and hybrid materials
with diverse morphologies. Unlike simpler models, NLDFT methods consider the complex-
ity of the hysteretic nature of adsorption isotherms, accounting for physical phenomena
such as pore blocking and networking effects, the instability of adsorption films, and
cavitation in condensed fluids without any correction [71]. This significant improvement
has marked a noteworthy step forward in the study of nitrogen adsorption [45,46,69,71].
The DFT method enables the calculation of thermodynamic and density distributions of
confined fluids, describing the details of the adsorbed phases at the molecular level, thereby
addressing the limitations of the macroscopic thermodynamic approach [31,67,71,72].

The PSD can be determined by solving the integral equation for the adsorption
isotherm Nexp (P/P0). To achieve this, the experimental isotherm is represented as the
convolution of the DFT kernel (a theoretical isotherm set Nexp (P/P0, W) representing a
series of pores within a given range of pore sizes for a given system) and the unknown
PSD function f (W). This process is carried out through experiments and software anal-
ysis [64,66,71]. The adsorption isotherms of porous materials can be explained by the
generalized adsorption isotherm (GAI) equation, as determined by the DFT method [64,71]:

N(P/P0) =
∫ Wmax

Wmin

N(P/P0, W) f (W)dW (4)

where W is the pore width; Wmin and Wmax are the minimum and maximum pore sizes in
the kernel, respectively; f (W) is PSD; N(P/P0) represents experimental adsorption isotherm
data; and N(P/P0, W) is the theoretical isotherm at relative pressure P/P0 in a single pore
of width W. To solve Equation (4), the quick non-negative least square method can be
used [68]. The process involves converting Equation (4) into a matrix equation and utilizing
the discrete Tikhonov regularization method in conjunction with the non-negative least
square algorithm to solve it. Compared to classical methods, the DFT model gives a more
reliable micropore and mesopore size distribution, measures more pores, and obtains more
detailed data.

3.5. Multifractal Analysis

As an extension of traditional fractal dimension, multifractal analyses of PSD are per-
formed through one-dimension PSDs estimated by N2 adsorption curves at a size interval
and can decompose the self-similar measures into intertwined fractal sets and provide the
hiding information, which is usually ignored by the singular fractal dimension. In this
study, the target objects of PSD can be evaluated with the primary spectral function, named
multifractal singular spectrum and generalized fractal dimension spectrum. Furthermore,
to analyze the variability and heterogeneity from different methods of PSD, the multifractal
PSD model, including BJH-AD, BJH-DE, and DFT, is used to study and compare.

The detailed descriptions of multifractal theory have been discussed in the earlier
literature by researchers. The box-counting method is a common and popular method used
to analyze and obtain the multifractal spectra in the porous media. This procedure assumes
that a set of different length boxes or subintervals partition the total pore diameter interval
length (L) with equal scale ε. Each method division size ε also can express as ε = L·2−k. The
number of corresponding boxes of N(ε) with a specific size ε is given by [73,74]

N(ε) = 2k(k : positive integer, equal 0, 1, 2, 3 . . .) (5)

In a non-uniform porous media, the mass probability Pi(ε) of the ith box can be
expressed as

Pi(ε) =
vi(ε)

∑
N(ε)
i=1 vi(ε)

(6)
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where Pi(ε) is the ratio value of the pore volume of the ith box to the total pore volume and
vi(ε) is the counted number of pore volume with the ith box. When the interval of size r is
small enough, the exponential function relationship between data distribution probability
Pi(ε) and each box with the size ε can be defined as [75]

Pi(ε) ∝ εai (7)

where ai represents the Lipschitz–Hölder exponent or singularity exponent, which is related
to the box position, characterizing the singularity strength of the ith box for scale ε [75]. For
multifractal analysis, the number of boxes with the probability mass function of the i box
between [α, α + dα] in fractals is denoted as Nα (ε), which can be expressed as [76]

Nα(r) ∝ ε− f (α) (8)

α(q) ∝ [∑N(ε)

i=1 ui(q, ε)× ln(ε)]/ ln(ε) (9)

f (q) ∝ [∑N(ε)

i=1 ui(q, ε)× ln ui(q, ε)]/ ln(ε) (10)

where ui (q,ε) is the normalized partition function, defined as

ui(q, ε) =
pi(ε)

q

∑
N(ε)
i=1 pi(ε)

q
(11)

where q is the multifractal dimensions expressing at different scales of the object, varied
from −10 to 10 for successive unit steps, a probability distribution function is defined
as [76,77]

u(q, ε) = ∑N(ε)

i=1 pi(ε)
q ∼ ετ(q) (12)

where τ(q) is the mass scaling function, which can be expressed as

τ(q) = −lim
ε→0

∑
N(ε)
i=1 pq

i (ε)

log ε
(13)

With Equations (10) and (11), the singularity strength α(q) and the mass exponent τ(q)
can be expressed using the Legendre transformation [37,38,73,76]:

α(q) =
dτ(q)

dq
and f (α) = qα(q)− τ(q) (14)

Thus, the generalized dimension (Dq) is given by [75,76]

Dq =
1

q− 1
lim
ε→0

∑
N(ε)
i=1 pq

i (ε)

log ε
=

τ(q)
q− 1

q 6= 1 (15)

For q > 0, when q = 1, D1 can be estimated as [55]

D1 = lim
ε→0

∑
N(ε)
i=1 pi(ε) log pi(ε)

log ε
(16)

τ(q) can also be expressed as [55]

τ(q) = (q− 1)Dq (17)
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4. Results
4.1. Geochemical Parameters and Mineral Composition

X-ray diffraction (XRD) analysis of the Wufeng–Longmaxi shale revealed its compo-
sition to be predominantly quartz, feldspar, and OM fragments. The samples from the
Longmaxi Formation have a quartz content ranging from 9.8 to 70.4%, with an average of
36.12%, and clay mineral content ranging from 7.9 to 65.6%, averaging 30.13%. Additionally,
feldspar (potassium feldspar and plagioclase) is present in the samples, ranging from 1.0
to 7.3%, with an average of 3.7%, while carbonate minerals (calcite and dolomite) range
from 4.9 to 73.5%, averaging 26.4%. Pyrite content ranges from 1.6 to 4.7%, averaging 3.2%
(Table 1).

Table 1. Mineral compositions and TOC content of the Longmaxi shale.

Sample
ID Well Lithofacies Depth

(m)
Quartz

(%)
Feldspar

(%)
Plagioclase

(%)
Calcite

(%)
Dolomite

(%)
Pyrite

(%)
Clar
(%)

TOC
(%)

M-1 N16 M 2321.9 45.1 1.0 2.1 11.5 12.5 3.0 24.3 5.2
M-2 NX2 M 3920.3 32.7 0.5 4.9 5.4 8.8 4.7 43.0 4.8
M-3 NX2 M 3926.8 41.4 0.4 2.6 6.6 17.9 4.4 26.7 4.3
Q-1 N11 Q 2346.2 70.4 0.8 2.1 4.7 4.7 1.7 15.1 6.1
Q-2 NX2 Q 3923.3 52.1 2.0 9.5 19.6 2.5 14.3 4.6
Q-3 NX2 Q 3923.3 50.1 0.5 2.7 4.2 7.7 4.6 30.2 5.2
A-1 N16 A 2290.7 9.8 2.9 4.4 7.2 7.7 2.1 65.6 0.5
A-2 NX2 A 3812.7 28.0 3.8 4.9 1.6 58.2 0.5
C-1 N16 C 2322.4 18.5 1.4 4.0 36.2 21.1 2.6 16.0 4.1
C-2 NX2 C 3941.7 13.1 1.0 27.8 45.7 4.5 7.9 3.3

The lower part of the Longmaxi Formation is an anoxic reduction environment with a
high presence of graptolites and microorganisms. Zhao et al. [60] conducted significant
and trace element analysis of shale in the Sichuan Basin and concluded that most of the
siliceous material in the shale originates from late-stage biocement, such as radiolaria,
with a high silicon content, rather than clastic quartz. The high TOC content (>3.00%) and
quartz content (>46.0%) in the samples are consistent with this result. The strong positive
correlation between TOC and quartz content (Figure 2a) suggests that the TOC content is
closely related to the development of large amounts of biogenic silica. This finding is in
line with previous research [11,60] that revealed a strong positive correlation between TOC
content and clay content (Figure 2b). Using the previous “three-terminal” mineral fraction
petrographic scheme, the 10 shale samples were classified into four main phases: siliceous
shale, argillaceous shale, calcareous shale, and mixed shale (Figure 2c).
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4.2. Adsorption–Desorption Isothermal Diagrams

Low-pressure nitrogen adsorption is mainly used to characterize meso-macropore
characteristics. Figure 3 shows that the nitrogen adsorption and desorption curves with
all shale samples are more obviously different from lithofacies. For different lithofacies,
the TOC content has a more obvious control on the maximum adsorption capacity of shale
when the relative pressure is close to 1. There is a pattern that the maximum adsorption
gas content increases with increasing TOC content in different lithofacies.
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the Changning block, Sichuan Basin. (a) Siliceous shale; (b) Mixed shale; (c) Calcareous shale;
(d) Argillaceous shale.

Low-pressure nitrogen adsorption is a widely used method to characterize meso-
macropore features in shale. As shown in Figure 3, the nitrogen adsorption and desorption
curves for all shale samples are distinctly different from each lithofacies. For each lithofa-
cies, the maximum adsorption capacity of shale is highly dependent on its TOC content
when the relative pressure is nearly 1. It is observed that the maximum adsorption gas
content increases with the increase in TOC content for different lithofacies. The branch
of the N2 adsorption curve indicates that the curve is slightly convex upward (the rel-
ative pressure ≈ 0.2), which represents the saturated adsorption capacity of monolayer
molecules [41]. As pressure increases, multi-molecular layer adsorption occurs, and the
adsorption capacity increases slowly [64]. At high relative pressures (≈0.8), adsorption
rises sharply and does not show adsorption saturation until it is near the saturated vapor
pressure, indicating the presence of mesopores and macropores in the sample. When the
relative pressure reaches 0.9~1.0, the large pore volume is filled with capillary condensation
(Figure 4). Due to the tensile effect, the desorption branch on the outer surface does not
coincide with the adsorption branch, and a hysteresis loop appears [40,64].
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According to the IUPAC classification, the isothermal adsorption–desorption line
curves belong to type IV, indicating the development of mesopores and open pores during
multilayer adsorption in shales [77,78]. The steeper slope of the isotherm at the inflection
point indicates a narrower PSD and smaller relative pressure. Moreover, the typical
hysteresis loops were observed in all samples, which belong to H2 and H3 types, indicating
that the pore space is mainly dominated by ink-bottle and parallel-plate pore space [17,78].
The hysteresis loops vary in different lithofacies; Q and M lithofacies are dominated by
type H2, indicating ink-bottle-type, tubular pore structures, while C and A lithofacies are
dominated by type H3, indicating narrow fracture-like pores between parallel walls.

4.3. Pore Structure Parameters from Different Methods

The pore structure was analyzed from N2 adsorption isotherms based on the BJH
(BJH-AD and BJH-DE) and DFT models. From Tables 2 and 3, the results of the SA and PV
calculations are different for BJH and DFT models. In terms of pore volume, the PV of the
BJH-AD, BJH-DE, and DFT models in mixed and siliceous lithofacies obtained using N2
adsorption data were 0.0150–0.0350 cm3/g, 0.0173–0.0320 cm3/g, and 0.0190–0.0320 cm3/g,
respectively (Table 2). The results showed that the average pore volumes of the DFT model
were larger than those of the BJH-AD and BJH-DE in most mixed and siliceous lithofacies.
However, this trend is not obvious in the argillaceous and calcareous lithofacies (Figure 5a).
This is mainly due to the wider measurement range of the DFT model, which can measure
more micropores. Meanwhile, the siliceous shale and mixed shale contain more micropores,
showing that the pore volume of the nitrogen adsorption model was calculated following
the DFT > BJH.

Figure 5b shows that the pore surface area of each sample follows the trends
DFT > BJH-DE > BJH-AD. Compared with the argillaceous and calcareous lithofacies,
the siliceous and mixed shale lithofacies have a higher pore surface area. The SA of
N2 adsorption calculated by the BJH-AD model and DFT model is 4.25–10.10 m2/g and
11.99–35.34 m2/g, respectively, while that of the BJH-DE model is 6.44–23.73 m2/g (Table 3).
For siliceous and mixed lithofacies, the PV of the DFT model is about 2.87–4.28 times that
of the BJH-AD model, and the PV of the BJH-DE model is about 1.75–2.15 times that
of the BJH-AD model. The SA of the samples calculated using the DFT model is more
significant than those calculated using the BJH-DE and BJH-AD models (Figure 5b). The
values of the pore structure parameters calculated by the three models followed the rule of
DFT > BJH-DE > BJH-AD.
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Table 2. Surface area of the shale samples by the various methods.

Number
BJH (m2/g)

DFT (m2/g)
MultiPoint
BET (m2/g)

t-plot External
(m2/g)

Langmuir Surface
Area (m2/g)Adsorption Desorption

M-1 9.065 18.62 32.741 27 15.78 22.65
M-2 9.286 16.22 26.689 27.12 17.26 21.78
M-3 6.658 12.66 26.837 21.99 12.58 18.4
Q-1 10.1 23.73 32.658 27.1 17.17 22.05
Q-2 6.082 12.8 24.35 19.69 11.88 16.18
Q-3 8.261 17.76 35.34 28.8 16.11 24.08
A-1 5.336 10.22 16.446 14.39 10.36 11.57
A-2 4.251 6.44 11.986 11.17 8.675 8.572
C-1 8.079 12 18.195 17.12 13.84 12.73
C-2 4.266 8.505 14.197 12.69 8.562 9.501

Table 3. Pore volume of the shale samples by the various methods.

Number
BJH (m2/g)

DFT Pore
Volume (cm3/g)

t-Method
Micropore

Volume (cm3/g)

Micropore Volume (cm3/g)

Adsorption
Pore Volume

Desorption
Pore Volume HK Method SF Method

M-1 0.0255 0.0294 0.0280 0.0050 0.0111 0.0346
M-2 0.0224 0.0248 0.0260 0.0045 0.0045 0.0317
M-3 0.0150 0.0173 0.0200 0.0043 0.0090 0.0229
Q-1 0.0350 0.0320 0.0320 0.0044 0.0111 0.0350
Q-2 0.0153 0.0176 0.0190 0.0035 0.0080 0.0223
Q-3 0.0222 0.0259 0.0270 0.0058 0.0118 0.0328
A-1 0.0153 0.0171 0.0160 0.0020 0.0057 0.0203
A-2 0.0134 0.0140 0.0120 0.0012 0.0044 0.0172
C-1 0.0269 0.0282 0.0210 0.0015 0.0069 0.0319
C-2 0.0117 0.0133 0.0130 0.0019 0.0051 0.0162
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4.4. Pore Size Distribution from Different Methods

Figure 6 illustrates the comparison of the PSD results obtained from the BJH-AD, BJH-
DE, and DFT adsorption models for the same sample. The curve of nitrogen adsorption for
this sample is also presented in the figure. The PSD curves derived from BJH-AD, BJH-DE,
and DFT exhibit a multimodal characteristic. However, the calculated PSD curves obtained
from these models do not overlap, indicating the impact of utilizing different models on
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the results. Notably, the BJH-DE model shows an abnormally high value at a diameter of
3.8 nm, which is not observed in DFT and BJH-AD models. This phenomenon is suggested
to be an artificial peak caused by the presence of ink-bottle-type pores in the sample. These
artificial peaks mainly result from tensile strength effects, where large pores desorb first
when the pressure drops, and small pores desorb when the pressure reaches the required
threshold [35,36,79]. When the relative pressure is reduced to the range of 0.45 to 0.55
(threshold reached), the tensile strength effect causes capillary evaporation to reach the
minimum pore pressure, leading to a sudden decrease in the amount of adsorption on the
desorption branch [80]. This effect results in narrower pore size distribution with significant
peak values obtained from the BJH-DE model calculations, which may lead to errors in the
data. Several factors may account for this phenomenon, including the separation of the
adsorbed film and the capillary condensate by the BJH model, the overlook of fluid–wall
interactions that significantly affect the adsorbate behavior in the pores, and the reliance of
the BJH model on the Kelvin equation, which is not applicable in extremely narrow pores,
as noted by Rouquerol et al. [27].
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Figure 6. Comparison of micro−mesopore size distribution calculated by the BJH and DFT models
using the adsorption and desorption branches from the N2 adsorption experiments. (a) Sample A-2
of argillaceous shale; (b) Sample C-1 of calcareous shale; (c) Sample M-3 of siliceous shale; (d) Sample
Q-2 of mixed shale.

The shale develops many micropores and mesopores, and SEM observations show
that the shale develops many ink-bottle-shaped pores with a high probability of TSE [77,78].
Therefore, for shale reservoirs, desorption branches are not often used in calculating PSD.
The PSD curves of the BJH model are smoother than other PSD models, while the PSD
curves of the DFT model show multi-peaked features.

Pores with smaller diameters can be detected using the DFT model, which is not
detected by the BJH-AD and BJH-DE methods. The BJH-AD curve is higher than the DFT
model curve at less than 0.8 nm, while the DFT model is significantly higher than the
BJH-AD at pore diameters greater than 0.8 nm and shows multiple peaks at 1–10 nm. By
studying the DFT model, Li et al. [35] found that the multi-peak phenomenon in the PSD
gradually disappeared as the number of large pores decreased, and the number of small
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pores increased. This confirms that the DFT model may prefer to describe the micropore
size distribution, such as micropores or narrow mesopores.

4.5. Multifractal Characteristics from Different Methods
4.5.1. Multifractal Spectra from Different Methods

In this paper, the multifractal calculations of three nitrogen adsorption models, BJH-
AD, BJH-DE and DFT, are carried out for different shale lithofacies, where the param-
eter q is taken to be in the range (−10, 10) with the value interval 1. Figures 7–9 and
Table 4 show the mass index, generalized fractal dimension, and multiple fractal singular-
ity spectra for the three nitrogen adsorption models, respectively. Previous authors have
identified three conditions that need to be satisfied for multiple fractal results in porous
media [16,25,26,37,38,55,56]: (1) the mass index τ(q) is strictly monotonically increasing
with q; (2) Dq is strictly monotonically decreasing with q; and (3) f (α) has a convex function
with α. The different nitrogen adsorption model curves all satisfy these three conditions,
indicating that they all fit the multifractal profile [16,25,26,37,38,55,56].
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The mass index spectrum is a widely used method to assess whether an object has
multifractal characteristics. If the mass index τ(q) increases monotonically as q increases,
then the object exhibits a multifractal character (Figure 7). In all three models shown in
Figure 7, τ(q) grows monotonically and can be divided into two phases: a rapid growth
phase for q < 0 and a slower growth phase for q > 0. The τ(q) values for BJH-AD are smaller
compared to the other models, whereas the values for DFT and BJH-DE are more similar.

Figure 8 shows the multiple fractal singularity spectra of the three gas adsorption
models. These curves have an asymmetric convex shape. In the left-hand branch, f (α) corre-
sponding to the high probability measurement region increases sharply with α, whereas the
opposite is true in the right-hand branch in the low probability measurement region. The
results of previous studies show that the left-hand branch indicates the singular intensity
in the region of high probability measurements, and the right-hand branch indicates the
singular intensity in the region of low probability measurements. The difference in the
curve α(q) is the multiple fractal singular spectrum width, which describes the local char-
acteristics of the pores in terms of fractal structure and represents the PSD with different
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diameters [25,26,38]. The results show that the multifractal spectral curves of the three N2
adsorption calculation models show a predominance of large pores. The BJH-AD model
has a more heterogeneous and not uniform PSD than the DFT and BJH-DE models.
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Table 4. Multifractal analysis results of the samples using BJH-DE, BJH-DE, and DFT models.

Sample
ID Model D−10–D10 D10–D0 D0–D10 D1/D0 D2 D1 D0 D−10 D10 ∆α ∆f Hurst

M-1

BJH-
AD

2.793 1.391 1.402 0.392 0.302 0.618 1.575 2.966 1.575 3.062 0.456 0.651
M-2 2.938 1.477 1.462 0.296 0.197 0.466 1.572 3.049 1.572 3.186 0.679 0.598
M-3 3.055 1.569 1.486 0.270 0.177 0.428 1.585 3.154 1.585 3.307 0.728 0.588
Q-1 2.751 1.319 1.432 0.343 0.244 0.537 1.569 2.888 1.569 2.983 0.700 0.622
Q-2 3.018 1.509 1.509 0.307 0.217 0.501 1.631 3.140 1.631 3.252 0.928 0.608
Q-3 3.036 1.594 1.442 0.297 0.231 0.466 1.572 3.166 1.572 3.352 0.131 0.615
A-1 2.760 1.347 1.413 0.382 0.282 0.600 1.572 2.920 1.572 3.021 0.473 0.641
A-2 1.760 0.733 1.027 0.723 0.845 1.136 1.572 2.305 1.572 1.925 1.193 0.923
C-1 2.793 1.391 1.402 0.392 0.302 0.618 1.575 2.966 1.575 3.062 0.456 0.651
C-2 1.760 0.733 1.027 0.723 0.845 1.136 1.572 2.305 1.572 1.925 1.193 0.923

M-1

BJH-
DE

1.320 0.657 0.664 0.772 0.749 0.939 1.216 1.872 1.110 1.547 −0.051 0.874
M-2 1.716 0.776 0.940 0.724 0.914 1.168 1.613 2.388 1.535 1.906 1.007 0.957
M-3 1.384 0.616 0.768 0.496 0.584 0.605 1.219 1.835 0.981 1.511 0.536 0.792
Q-1 1.400 0.743 0.657 0.763 0.744 0.926 1.213 1.956 1.074 1.636 −0.126 0.872
Q-2 1.436 0.679 0.757 0.674 0.626 0.832 1.236 1.915 1.037 1.585 0.500 0.813
Q-3 1.328 0.614 0.714 0.686 0.647 0.839 1.222 1.836 0.966 1.452 0.600 0.823
A-1 1.921 0.971 0.951 0.528 0.437 0.647 1.224 2.194 1.224 2.090 0.783 0.718
A-2 1.207 0.516 0.691 0.805 0.799 0.984 1.222 1.738 1.222 1.364 0.700 0.899
C-1 0.943 0.345 0.598 0.850 0.886 1.045 1.230 1.575 1.224 1.073 0.893 0.943
C-2 0.377 0.141 0.236 0.959 1.126 1.176 1.227 1.368 0.688 0.452 0.528 1.063

M-1

DFT

0.932 0.348 0.584 0.809 0.771 0.924 1.142 1.490 1.030 1.057 0.571 0.885
M-2 1.389 0.549 0.839 0.641 0.537 0.769 1.200 1.750 1.198 1.594 0.052 0.769
M-3 1.161 0.525 0.636 0.702 0.646 0.797 1.135 1.660 0.974 1.304 0.411 0.823
Q-1 1.240 0.614 0.626 0.760 0.706 0.864 1.137 1.751 1.072 1.423 0.301 0.853
Q-2 1.210 0.537 0.673 0.688 0.624 0.786 1.143 1.680 1.007 1.350 0.469 0.812
Q-3 1.166 0.499 0.667 0.693 0.619 0.783 1.131 1.629 1.037 1.294 0.628 0.810
A-1 0.923 0.348 0.575 0.809 0.771 0.924 1.142 1.490 1.084 1.054 0.625 0.885
A-2 0.675 0.286 0.389 0.857 0.876 0.979 1.142 1.428 0.811 0.772 0.550 0.938
C-1 0.603 0.254 0.349 0.905 0.949 1.034 1.142 1.396 0.878 0.721 0.476 0.974
C-2 0.995 0.395 0.600 0.796 0.742 0.905 1.138 1.533 1.069 1.132 0.558 0.871

Figure 9 shows the generalized dimensional spectral function for the three gas sorption
models, with Dq showing a clear monotonical decrease with q. When q > 0, Dq decreases
rapidly; while q < 0, Dq tends to decrease slowly, a result similar to the results of previous
studies of the Barnett Shale [25,26,38]. The q > 0 segment represents the pore characteristics
of the high probability measurement interval, while the q < 0 segment represents the pore
characteristics of the low probability measurement interval; the DFT model is higher than
the BJH-AD and BJH-DE models. In the q > 0 segment, the difference between the three
gas adsorption models is not significant [25,38]. The higher curvature of the mass index
spectrum curve, the greater the concentration of the PSD [56]. The curvature of the BJH-AD,
BJH-DE, and DFT models decreases in turn, indicating that the BJH-AD model has a high
non-homogeneity of the local PSD, while the DFT model has a weak non-homogeneity of
the PSD curve.

4.5.2. Multifractal Parameters from Different Methods

According to multifractal theory, a larger capacity dimension (D0) indicates a wider
range of power spectral density (PSD) in shale reservoirs, while the information entropy
dimension (D1) reflects the degree of concentration of PSD measures, which characterizes
the degree of inhomogeneity. A larger D1 suggests a broader range of PSD in the reservoir
and uniform distribution of pore volume percentages for different pore sizes. D1/D0
describes the degree of dispersion of the shale PSD. In Figure 10a, the BJH-AD values are
much lower than those of the BJH-DE and DFT models, indicating that the BJH-AD pore
volumes are less discrete and mainly clustered in the same pore size range. The width of
the multifractal spectrum ∆α, which is the difference between the maximum and minimum
values of the α parameter, reflects the non-uniformity of the distribution of probability
measures of physical quantities across the fractal structure. A larger ∆α indicates a more
inhomogeneous PSD and a more non-homogeneous pore structure. The results show that
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the BJH-AD model has the strongest non-homogeneity in calculating the pore structure,
with ∆α values higher than those of the BJH-DE and DFT models, indicating that the
BJH-AD model has the most non-uniform PSD (Figure 10b). For ∆α values, the three
nitrogen adsorption models follow the pattern BJH-AD > DFT > BJH-DE.
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The Hurst exponent, which measures the self-affinity of signals and is also known
as the roughness exponent, can be generalized to generalized fractal dimension D [81].
It quantifies the relative tendency of a porosity series either to regress strongly to the
mean or to cluster in a direction. For PSD, the Hurst(H) index indicates the degree of
positive autocorrelation, defined previously as H = (D2 + 1)/2, with a range of variation
between 0.5 and 1. In this case, smaller (1-H) values indicate a higher degree of positive
autocorrelation in the size-dependent distribution of any property. A value of H in the range
of 0.5–1 indicates a porosity series with long-term positive autocorrelation, meaning that
both a high value in the series will probably be followed by another high value and that the
values in a porosity series in the future will also tend to be high. The results show that the
mean value of (1-H) for BJH-AD is 0.318, which is lower than the mean values for BJH-DE
and DFT, indicating that the model has the highest autocorrelation among the different
pore size distributions, consistent with the results for the degree of non-homogeneity of
the PSD (Figure 10c). The Hurst index can also be used to specify pore connectivity on
networks of different pore sizes, indicating differences in the permeability of the samples.
A smaller Hurst index value indicates poorer pore connectivity. The mean value of Hurst
for BJH-AD is 0.682, which is lower than the mean value of BJH-DE (0.8754) and the mean
value of DFT (0.862), indicating a poor distribution of shale pore connectivity under this
model, with the BJH-DE and DFT model calculations having more similar results.

5. Discussion
5.1. Comparison of BJH and DFT in Pore Characterization

In this section, we compare and analyze the differences in pore volume distribution
obtained from various nitrogen adsorption models. The principle of the density func-
tional theory (DFT) is based on the behavior of fluid molecules in confined spaces. The
Barrett–Joyner–Halenda (BJH) analysis method uses the modified Kelvin equation of the
macroscopic thermodynamic principle to calculate the PSD. Figure 11 shows that the DFT
model exhibits multi-peak characteristics, while the BJH-AD model pore volume is concen-
trated mainly in two ranges (<0.5 nm and 0.5–1.0 nm). In contrast, the BJH-DE model peak
is in the 2.0–5.0 nm pore range. This phenomenon has attracted attention in the study of
shale PSD characteristics. Scholars have investigated the differences between PSDs from N2
adsorption and desorption data [82]. However, it is unclear which data to choose during
PSD calculation.



Energies 2023, 16, 2464 18 of 27

Energies 2023, 16, 2464 18 of 28 
 

 

for BJH-AD is 0.682, which is lower than the mean value of BJH-DE (0.8754) and the mean 
value of DFT (0.862), indicating a poor distribution of shale pore connectivity under this 
model, with the BJH-DE and DFT model calculations having more similar results. 

5. Discussion 
5.1. Comparison of BJH and DFT in Pore Characterization 

In this section, we compare and analyze the differences in pore volume distribution 
obtained from various nitrogen adsorption models. The principle of the density functional 
theory (DFT) is based on the behavior of fluid molecules in confined spaces. The Barrett–
Joyner–Halenda (BJH) analysis method uses the modified Kelvin equation of the macro-
scopic thermodynamic principle to calculate the PSD. Figure 11 shows that the DFT model 
exhibits multi-peak characteristics, while the BJH-AD model pore volume is concentrated 
mainly in two ranges (<0.5 nm and 0.5–1.0 nm). In contrast, the BJH-DE model peak is in 
the 2.0–5.0 nm pore range. This phenomenon has attracted attention in the study of shale 
PSD characteristics. Scholars have investigated the differences between PSDs from N2 ad-
sorption and desorption data[82]. However, it is unclear which data to choose during PSD 
calculation. 

 
Figure 11. The PSD of PV and SA of different BJH and DFT models according to the data from N2 
adsorption experiments: (a) PV and SA distribution of siliceous lithofacies; (b) PV and SA distribu-
tion of mixed lithofacies; (c) PV and SA distribution of calcareous lithofacies; (d) PV and SA distri-
bution of argillaceous lithofacies. 

Recent research suggests a peak at 3.8 nm in the shale PSD curve obtained using the 
BJH-DE model, which was initially interpreted as a rock characteristic. However, the in-
terpretation of the tensile strength effect has been accepted over the past few years. The 
shale has considerable ink-bottle-like pores, and the large pores first undergo desorption 
in the gas desorption process. When the relative pressure reaches the critical value, the 
capillary condensation phenomenon disappears, and the N2 desorption amount suddenly 

Figure 11. The PSD of PV and SA of different BJH and DFT models according to the data from N2

adsorption experiments: (a) PV and SA distribution of siliceous lithofacies; (b) PV and SA distribution
of mixed lithofacies; (c) PV and SA distribution of calcareous lithofacies; (d) PV and SA distribution
of argillaceous lithofacies.

Recent research suggests a peak at 3.8 nm in the shale PSD curve obtained using
the BJH-DE model, which was initially interpreted as a rock characteristic. However, the
interpretation of the tensile strength effect has been accepted over the past few years. The
shale has considerable ink-bottle-like pores, and the large pores first undergo desorption
in the gas desorption process. When the relative pressure reaches the critical value, the
capillary condensation phenomenon disappears, and the N2 desorption amount suddenly
increases. This results in the desorption isotherm decreasing suddenly, leading to a sig-
nificant mutation point of the gas desorption curve and a false peak on the PSD curve.
Most pores in this study had complex structures and were ink-bottle-like, and the BJH-DE
model showed an abnormally high peak at 3.8 nm. Therefore, the results suggest that the
desorption branch of N2 should not be used to calculate shale pore structure parameters.

The validity of the Kelvin equation for adsorption branches is unclear because nu-
merous narrow mesopores in shale make the fluid–pore wall interaction dominate the
adsorption process. Some scholars investigated typical mesoporous molecular sieves using
the BJH model with XRD and TEM and suggested that the BJH method and the relevant
Kelvin equation program may underestimate pore size by 20 to 30% without proper correc-
tion for narrow mesopores less than nearly 10 nm. Although some scholars have begun to
calibrate the Kelvin equation using the known pore size of mesoporous molecular sieves,
this equation still has a limited scope of application. Additionally, the classical BJH method
does not consider the effect of adsorption potential on the pore condensation transition
position and assumes that the pore fluid has the same thermodynamic properties as the
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corresponding volume fluid. Therefore, the BJH-AD model’s erroneous assumptions may
underestimate some pores (<10 nm) in shale.

The Kelvin method does not consider the effect of adsorption force on pore conden-
sation and does not express the basic mechanism of pore condensation and hysteresis
(due to the occurrence of delayed condensation arising from metastable pore fluid), which
the DFT model addresses. The DFT method obtains the thermodynamics and density
distribution of the fluid, expresses the adsorption process at the molecular scale, and cor-
rectly characterizes the local fluid structure near the curved solid wall at the micro level
without considering the effect of the hysteresis loop. Existing research suggests that for
mesoporous molecular sieves, the average pore size obtained using the adsorption and
desorption curves is consistent. Therefore, the DFT method correctly characterizes the local
fluid structure near the curved solid wall at the micro level without considering the effect
of the hysteresis loop [29,71].

5.2. Model Selection and Comparison

As mentioned in Section 4.4, significant differences were identified in the PSD obtained
using different nitrogen adsorption models, primarily due to the difference in the calcula-
tion principles of the BJH and DFT models, as well as the complex internal pore structure
of shale (e.g., various pore morphologies), thus resulting in different calculation results.
The BJH model originated from the Kelvin equation of macro thermodynamics. For the ad-
sorption curve, the macroscopic thermodynamic model cannot apply to the microstructure
characterization (due to the unstable cylindrical meniscus during the adsorption), and the
adsorption potential affected the pores and caused errors in the calculation results. For the
desorption curve, since the pores inside the shale were primarily ink bottles, the multilayer
adsorbed gas exhibited a metastable state, thus causing a delay in condensation. There
were two states for the hysteresis adsorption branch of the ink-bottle pores simultaneously
(including gas–liquid phase transition and reversible liquid–gas phase transition), which
did not reach the thermodynamic equilibrium state. The PSD obtained by analyzing the
desorption branches artificially made the hole volume unusually high within a specific
pore size range [32]. The DFT model characterized the structure of adsorbed molecules
in pores at the molecular level, thus avoiding the limitations of the Kelvin equation while
describing the interaction between confined fluids and the effect of adsorption potential
more specifically [71]. There were ink-bottle pores with a pore diameter of only 5–6 nm
inside the shale, and the DFT model considered the correct pore geometry and the presence
of metastable pore fluids associated with the pore condensation process. The mixed DFT
kernel was applied to the adsorption branch of the isotherm, and the condensation delay
was correctly considered. The micro-mesoporous PSD (metastably adsorbed NLDFT kernel)
was obtained, thus revealing that the DFT model can better characterize the mesoporous
characteristics of shale [64]. Figure 12 presents the correlation between the average pore
size and the corresponding pore volume determined using the BJH adsorption method, the
BJH desorption method, and the DFT method. The results indicated that the R2 value of the
DFT model was larger than that of the BJH (adsorption and desorption) model (Figure 12,
R2

DFT > R2
BJH), thus also revealing that the DFT method is more suitable for characterizing

the PSD of mesopores and macropores.
Since the multifractal theory is capable of obtaining different parameters relating to

heterogeneity, various parameters were extracted in this study for the generalized fractal
dimension spectrum (e.g., D−10–D10, D0–D10, D−10–D0, D−10, D10, ∆f, ∆α, Hurst). The
comparison of the Pearson correlation coefficient matrix of different calculation models
indicated that there were different correlations between the multifractal parameters of
different models. For the BJH-AD model, except for parameters ∆f and Hurst, other
parameters had a strong positive correlation, and the coefficients were primarily higher than
0.70. As depicted in Figure 13, parameters D−10–D10, D0–D10, D−10–D0, and ∆α showed
a positive correlation, thus suggesting that the generalized dimension spectrum q-Dq is
easier to express the multifractal behavior of porous media pore structure than multifractal
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singular spectrumα-f (α) [83]. Meanwhile, the BJH-DE and DFT models had similar Pearson
correlation matrixes. The D0 parameter is clearly related to the multifractal dimensions;
however, the other parameters are more clearly related. A positive correlation was identified
between D−10–D10, D0–D10, D−10–D0, D−10, D10, and ∆α, and the multifractal dimension
spectrum showed a significant positive correlation with the width of the singular spectrum,
thus revealing that the generalized fractal dimension spectrum q-Dq and the multifractal
dimension spectrum α-f (α) obtained using the BJH-DE and DFT models exhibit high
consistency in the multifractal characterization of shale pore structure.
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Alpha was developed by Lee Cronbach in 1951 to provide a measure of the internal
consistency of a test or scale; it is expressed as a number between 0 and 1 [84]. The test
can be used to evaluate the internal consistency of continuous variables, and it has also
been commonly used to detect the internal consistency of ordered categorical variables and
binary categorical variables [84]. This test method should meet three conditions as follows:
(a) the test measures a single factor; (b) the test items have the similarity of statistical
coefficients; and (c) there is no correlation between different items. Specifically:

α =
N·c

v + (N − 1)·c (18)

where α denotes the coefficient of reliability; N is equal to the number of items; c represents
the average inter-item covariance among the items; and v expresses the average variance.
In general, the higher the coefficient, the higher the reliability of the tool. In basic research,
the reliability should be at least 0.80. Furthermore, in exploratory research, the reliability
can only be accepted if it reaches 0.70. A reliability between 0.70 and 0.98 is high, while a
reliability below 0.35 is low and should be rejected.

Since different parameters of multifractal dimension had a strong correlation, Cron-
bach’s alpha was adopted to carry out the consistency test of the BJH-AD, BJH-DE, and DFT
models. The results showed that for multifractal parameters such as D−10–D10, D0–D10,
D−10–D0, D−10, D10, and ∆α, the consistency of the BJH-DE and DFT models was the high-
est (0.70), while that of the BJH-AD model was the lowest (Figure 14). The above results
suggest that the multifractal parameters obtained using the BJH-DE and DFT models exhibit
high consistency for measuring the degree of pore heterogeneity and can characterize the
heterogeneity of shale pore structure more accurately. Likewise, the calculations of different
models were conducted for the test samples to obtain the pore volume and pore-specific
surface area parameters of the test samples. The pore volume and pore-specific surface
area test results of the BJH-AD, BJH-DE, and DFT models were compared. The results
indicated that the BJH-DE and DFT models were highly consistent with the calculation
results of other parameters relating to other pore volumes/pore surface areas (Figure 14).
Thus, it suggests that the DFT model exhibits high representativeness when it is adopted
to obtain the pore volume/surface area of different test samples. However, the BJH-DE
model was not selected since the BJH-DE model will cause the PSD to form an artificial
peak, thus resulting in significant errors. In brief, the multifractal theory and Cronbach’s
alpha proved that the DFT model was the optimal model for analyzing the pore structure
of shale samples by the nitrogen adsorption method.
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5.3. The Workflow of N2 Adsorption Method Selection

It has been proved that there are significant errors in the pore structure parameters
and the degree of heterogeneity obtained by different calculation models for the isothermal
adsorption curve of the same sample. In this study, a specific nitrogen adsorption model
calculation and selection process was designed, and it primarily comprised three parts,
including adsorption isotherm shape, hysteresis loopback shape, and PSD calculation
(Figure 15). First, the pore size should be determined according to the shape of the isotherm
after the nitrogen adsorption experiment. The pore size of different samples resulted in sig-
nificant differences in the isotherm shape, inflection point, and adsorption and desorption
curves. For shale reservoirs, nitrogen adsorption experiments were mostly mesoporous,
mainly type IV. Next, the characteristics of different hysteresis loop shapes were analyzed,
and different hysteresis loop shapes indicated the main pore shapes of the sample. The
shale exhibited a complex pore structure, which was often a combination of various hys-
teresis loops, thus that the classification type should be considered comprehensively. The
PSD was obtained based on the experimental nitrogen adsorption and desorption curves
and pore characteristics. Since the ink-bottle pores will make the BJH-DE model produce
an artificial false peak at 3.8 nm, the ink-bottle pores were separated from the cylindrical
and slit pore shapes to calculate the BJH and DFT models, respectively. The multifractal
dimensions for the PSD curves were obtained by different models, and the heterogeneity
coefficient obtained by multifractals served as the main evaluation parameter to analyze
the correlation between different parameters, calculate Cronbach’s alpha, and compare
their consistency. The higher the coefficient, the better the calculation model will be to
characterize the degree of pore heterogeneity.
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In this study, a detailed analysis of the advantages and disadvantages of three nitrogen
adsorption modes, namely BJH-AD, BJH-DE, and DFT, was conducted. The adaptability
of different sorption models was investigated for the Longmaxi Formation shale in the
southern Sichuan Basin, China, with the aim of comparing the calculated results of various
nitrogen sorption models and establishing a preference method for nitrogen sorption
models. This will enable accurate evaluation of pore size distribution characteristics of
shale reservoirs in future studies. However, this paper does not include the quench solid
density functional theory (QSDFT) model and non-local density functional theory (NLDFT)
model. Additionally, the study overlooks the importance of microporous model selection
in analyzing the pore size distribution in shale reservoirs. These shortcomings could
be addressed in future research to advance our understanding of the pore structure of
shale reservoirs.
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6. Conclusions

In this study, the models with different pore size distributions (BJH-AD, BJH-DE, and
DFT) were compared for Longmaxi shale samples through nitrogen adsorption experi-
ments. Combining the three different methods with multifractal theory, the consistency
of heterogeneity parameters of different nitrogen adsorption models was analyzed using
Cronbach’s alpha, and the main conclusions are as follows:

Nitrogen adsorption data were analyzed by different models, and the results revealed
that the pore structure parameters obtained by different models were different. When
the pore size was less than 0.8 nm, the BJH-AD curve was higher than the DFT model
curve. When it was higher than 0.8 nm, the DFT adsorption model was significantly higher
than the BJH-AD, and multiple peaks appeared at 1~2 nm, thus suggesting that the DFT
model is more capable of characterizing pores with a pore size of about 2 nm than the
BJH model. The BJH-DE formed a significant artificial peak near 3.8 nm due to the tensile
strength effect.

The nitrogen adsorption curve of the same sample exhibited multifractal character-
istics, whereas the multifractal parameters obtained using the three adsorption models
were significantly different. The degree of heterogeneity obtained indicated the rule of
BJH-DE > DFT > BJH-AD; D1/D0 indicated that BJH-AD was the highest, thus revealing
that the smaller the degree of dispersion of the model aperture, the more concentrated the
PSD will be in the dense interval.

The DFT model is capable of accurately characterizing the structure of adsorbed
molecules in pores at the molecular level using N2 adsorption data, and then accurately
analyzing the pore size in a wide range. In contrast, the BJH model only applies to the
specified pore size range, which will underestimate the pore characteristics and cause
significant deviation. Furthermore, the tensile strength effect and the inapplicability of
macroscopic thermodynamics can limit the BJH usage scenario.

A calculation flow chart of the PSD was generated in accordance with the result of
the comparative analysis of the nitrogen adsorption calculation model. The main PSD
characteristics of the test sample were determined according to the obtained nitrogen
adsorption curve, and then the main pore types were determined according to the shape
of the hysteresis loop. On that basis, different parameter models were optimized by
combining the adsorption mechanism and the Cronbach’s alpha obtained using multifractal
dimension parameters.
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Nomenclature
Lm the thickness of the monolayer of liquid sorbent
VL the molar volume of the liquid sorbent
GAI generalized adsorption isotherm
Wmin the minimum pore sizes in the kernel
Wmax the maximum pore sizes in the kernel
P/P0 relative pressure
f(W) pore size distribution
N(P/P0) adsorption isotherm data
W pore width
D0 capacity dimension
D1 information dimension
D2 correlation dimension
Dq generalized fractal dimension
f(α) multifractal spectra
f(αmin) multifractal spectra
f(αmax) multifractal spectra
BJH-AD Barret–Joyner–Halenda adsorption
BJH-DE Barret–Joyner–Halenda desorption
DFT density functional theory
SEM scanning electron microscopy
AFM atomic force microscopy
HPMI high-pressure mercury injection pore measurement
USANS ultra-small-angle neutron scattering
NMR nuclear magnetic resonance
SA surface area
PV pore volume
MC Monte Carlo simulation method
HK Horvath–Kawazoe
BET Brunauer–Emmett–Teller
DA Dubinin–Astakhow
DR Dubinin–Radushkevich
SF Saito–Foley
PSD pore size distribution
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