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Abstract: Repetitive controllers (RCs) are linear control structures based on the internal model
principle. This control strategy is known for its ability to control periodic reference signals, even
if these signals have many harmonic components. Despite being a solution that results in a good
performance, several parameters of the repetitive controller need to be correctly tuned to guarantee
its stability. Among these parameters, one that has high impact on the system performance and
stability is the finite impulse response (FIR) filter, which is usually used to increase the stability
domain of RC-based controllers. In this context, this paper presents a complete tutorial for designing
the zero-phase FIR filter, which is often used to stabilize control systems that use RC-based controllers.
In addition, this paper presents a Matlab® application developed for performing the stability analysis
of RC systems and designing its FIR filter. Simulation and experimental results of a shunt active
power filter are used to validate the algorithm and the Matlab® application.

Keywords: active filter; FIR filter; repetitive controllers; stability

1. Introduction

Repetitive controllers (RCs) are becoming more and more popular due to their theoret-
ical ability to ensure zero steady-state error for periodical reference signals and periodical
disturbances. During the last decade, several researchers have been focused on proposing
fast, accurate, and stable RCs, applicable in different areas, such as robotics and power
electronics [1–8].

The mathematical basis for evaluating the stability of a RC was first presented in [9],
where the concept of stability domain was used. The RC structure proposed in [9] contains
a periodic signal generator in parallel to a second direct path, whose gain (a) enables
enlarging the stability domain of the RC system. For being stable, the RC system stability
domain must contain a Nyquist trajectory determined by the controlled plant [9]. However,
regardless of the value of a, the stability domain does not contain the point (0, 0) of the
complex plane, which is part of the Nyquist path of most practical systems. For this reason,
a gain attenuation block Q(z) must be introduced in the RC’s structure to further enlarge
its stability domain to include the point (0, 0). The most common solutions used in this
scenario are a constant attenuation (such as Q(z) = 0.98 [10] or Q(z) = 0.95 [11]) or a
low-pass filter.

Many types of low-pass filters can be used to improve the stability of RC systems.
As these filters are inserted in the periodic signal generator of the repetitive controller,
any phase lag caused by them will negatively affect the performance of the controller [12],
possibly detuning the frequencies to be controlled. Therefore, the main solutions of filters
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that can be used in RCs are either zero-phase or linear-phase low-pass filters. However,
when using a linear-phase filter, a phase shift compensation must be carried out.

Since RC-based controllers are based on periodic signal generators, they are often
implemented as digital controllers. In this scenario, the low-pass filter to be included in its
structure must also be a digital filter. As indicated in [13], this digital filter can be either
a finite impulse response (FIR) or an infinite impulse response (IIR) filter. When using
a FIR filter, one can still choose between a non-causal FIR filter [13] (which presents a
zero-phase shift characteristic) and a causal FIR filter [14] (which presents a linear-phase
shift characteristic). On the other hand, when using an IIR filter, several different solutions
can be found in the literature, such as Butterworth [15] and Chebyshev [12] low-pass IIR
filters; however, the phase shifts caused by most of them are non-linear [14]. Alternative
approaches using quasi-linear-phase IIR filters are also viable solutions [14], but they are
not yet as widely used as FIR filters. Depending on the chosen structure, the frequency
spectrum of the controller may change, affecting the main advantages of RCs in regulating
specific harmonic frequency components [16], or the stability may be compromised, such as
when using IIR filters [17]. Against this background, zero-phase FIR filters are considered
the best choices for RC-based controllers, since they are BIBO stable and do not apply any
phase shift to the controller [17].

The design of the FIR filter to include the origin of the complex plane in the stability
domain of RC systems is essential. It not only impacts the system stability but also affects
its control performance. The filter passband and order need to be carefully selected to
effectively attenuate components above the maximum harmonic frequency to be regulated.
Additionally, depending on the complexity of the RC structure, it should be broken down
into primitive repetitive cells (PRCs) in parallel to determine where the FIR filter should
be allocated [18]. To the best of the authors’ knowledge, no literature presents a detailed
step-by-step process for designing FIR filters for RC systems or a tool that automates
this project.

It is not the aim of this paper to propose a new RC scheme. However, given the
different structures of repetitive controllers available and the impact of the FIR filter on the
stability of the system and on the control performance, we present a tutorial and a complete
algorithm for designing zero-phase FIR filters to be used in any RC scheme, ensuring the
necessary stability margin with the best control performance achievable. Section 2 presents
the fundamentals of RCs, the concept of the stability domain, and the decomposition
of non-trivial RC structures into PRCs in parallel. In Section 3, the impacts of the FIR
filter on the stability and performance of the RC are analyzed. Although the subjects of
Sections 2 and 3 are objects of several previous papers, they are summarized here for clarity.
The paper’s main contribution, i.e., the proposed algorithm for the zero-phase FIR filter
design, is described in Section 4. As a second contribution, a Matlab® application for the
automatic implementation of the proposed design procedure was developed, which is
described in Section 5. In Section 6, the results of the experiments (which were performed
to validate the design tool) are shown. Conclusions are presented in Section 7.

2. Fundamentals of Repetitive Controllers

In 1981, Inoue et al. [19] proposed a linear control strategy based on the internal model
principle [20] that became known as the repetitive controller. The main characteristic of
this control strategy is the ability to control periodic reference signals, regardless of their
harmonic content. Although the repetitive controller was initially developed for robotics
applications, it proved to be effective in power electronics applications, especially when
controlling electrical variables that have high harmonic content, such as in active power
filters [16,21,22].

As shown in Figure 1, the repetitive controller has a periodic signal generator in its
structure. This feature enables the control system to obtain zero steady-state error for
periodic reference signals. Seeking to expand the use of repetitive control, Hara et al. [9]
added a second direct path (with gain a) in the controller, which is also shown in Figure 1.
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Gain a enables the control system designer to obtain better stability configurations for the
repetitive controller. The block z−N implements a delay of N samples, where N is the
number of samples per fundamental period of the reference signal.

Periodic Signal GeneratorRepetitive Gain

Second Direct Path

Figure 1. Block diagram of the conventional repetitive controller (discrete-time controller).

Taking into account the repetitive controller presented in Figure 1 (with repetitive
gain Krc) and using it to control a plant Gp(z), then, for an unit negative feedback system,
the following conditions must be true in order to obtain an input–output stable system
(`2-stability analysis) [9]:

1. Gm(z)[1 + a · Gm(z)]−1 must be a proper stable rational transfer function, in which
Gm(z) = Krc · Gp(z); and

2.
∥∥∥ 1+(a−1)·Gm(z)

1+a·Gm(z)

∥∥∥
H∞

< 1 must hold.

Hara et al. [9] also show, from developing Condition 2, that the Nyquist contour of
Gm(z) must be contained in an area of the complex plane known as the stability domain of
the repetitive control system. These stability domains depend on parameter a, which may
be different for each application. As parameter a increases, the stability domain is enlarged,
as presented in Figure 2.

Figure 2. Stability domains (shaded area) obtained from Condition 2. The system is stable if the
Nyquist contour of Gm(z) is inside the shaded area.

To show the importance of evaluating the stability domain of a RC-based system, one
can consider a unit negative feedback system with a hypothetical plant given by

Gp1(z) =
z− 0.94

z− 0.975
, (1)

which is controlled by a repetitive controller with Krc = 1. The Nyquist contour of
Gm1(z) = Krc · Gp1(z) and the stability domain of the RC-based system for a = 0 are
presented in Figure 3a (Case 1), and for a = 0.5 in Figure 4a (Case 2). This hypothetical plant
was chosen because its Nyquist contour is entirely contained in the right half-plane of the
complex plane, allowing the RC-based system to be stable without having to add a gain
attenuation block (Q(z)) in the periodic signal generator of the repetitive controller.
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(a) (b)

Figure 3. Error of an `2-unstable system considering the conventional repetitive controller (Figure 1)
with a = 0. Results are obtained from the simulation. (a) Stability domain of the RC system for
a = 0 and Nyquist contour of Gm1(z) (in red). (b) Error of the RC system for Gm(z) = Krc · Gp1(z) =
(z− 0.94)/(z− 0.975).

(a) (b)

Figure 4. Error of an `2-stable system considering the conventional repetitive controller (Figure 1)
with a = 0.5. Results are obtained from the simulation. (a) Stability domain of the RC system for
a = 0.5 and Nyquist contour of Gm1(z) (in red). (b) Error of the RC system for Gm(z) = Krc ·Gp1(z) =
(z− 0.94)/(z− 0.975).

As can be seen in Figure 3a, the Nyquist contour of Gm(z) is not contained in the
stability domain of the RC-based system for Case 1, leading to an unstable system, as
shown in Figure 3b for a sinusoidal input of frequency f1 = 50Hz. On the other hand, the
same does not happen for Case 2 (Figure 4b) since the Nyquist contour of Gm(z) is entirely
contained in the new stability domain of the RC-based system (Figure 4a).

However, the stability domains presented in Figure 2 do not contemplate the point
(0, 0) of the complex plane. As a consequence, the conventional repetitive controller cannot
be used for controlling strictly proper plants, which have more poles than zeros and a
Nyquist contour converging to the point (0, 0). In this sense, it is important to evaluate
alternatives that allow enlarging the stability domain of RC-based systems.

2.1. Enlarging the Stability Domain of a Repetitive Control System

As mentioned before, most practical control systems have plants with nonzero relative
degrees, i.e., plants with strictly proper transfer functions. For these systems, the Nyquist
contour of the plant Gp(s) (and, hence, Gm(z)) tends toward point (0, 0) of the complex
plane as the frequency increases. Thus, it is necessary to enlarge the stability domain of the
RC system to meet the stability requirements.

In order to do so, a block Q(z) is usually added in series with the delay of the repetitive
controller, in the periodic signal generator. Figure 5 shows a discrete-time version of the
repetitive controller proposed in [9], with Q(z). As presented in [23], when adding the
block Q(z), the condition used to obtain the stability domain becomes∥∥∥∥Q(z) · 1 + (a− 1) · Gm(z)

1 + a · Gm(z)

∥∥∥∥
H∞

< 1. (2)
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Equation (2) can be developed to obtain a new stability domain equation, which will now
also depend on Q(z), as demonstrated in [23]. Therefore, (2) can be evaluated as:

sup
|ω|< ωs

2

∣∣∣∣Q(ejωTs) · 1 + a · Gm(ejωTs)− Gm(ejωTs)

1 + a · Gm(ejωTs)

∣∣∣∣ < 1. (3)

Then, (3) can be rewritten as:

sup
|ω|< ωs

2

√
[A · (1 + aX− X)− B · (aY−Y)]2 + [A · (aY−Y) + B · (1 + aX− X)]2

(1 + aX)2 + (aY)2 < 1. (4)

Note that, for simplification, the notations X = Re{Gm(ejωTs)}, Y = Im{Gm(ejωTs)},
A = Re{Q(ejωTs)} and B = Im{Q(ejωTs)} are adopted.

Q(  )

Figure 5. Block diagram of the conventional repetitive controller with Q(z).

As (4) represents the stability boundary condition, the stability domain can be obtained
considering the entire area defined by this boundary curve. In order to do so, one can
suppress the supremum of (4). Consequently, the stability domain is determined through
the inequality:

[A · (1 + aX− X)− B · (aY−Y)]2 + [A · (aY−Y) + B · (1 + aX− X)]2 < (1 + aX)2 + (aY)2. (5)

The inequality shown in (5) can still be simplified in a region that is delimited by a
circle equation. By doing so, the stability domain of a RC system with constant a ∈ R can
be calculated by (for |Q(ejωTs)|2 = A2 + B2):

X2 · f1(a, |Q(ejωTs)|) + Y2 · f1(a, |Q(ejωTs)|) + X · f2(a, |Q(ejωTs)|) <
[
1− |Q(ejωTs)|2

]
, (6)

in which

f1(a, |Q(ejωTs)|) = a2|Q(ejωTs)|2 − 2a|Q(ejωTs)|2 − a2 + |Q(ejωTs)|2, (7)

f2(a, |Q(ejωTs)|) = 2a|Q(ejωTs)|2 − 2|Q(ejωTs)|2 − 2a. (8)

This means that (6) must hold for all (X, Y) = (Re{Gm(ejωTs)}, Im{Gm(ejωTs)}), in which
ω ∈ [−ωs

2 , ωs
2 ] (ωs is the sampling frequency).

Although the block Q(z) can be used to increase the stability domain of the RC system,
making it contain the point (0, 0) of the complex plane, the block Q(z) may also cause
attenuation and phase shifts in the signal synthesized by the periodic signal generator,
making it no longer periodic. As a consequence, this phase shift can disrupt the proper
functioning of the repetitive controller. Thus, Q(z) is generally recommended to be a
constant attenuation (i.e., a constant gain lower than 1) or a low-pass zero-phase filter
with a finite impulse response (FIR) [9]. The main characteristics of these solutions are
described below.

• Q(z) as a constant attenuation: This solution promotes a constant reduction in the
amplitude of the signal that is being fed back by the periodic signal generator of the
repetitive controller, compromising its operation in relation to the internal model
principle [20]. As a consequence, despite improving the system stability, it does not
have a zero steady-state error. In order for the influence of Q(z) to be small on the
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stationary error, it is usually chosen to be as close to one as possible. According to (6),
the stability domain of the RC system is increased for Q(z) < 1 (Figure 6). Examples
of Q(z) as a constant attenuation can be found in [10] (where Q(z) = 0.98) and [11]
(where Q(z) = 0.95).

• Q(z) as a FIR low-pass filter: This solution promotes the use of a low-pass filter in
the periodic signal generator of the repetitive controller. Thus, it is expected that the
dynamics of the control system will not be significantly altered for low frequencies, still
making it possible to obtain a zero steady-state error (or as close to zero as possible).
On the other hand, the repetitive controller will have a pass band defined by Q(z), thus,
it will no longer control exogenous signals whose harmonic frequencies are beyond
the cutoff frequency of the low-pass filter Q(z). The most common solution applied in
the literature is Q(z) = 0.25 · z + 0.5 + 0.25 · z−1 (some examples are [24–26]).

(a) (b)

Figure 6. Stability domain changing for two different Q(z) (with Q(z) having constant attenuation).
Surfaces obtained from (6). (a) Stability domain of the RC system for a = 0 and Q(z) = 1. (b) Stability
domain of the RC system for a = 0 and Q(z) = 0.6.

Considering Q(z) as a zero-phase FIR filter, its transfer function will be given by:

Q(z) = a0 · z
L
2 + a1 · z

L
2−1 + · · ·+ a L

2
+ · · ·+ aL · z−

L
2 , (9)

in which a0 = aL, a1 = aL−1 and so on. However, the FIR filter presented in (9) is not
implementable. In order to solve this problem, one can see that (9) can be rewritten as

Q(z) = z
L
2 ·
(

a0 + a1 · z−1 + · · ·+ aL · z−L
)

, (10)

and since z−N is cascaded in series with Q(z), one can implement them as

z−N ·Q(z) = z−N+ L
2︸ ︷︷ ︸

1©
·
(

a0 + a1 · z−1 + · · ·+ aL · z−L
)

︸ ︷︷ ︸
2©

, (11)

where 1© and 2© are implementable for L/2 < N. Note that L must be even.
To apply Q(z) to more elaborate repetitive control structures (here referred to as non-

trivial RC-based controllers), one can use the unified approach to evaluate the repetitive
controllers proposed in [18]. A brief summary of this analysis is presented in the following
subsection.

2.2. Unified Approach to Evaluation of Repetitive Controllers

Non-trivial RC-based controllers, such as nk±m RCs [4,27,28], may also contain FIR
filters to improve system stability. A simple way to understand where to place these
filters is achieved by decomposing the RC-based structure into an association of primitive
repetitive cells (PRCs) in parallel and, then, placing a FIR filter on each PRC [18].

The PRC is a complex control structure (i.e., it is a block with complex signals as input
and output) that allows the system to control only a selected set of harmonic components,
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here identified as set H = {nk + m | k ∈ Z}. It is important to note that, for n 6= 1, the PRC
does not control all harmonics, as the conventional repetitive controller does (Figure 7).
However, multiple PRCs can be parallelized to behave as the conventional RC [29].

Figure 7. Comparison between the magnitude plots of the controllers: conventional RC [9] (in
orange); and PRC proposed in [18] (in blue). Results considering the PRC designed to control the set
H = {6k + 1 | k ∈ Z}.

In this paper, the PRC presented by Neto et al. [18] is used to evaluate where the
control system designer must place the block Q(z) to improve the stability characteristics
of non-trivial RC-based systems. This PRC is illustrated in Figure 8, which is composed by
the following blocks:

• A generic delay of N/n samples (z−N/n): The PRC has a generic delay of N/n
samples in its structure, in which N is the number of samples per fundamental period.
The parameter n can be used to select the periodicity of the set of harmonic components
that the PRC applies high gain (Figure 7). This means that, disregarding the other
blocks presented below, the adequate selection of n allows the RC-based system to
control periodic signals whose harmonics are in the set H = {nk | k ∈ Z} instead of
all harmonic components;

• A complex gain ej2π m
n : If a complex gain ej2π m

n is cascaded with the generic delay
z−N/n presented above, then the frequency response changes suffer frequency shifts.
Therefore, the adequate selections of m and n allow for the RC-based system to control
periodic signals whose harmonics are in the set H = {nk + m | k ∈ Z} instead of
H = {nk | k ∈ Z}, where m ∈ N is restricted to 0 ≤ m ≤ (n− 1).

• A constant gain a: As done for the conventional repetitive controller [9], the PRC has
a second direct path with the constant gain a. Gain a establishes a constant proportion
between the repetitive action and a proportional action, and, as a consequence, it can
be used to enlarge the stability domain of the control system [23]. Changes in this
parameter do not make the stability domain contain the point (0, 0); thus, changes on
this are not enough to make the repetitive controller applicable to strictly proper plants.

• A low-pass FIR filter Q(z): As described in Section 2.1, this block is usually a zero-
phase FIR filter used to enlarge the stability domain of the control system.

Q(  )π

Figure 8. Block diagram of the PRC presented by Neto et al. with the Q(z) block.

Since the target application defines the exogenous signals of the control system (and,
as a consequence, the harmonic components they have), it also defines the parameters m
and n. For instance, when evaluating the harmonic content of the currents demanded
by a three-phase diode rectifier, one can see that they have all harmonics of the set
H = {1, 5, 7, 11, 13, · · · }. Thus, for this application, a PRC that controls the harmonics
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that belong to the set H1 = {6k + 1 | k ∈ Z} can be used in parallel with a PRC designed
to control the harmonic components of H2 = {6k− 1 | k ∈ Z} as unique controllers, as
conducted in [4].

As presented in [23], the `2-stability analysis of a control system with PRC can be done
using the same equations presented in [9] for the conventional repetitive controller. Thus,
Equation (6) is for the evaluation of the stability domain.

3. Impact of the FIR Filter on the Stability and Performance of RC-Based
Control Systems

As presented in [23], the bandwidth of a PRC can be evaluated from the L2-stability
analysis (or the `2-stability analysis in digital implementation) of the control system. This
means that, from this stability analysis, the control system designer can estimate up to
which harmonic a PRC can compensate, which depends on the cutoff frequency of the FIR
filter used to enlarge the stability domain.

On the other hand, as shown by Neto et al. [18], RC-based controllers can be decom-
posed in multiple PRCs in parallel (Figure 9). Thus, considering a linear control system, if
one of the loops becomes unstable due to its PRC, the entire control system also becomes
unstable. Therefore, instead of evaluating the entire RC-based controller, which may be
mathematically complex, the analysis can be simplified by evaluating multiple closed-loop
systems that use a single PRC as a controller (as conducted in [23]).

PRCs without
the Q(z) block 

Figure 9. Block diagram of the control structure proposed by Neto et al., which is based on multiple
PRCs in parallel (Q(z) not included in this figure).

As presented in Section 2, the stability domain of a PRC must contain the Nyquist
contour of Gm(z) = Krc · Gp(z), otherwise, the system becomes `2-unstable [23]. However,
most plants are modeled by transfer functions that have a relative degree greater than zero.
Thus, for these plants, the Nyquist contour of Gm(z) contains the point (0, 0), making it
necessary to include Q(z) in the structure of the repetitive controller to enlarge its stability
domain.

To explain the impact of the FIR filter on the stability and performance of RC-based
control systems, a hypothetical system with discrete PRC is considered below (initially,
without Q(z), i.e., Q(z) = 1). Figure 10a shows the stability domain of a PRC with
parameters Krc = 2, a = 0.5, m = 0, and n = 1 (which leads to the conventional RC [9]) and
the Nyquist contour of Gm2(z) for (ZOH discretization with Ts = 50 µs):

Gp2(s) = 0.8 · 1.21× 107

s2 + 3000 s + 1.21× 107 → Gp2(z) =
0.01149 z + 0.01093

z2 − 1.833 z + 0.8607
. (12)
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As a consequence of the Nyquist contour of Gm2(z) not being contained in the stability
domain, the system becomes unstable (Figure 10b). Therefore, a FIR filter Q(z) should be
used to enlarge the stability domain.

(a) (b)

Figure 10. Stability evaluation of an `2-unstable system composed of the plant Gp2(z), presented in
(12), and the PRC presented in Figure 8 with a = 0.5, m = 0, n = 1, Krc = 2, and Q(z) = 1. Results are
obtained from the simulation. (a) Stability domain of the evaluated RC system and Nyquist diagram
of Gm2(z) (in red). (b) Error of the evaluated RC system for the Gp2(z) presented in (12). Input signal:
r(t) = sin(2π50 t).

When considering a system with a PRC that has a FIR low-pass filter Q(z) in its
structure, the cutoff frequency of an ideal filter to this application ( fc) is limited to the
highest frequency that makes the Nyquist contour of Gm(z) remain in the stability domain.
For instance, it can be seen in Figure 11a that the Nyquist contour of Gm2(z) reaches
the stability domain boundary at 530 Hz (|Gm2(ej2π530)|). This means that 530 Hz is the
maximum frequency at which the system can operate, `2-stable, without changes in the
gain of the periodic signal generator.

(a) (b) (c) (d)

Figure 11. Stability comparison of different Q(z) being applied to the same control system (same
system evaluated in Figure 10). Control system configuration: a unit negative feedback; the plant
given by (12); the controller is the PRC presented in Figure 8 with a = 0.5, m = 0, n = 1, Krc = 2, and
Q(z) being a FIR low-pass filter. Results are obtained from the simulation. (a) Evaluated stability
domain and Nyquist contour of Gm2(z). Gm2(z) reaches the stability domain boundary at 530 Hz.
(b) Error of the evaluated RC system for the Gp2(z) presented in (12) and Q(z) = 0.25 z + 0.5 +

0.25 z−1. Input signal: r(t) = sin(2π50 t). (c) Error of the evaluated RC system. Q(z) designed with
the proposed methodology. Input signal: r(t) = sin(2π50 t). (d) Error of the evaluated RC system.
Q(z) designed with the proposed methodology. Input signal: r(t) = sin(2π50 t) + sin(2π300 t).

The stability domain of the repetitive control system must be increased in order to
cover the rest of the Nyquist contour of Gm2(z). For this hypothetical system, the typical
solution applied in the literature

Q(z) = 0.25 · z + 0.5 + 0.25 · z−1 (13)

is not enough to achieve system stability (Figure 11b). This happens because the typical
solution is not optimized for all situations. After using the algorithm proposed in this
paper, it is possible to achieve a custom Q(z) that provides system stability and the zero
steady-state error (Figure 11c).
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If the repetitive gain Krc is increased, then the magnitude of Gm(z) also increases. As
a result, the Nyquist contour of Gm(z) reaches the stability domain boundary at a lower
frequency, leading to a lower fc for the custom FIR low-pass filter that should be designed
to make the system stable (assuming that other parameters of the repetitive controller, such
as a, are not changed). Thus, when evaluating the control system, one can observe that a
reduction in fc impacts the system performance in two ways:

• The frequency response of the controller will show a magnitude reduction for the fre-
quency components beyond fc), which means that the controller will reduce its ability
to compensate for these frequency components (i.e., its bandwidth will be reduced);

• Since FIR low-pass filters are not ideal, a small reduction in magnitude is expected for
frequency components that are below but near the cutoff frequency fc. This reduction
in magnitude means that the internal model principle [20] is not fully met, resulting
in the controller not leading to zero steady-state error (Figure 11d). However, it is
expected that the higher the fc, the lower the steady-state error should be.

Therefore, after selecting the parameters of the repetitive controller, the cutoff fre-
quency of the FIR low-pass filter should increase up to the limit allowed by the system
stability domain to optimize the system performance.

4. Zero-Phase FIR Filter Design Algorithm

Based on the impact of the FIR filter Q(z) on the stability and performance of RC-based
control systems (Section 3), and knowing how to obtain the stability domain equation of
these RC systems (Section 2), this section presents a proposed algorithm that obtains the
best FIR filter Q(z) to be applied in a RC system (Section 4.1). Regarding the position of the
FIR filter, Neto et al. (2021) [18] show where to position the FIR filter in non-trivial RC-based
controllers. This methodology for positioning the FIR filter is reviewed in Section 4.2.

4.1. Obtaining the Specifications of a FIR Filter for a Repetitive Controller Using Its
Stability Domain

In order to obtain the specification of an optimized FIR filter Q(z) for a RC controller,
after selecting a RC structure, the control system designer should follow the steps below:

(a) STEP 1: Firstly, the control system designer must evaluate the exogenous signals of
the control system and determine what are the harmonic components that must be
controlled. Using this information, one can determine the passband of the repetitive
controller. In this paper, it is considered that the RCs must work on exogenous signals
with harmonic content up to fmax.

(b) STEP 2: Then, the control system designer must obtain the transfer function of the
plant (Gp(s) or Gp(z)). According to [23], both continuous and discrete approaches
leads to inequalities that result in the same stability domains, thus, any of them can
be used.

(c) STEP 3: As shown in Section 2, non-trivial RC-based controllers can be decomposed
into PRCs in parallel (Figure 9). Thus, one must decompose the selected RC structure
into PRCs in parallel, which can be done following the guidelines presented in [18].
Then, based on this decomposition, one must take note of parameter a obtained for
these PRCs. This parameter remains constant during the execution of the algorithm
and it will be used later to plot the stability domain of the RC system.

(d) STEP 4: Krc = 1 and Q(z) = 1 are initially set. Then, the Nyquist contour of
Gm(z) = Krc · Gp(z) (or Gm(s) = Krc · Gp(s)) together with the stability domain
(which should be calculated for parameter a obtained in the previous step) must be
plotted. Examples of this step are presented in Figure 12a,b.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Example of an optimized FIR filter design considering the Gp(z) presented in (12). Using
the methodology presented in this work, the following specifications were obtained for the FIR filter
Q(z): f3dB ≈ 600 Hz; and M = 54. (a) STEP 4—Nyquist contour of Gm(z) (or Gm(s)) for Krc = 1.
(b) STEP 4—Stability domain for Q(z) = 1. parameter a was obtained in STEP 3. (c) STEP 5—Krc

is tuned to select the highest desirable frequency in the stability domain. (d) STEP 6—Obtaining
the superior magnitude limit of Q(z) for the entire frequency spectrum. (e) STEP 7—Estimating the
order of the FIR low-pass filter Q(z). (f) STEP 8—Validating the magnitude response of the designed
FIR filter Q(z).

(e) STEP 5: As shown in Section 3, the bandwidth of the repetitive controller can be
obtained by evaluating at which frequency the Nyquist contour of Gm(z) = Krc ·Gp(z)
(or Gm(s) = Krc · Gp(s)) reaches the stability domain boundary. Thus, the repetitive
gain Krc can be tuned to select the highest frequency (here called as fc) that, for
Q(z) = 1, will be contained in the stability domain. Phase-margin and gain-margin
can also be used to select the repetitive gain. Note that fc must be greater than fmax.
An example of this step is presented in Figure 12c;

(f) STEP 6: As the magnitude of Q(z) decreases, the maximum frequency of the Nyquist
contour that is kept inside the stability domain increases (e.g., Figure 13). Based on this
characteristic, the control system designer must gradually decrease the magnitude of
Q(z) in regular steps (here referred to as ∆q), making it work as a constant attenuation
(Q(z) < 1), while evaluates the highest frequency on the Nyquist contour of Gm(z) =
Krc · Gp(z) (or Gm(s) = Krc · Gp(s)) that still is inside the stability domain. By doing
this, it becomes possible to determine the superior magnitude limit of Q(z) for the
entire frequency spectrum. An example of this step is shown in Figure 12d. This step
is further detailed in the flowchart presented in Figure 14.
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(a) (b) (c)

Figure 13. Maximum frequency of the Nyquist contour that is kept inside the stability domain
changing for three different Q(z). Example considering the Gp(z) presented in (12). (a) For Q(z) = 1,
the maximum frequency of the Nyquist contour that is kept inside the stability domain is 530 Hz.
(b) For Q(z) = 0.8, the maximum frequency of the Nyquist contour that is kept inside the stability
domain is 585 Hz. (c) For Q(z) = 0.6, the maximum frequency of the Nyquist contour that is kept
inside the stability domain is 660 Hz.

(g) STEP 7: With the curve plotted in STEP 6 (Figure 12d), one can estimate the order of
the FIR filter (M) from the decay observed after the frequency fc. Firstly, one should
calculate the line that tangents the decay (line in red in Figure 12e). From this line, one
can obtain the parameters AdB and ∆ f (Figure 12e). Then, adapting from the Harris
method [30], the order of the FIR filter can be estimated as

M ≈ ceil
[

fs

∆ f

(
AdB
22

)]
+ 2, (14)

in case ceil
[

fs
∆ f

(
AdB
22

)]
is even, or

M ≈ ceil
[

fs

∆ f

(
AdB
22

)
+ 1
]
+ 2, (15)

in case ceil
[

fs
∆ f

(
AdB
22

)]
results in an odd number. In (14) and (15), AdB is the desired

stop-band attenuation in dB; ∆ f is the transition bandwidth desired to the filter; and
fs is the sampling frequency. It must be noted that M must be even to maintain the
FIR filter symmetry. As can be seen in (14) and (15), the filter order is increased by
“+2” so that the decay slope is steeper around the filter cutoff frequency, making the
system more robust and stable. This step is further detailed in the flowchart presented
in Figure 15.

(h) STEP 8: The specifications of the FIR filter Q(z) are its order M and its cutoff frequency.
In order to improve system performance, from this point on, the FIR filter cutoff
frequency is considered as the frequency at which the superior magnitude limit curve
of Q(z) crosses −3 dB ( f3dB). The frequency f3dB is shown in Figure 12e. In case the
superior magnitude limit curve does not cross −3 dB, the frequency fc can be used as
the cutoff frequency for the FIR filter. These data can be used to design the FIR filter
using numeric computing software, such as Matlab. One can compare the magnitude
response of the designed FIR filter with the curve plotted in STEP 6. An example of
this comparison is presented in Figure 12f.
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Begin

The control system designer must define:
Δq  → Magnitude decrement step used to obtain the
            magnitude limit curve of Q(z).
f [·] → Vector of k elements with the frequencies
            to be evaluated. f [k] must be iqual to f  /2.
q[·] → Vector of k elements initialized with ‘1’ in
            all positions. This vector is used to compute
            the magnitude limit curve of Q(z).
   f    → Sampling frequency. S

i = 1

i > k

Ends
→ If G  (s) was used:
X = Re{G  (j2πf [i])}
Y = Im{G  (j2πf [i])}

m

m

X and Y
satisfy (6) for f [i]

and q[i]?

YES

NO

i = i + 1
YES

NO

q[i] = q[i]    Δq

Sweep the vector q[·]
making q[n] = q[i]

for n > i.

Recalculate the inequality
coefficients of the stability
domain, (7) and (8), for the

new q[i].

From previous steps, the control system designer
already has:
      a   → Gain of the second direct path of the PRCs
                obtained from decomposition of the chosen
                RC structure.
G  (s)  → Continous transfer function to be evaluated.
  or
G  (z)  → Discrete transfer function to be evaluated.

m

m

S

m

→ If G  (z) was used:
X = Re{G  (exp(j2πf [i]T ))}
Y = Im{G  (exp(j2πf [i]T ))}

m

m

m

s

s

Calculate:

Plot the entire
magnitude limit
curve for Q(z)
(f [·] x q[·]).

Figure 14. Flowchart that implements STEP 6 of the proposed methodology.
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Begin

From previous steps, the control system designer
already has:
f [·] → Vector of k elements with the frequencies
             evaluated to obtain q[·]. 
q[·] → Vector of k elements with the magnitude
             limit curve of Q(z).
   f   → Sampling frequency. 

S

i = k

End

Sweep the vector q[·] looking for the highest index
k  that still keeps q = 1. Note that f [k ] = f  .

Calculate:

→ A    = 20 log (q[k]    q[1]).10dB

Calculate the desired stopband attenuation in dB:

1 1 c

Calculate the equation of the line l(f [i]) that passes
through the points (f  , 1) and (f [i] , q[i]):c 

(q[i]    1)

(f [i]    f  )c

→ a =                       . 

→ b = 1    a·f  . c 

→ Equation of the line: l(f [·]) = a·f [·]    b. 

j = i

→ e[j] = q[j]    l(f [j]).

YES

NO

e[j] < 0

j = j    1

YES

NO
j < k

i = i    1

1

Sweep the vector l(f [·]) looking for the
index k   that makes l(f [k ]) = q[k].2 2

Calculate the transition bandwidth desired to the filter:

→ Δf  = f [k ]    f   = f [k ]    f [k ].c 22 1

Calculate M from Equation (14) or (15).

Figure 15. Flowchart that implements STEP 7 of the proposed methodology.



Energies 2023, 16, 2451 15 of 33

STEP 6 of the algorithm can be implemented as presented in the flowchart of Figure 14.
The proposed flowchart for STEP 6 scans the Nyquist contour of Gm(s) (or Gm(z)) checking
up at which frequency the inequality that defines the stability domain is no longer satisfied.
When finding a frequency that does not satisfy the inequality (which occurs when the
Nyquist contour is outside the stability domain), the magnitude limit for Q(z) is decreased
in constant steps of ∆q (as conducted in the blue curve in Figure 12d in the frequency fc).
The inequality of the stability domain (presented in (6)) is updated with the new Q(z),
which increases the stability domain. Then, the algorithm continues scanning the Nyquist
contour of Gm(s) (or Gm(z)) and performing the same process each time the inequality that
defines the stability domain is not satisfied.

STEP 7 of the algorithm can be implemented as presented in Figure 15. This flowchart
has the vectors f [·] and q[·] (each one with k elements) as inputs and, based on them, it
calculates the order of the FIR filter. This is done as follows:

(i) Firstly, AdB is calculated from the difference between q[k] and q[1]. One must convert
the subtraction result to a magnitude in dB.

(ii) Then, one must obtain the equation of the line that passes through the points ( fc, 1)
and ( f [k], q[k]). This equation is referred to here as l( f [·]).

(iii) To obtain the line tangent to the decay of the magnitude limit curve of Q(z) (line
in red in Figure 12e), the flowchart calculates the error e[j] = q[j] − l( f [j]), with
j ∈ {k1, · · · , k} (where f [k1] = fc). If the vector e[·] has any negative element, the line
passes above the superior magnitude limit curve and, as a consequence, it is not yet
the desired tangent line. Thus, the slope of the “tangent line” must be reduced, which
can be done by changing the point ( f [k], q[k]) to ( f [k− 1], q[k− 1]) in the item (ii) and
recalculating the line equation. This procedure is repeated until the vector e[·] has no
negative elements.

(iv) The parameter ∆ f is calculated from the difference between fc and fstopband, where
l( fstopband) is equal to q[k].

(v) Finally, the parameter M can be calculated from A3dB and ∆ f using (14).

The Matlab function “fir1()” uses a Hamming window to make a linear-phase causal
filter. This function can be used in STEP 8, however, it becomes necessary to compensate
for its linear-phase shift. This compensation can be done by reducing the order of the delay
present in the periodic signal generator by M/2, as shown in (11).

From the presented methodology, the control system designer obtains an operational
value for the parameter Krc, in addition to obtaining the specifications of a custom FIR filter
Q(z) optimized for the evaluated RC system. However, relative stability can still be used
to fine-tune the gain Krc [31].

4.2. Positioning the Zero-Phase FIR Filters in Non-Trivial RC-Based Controllers

As discussed in Section 3, non-trivial RC-based controllers, such as nk±m RC [4,27,28],
may contain FIR filters to improve system stability characteristics. A simple way to know
where to place these filters is to decompose them into multiple PRCs in parallel, and, then,
place a FIR filter on each PRC in the structure [18].

To demonstrate this methodology, the nk±m RC proposed by Lu et al. [27] is consid-
ered below (Figure 16a). As presented in [18], this non-trivial repetitive controller can be
decomposed into two PRCs with a = 0.5 in parallel (Figure 16b). Then, using the block
diagram presented in Figure 8 as reference, one must place the FIR filter Q(z) on each
PRC (Figure 17a). Furthermore, to implement the FIR filter, it is necessary to decrease the
number of delayed samples of the periodic signal generator of the PRC in M/2, where
M is the order of the FIR filter (as shown in (11)). Finally, one can recompose the original
non-trivial RC-based structure (Figure 17b).
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Repetitive Gain

(a)

PRC
0.5

PRC
0.5

(b)

Figure 16. nk± m RC proposed by Lu et al., decomposed into two PRCs with a = 0.5 in parallel.
(a) nk±m RC proposed by Lu et al. (discrete-time controller). (b) nk±m RC proposed by Lu et al.,
decomposed into two PRCs.

PRC
0.5

PRC
0.5

M

M

(a)

M

M

Repetitive Gain

(b)

Figure 17. nk±m RC proposed by Lu et al., which is composed by two PRCs with a = 0.5 and Q(z)
in parallel. Changes between Figure 16 and Figure 17 are in red. (a) Adding FIR filters Q(z) in the
PRCs. (b) nk±m RC proposed by Lu et al. with FIR filters (discrete-time controller).

5. Development of a Matlab app for Automatic Implementation of the
Proposed Algorithm

In this section, we present a Matlab application designed to support the design of
control systems that utilize repetitive controllers. This Matlab app has three main screens:
(i) the first screen, referred to as the “start screen”, allows the user to load the mathematical
model of the plant into the app (only after that it is possible to proceed to the other two
screens); (ii) the second screen, here referred to as the “stability acreen”, allows the user
to validate the stability domain equations of a RC system, enabling visualization of the
influence of the controller’s parameters on system stability; and (iii) the third screen, here
referred to as the “FIR Filter Screen”, presents a tool for designing a FIR filter support
tool (parameter Q(z) of the repetitive controller). More details of each screen are given
below. This Matlab app, developed by the authors of this paper, is available for download
at https://www.mathworks.com/matlabcentral/fileexchange/74759-repetitive-controller-
designer (accessed on 2 January 2023). In order to understand how to install the developed
Matlab® application, one can see the video and documentation in [32] and [33], respectively.

To make this Matlab app as general and useful as possible, we used the generic PRC
equations to validate the stability domain. These equations can be manipulated to obtain
the same equation shown in (6), (7), and (8), as described in [23]. Therefore, when using
non-trivial RC-based controllers, the control system designer must first decompose them
into PRCs in parallel (as shown in [18]) before utilizing the Matlab app presented in this
section.

https://www.mathworks.com/matlabcentral/fileexchange/74759-repetitive-controller-designer
https://www.mathworks.com/matlabcentral/fileexchange/74759-repetitive-controller-designer
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5.1. Start Screen

The start screen of the Matlab app is shown in Figure 18. In Figure 18a, the block
diagram of a generic PRC is illustrated. The first step for filling this screen is to define
the repetitive gain Krc of the control system in Figure 18b and the control system plant.
For the plant, two approaches are possible: manually type the parameters of the plant in
Figure 18c; or choose a variable already defined in the Matlab workspace, in Figure 18d.
After filling these fields, the user must press the OK button (Figure 18e). Then, the two
buttons present in Figure 18f are enabled, allowing the user to choose between evaluating
the stability domain of the RC system (“system stability” button) or designing the FIR filter
for the RC system (“Filter Design” button). Pressing the button on Figure 18g opens up a
popup screen that contains general information about the Matlab app and a small summary
of its operation.

Figure 18. Start screen: the screen used to load the mathematical model of the plant in the Matlab app.

To make the Matlab app more robust, we implemented a validation data routine to
avoid possible typos and errors when filling in the fields on this screen. In cases where
the user manually types the parameters of the plant in Figure 18c, the following tests are
performed:

• It is verified if the repetitive gain is a real number of dimension 1 × 1;
• It is verified if the numerator and denominator fields are filled with row vectors; and
• When working with a discrete plant, it is verified if the sampling period is a real

number of dimension 1 × 1.

When the user chooses a variable from the Matlab workspace, the following tests are
performed:

• It is verified if the repetitive gain is a real number of dimension 1 × 1; and
• It is verified if the chosen variable exists and if it is one of the following types: tf

(transfer function), zpk (zero-pole-gain), or ss (state space).

The user is only allowed to continue with the application if all conditions are satisfied.
Otherwise, an error message appears that makes it impossible to continue until the error is
corrected.

5.2. Stability Screen

After defining the plant, it becomes possible to evaluate the system stability as a
function of the controller parameters. To do so, the user must press the “system stability”
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button in the start screen, leading to the stability screen. The stability screen of the Matlab app
is shown in Figure 19.

Figure 19. Stability screen: screen used to validate the stability domain equations of a RC system.

As the reader already know, the PRC parameters are Krc, m, n, N, a, and Q(z) (Figure 8).
At this point, the first parameter, Krc, was already computed in the Matlab app (it was
conducted in the start screen). The following three parameters are constants used to select
the harmonic components to be controlled. These parameters are freely chosen by the user
and they do not influence the system stability. Therefore, Parameters a and Q(z) remain,
which directly interfere with the stability domain of the RC system, as shown in (6), (7),
and (8).

As shown in Figure 19, the user is provided with two options to observe the influence
of Parameters a and Q(z) (Figure 19a). However, Q(z) is evaluated here as a constant
attenuation. The user can either vary Parameters a and Q(z) using sliders or freely define
real values. The impact of these variations can be immediately observed in the graph
shown in Figure 19c. In addition to the stability domain in green, the Nyquist contour
of Gm(s) (or Gm(z)) is also displayed in gray and red. The small red circles in the graph
indicate the threshold frequency up to which the Nyquist contour belongs to the stability
domain of the system (part of the Nyquist contour in red). This frequency is shown in
Figure 19b, along with an indication of whether the system is stable or not with such a
configuration.

In case any configuration is useful to the user, it is possible to capture such a graph
and choose the location where one wants to save the generated image (Figure 19d). Some
features of Matlab itself are also available to analyze the generated graph, such as zoom in,
zoom out, data tips, and pan options (Figure 19e). Still, by pressing the “configurations”
button in the tool bar (Figure 19f), it is possible to adjust some parameters of the sliders
(minimum step, maximum value, and minimum value), some parameters of the text boxes
are available for freely defining the values (resolution for rounding) and configuring the
minimum and maximum limits of the graph axes.

To ensure no unexpected behavior, some error handling has also been implemented,
as conducted for the start screen.
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5.3. FIR Filter Screen

After defining the plant, it is also possible to use the Matlab app to support the design
of the FIR filter Q(z); both algorithms are presented in Figures 14 and 15. The FIR filter
screen of the Matlab app is shown in Figure 20.

Figure 20. FIR filter screen: screen used as a FIR filter design support tool.

By using this functionality of the created Matlab app, the control system designer
can obtain the magnitude limit of Q(z) for the entire frequency spectrum (such as in
Figure 12d). However, to execute the algorithms, the user must fill in the available fields
with the following information (Figure 20a):

• The magnitude of Q(z) for low frequencies, called the “max initial value” and the
desired decrement for parameter Q(z). The authors recommend keeping the “max
initial value” as one to make the Matlab app evaluate all possible values of Q(z));

• The initial and final values for the frequency evaluation and the number of frequencies
to be evaluated between these extremes;

• Parameter a of the evaluated PRC;
• With respect to the graph that will be plotted, one must choose the Y-axis display

mode, which can be “absolute” or “decibels” modes; and
• If the user defines the plant as continuous in the start screen, the sampling frequency

of the discrete controller will also be required.

The curve obtained from the algorithm proposed in this paper is presented in the
FIR filter screen (in Figure 20b) and indicates the magnitude limit for designing Q(z). In
Figure 20c, the order and the cut-off frequency of an implementable FIR filter that meets
the requirements is shown. Finally, by clicking on the button “export data to workspace. . . ”
(Figure 20d), it is possible to extract the vectors that plot the magnitude‘s limit graph, and
the values of order (M), the −3 dB cutoff frequency ( f3dB), and coefficients of a linear-phase
FIR filter that meet the requirements of the application (obtained using the algorithms
proposed in Section 4.1 of this paper).

6. Experimental Validation

To validate the Matlab app and the proposed algorithms for designing FIR filters for
RCs, the experimental results of a real system are presented below. The chosen system is a
three-wire three-phase shunt active power filter (SAPF), whose block diagram is shown in
Figure 21. Table 1 shows the parameters of the SAPF and the parameters of the repetitive
controller presented in [23], which were used to validate the proposed algorithm.
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Table 1. Parameters of the repetitive controller and experimental setup.

Parameters of the
Repetitive Controller Parameters of the Experimental Setup (Figure 21)

n m N = fs/ fg Vg(line) Lg Rg Ll L f R f Rload Vdc fs * fg

6 1 288 380 Vrms 186.17 µH 31.7 mΩ 1.483 mH 2.563 mH 307.5 mΩ 48.4 Ω 600 V 17.28 kHz 60 Hz

* Sampling and switching frequency.

C

dC

Figure 21. Block diagram of the experimental setup used to validate the proposed algorithm. The
repetitive controller is applied as a current controller (dashed block) and is implemented in a dSPACE
platform.

6.1. Description of the Experimental Setup

A SAPF is a power electronic device used to mitigate the harmonic contamination
caused by non-linear loads. In this paper, a three-wire three-phase inverter is used as
SAPF. As can be seen in the block diagram of the complete control system (Figure 21),
a three-phase diode rectifier with resistive load (no filter on the DC side of the rectifier)
is used as the non-linear load. In this configuration, an inductive filter is used on the
AC side of the three-phase rectifier (Ll). Even though industrial three-phase rectifiers are
typically connected to predominantly inductive DC loads, several works in the literature
use experimental platforms to evaluate three-phase APFs, considering loads comprised of
three-phase rectifiers with small filter inductances at the AC side and a DC resistive load,
as conducted in this paper. Examples of works that use this assemble are [3,16,34,35].

In this application, the output currents of the SAPF are the controlled variables of
the evaluated control system. Several papers have shown that the current control strat-
egy applied in this system has a high impact on the system‘s performance [22,34,36,37];
therefore, in order to design an adequate controller for this application, it is necessary to
obtain its mathematical model. As can be seen in [16], when controlling the three-phase
output currents of a SAPF, the converter can be modeled by its output filter. Thus, in an αβ
reference frame, the plant transfer function is given by:

G(s) =
~I f (s)
~D(s)

=
Vdc

L f s + R f
, (16)

in which~i f = L −1{~I f (s)} is the space-vector obtained from the SAPF output currents and
~d = L −1{~D(s)} is the space-vector obtained from the duty cycles.

The reference generator and the current controller were implemented in a dSPACE
platform (shaded area of Figure 21). The block Hl(z) is a lead compensator used to
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attenuate the effects of the computational delay [31] at the desired 0 dB crossover frequency
(1.73 kHz—around 10 times lower than the sampling frequency) of the open loop transfer
function. The transfer function of Hl(z) is given by:

Hl(z) =
0.6526z− 0.4301

z− 0.08271
, (17)

which was designed to cause a phase lead of 36.0◦ around 1.73 kHz. The magnitude
attenuation caused by the lead compensator for low frequencies is naturally compensated
when tuning the repetitive gain Krc. Figure 22 presents the phase shift caused by the
computational delay (z−1) and the phase shift caused by both the computation delay
and the lead compensator together (z−1 · Hl(z)), indicating that the Hl(z) used in the
experiment can successfully attenuate for the phase shift caused by the computational
delay for frequencies up to the desired 0 dB crossover frequency. The DC bus voltage
control loop is not represented in Figure 21) for simplicity purposes. However, in practice,
there is an external voltage control loop, which is significantly slower than the internal
current control loop.

Figure 22. Phase shifts caused by computational delay (z−1) and caused by computational delay
together with the lead compensator (z−1Hl(z)). Phase results around 1.73 kHz are highlighted.

The dSPACE platform is a modular hardware system that allows the user to program a
control system application using Simulink/Matlab. This platform is composed of I/O and
processor boards. The dSPACE platform used in the experimental setup has the DS1005
PPC board featuring a PowerPC 750GX processor running at 1 GHz. Figure 23 shows the
complete experimental setup.

Three-phase
diode

rectifier

Resistive
load of
48.4 Ω

Electrical
grid

Three-phase
inverter

(VSI)

Signal
conditioning

boardVoltage
sensors

Current
sensors

dSPACE
platform

Current
sensors

Figure 23. Prototype and dSPACE platform used for obtaining experimental results.
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6.2. Description of the Evaluated Repetitive Control System

Since the control system must synthesize the non-fundamental frequency currents
demanded by the non-linear load, the harmonic spectra of these currents must be evaluated
in order to choose which controller can be used in this application. However, as it is a
three-phase current, one can evaluate the space-vector obtained from the load currents
and, thus, represent all three phases in a single plot [22]. Figure 24 presents the harmonic
spectrum of the load‘s current space-vector.

Figure 24. Harmonic spectrum of the space-vector obtained from the load currents.

When evaluating the harmonic spectrum of a space-vector signal, one must know
that positive frequencies represent positive-sequence harmonic components while negative
frequencies represent negative-sequence components [22]. Therefore, based on Figure 24,
one can use a 6k + 1 RC, which is complex repetitive controller that applies high gain
in the harmonic components of the set H = {· · · ,−17,−11,−5, 1, 7, 13, 19, · · · }. In this
paper, the nk + m RC proposed in [23] is used with n = 6 and m = 1, as shown in Table 1.
It is important to know that, according to [18], this nk + m RC is equivalent to the PRC
described in Section 2; therefore, parameter a is an additional degree of freedom for the
control system designer.

Based on the delimitation presented in the previous paragraph, and considering the
repetitive controller presented in [23], the current controller used to validate the impact of
Q(z) (indicated in Figure 21) is given by:

C(z) = Krc

[
a +

ej2π 1
6 z−

N
6 Q(z)

1− ej2π 1
6 z−

N
6 Q(z)

]
, (18)

for Q(z) being a zero-phase low-pass FIR filter. Since N = fs/ fg is the number of samples
per period of the fundamental frequency, which is given in Table 1, then (18) becomes

C(z) = Krc

[
a +

ej π
3 z−48 Q(z)

1− ej π
3 z−48 Q(z)

]
. (19)

Parameters a, Krc, and Q(z) are tuned using the created Matlab app to validate the proposed
algorithm, as indicated in the following subsections.

The created Matlab app requires the user to define which repetitive gain Krc is going
to be used in the control system. This is done at the start screen of the Matlab app, before
any analysis of the system stability and performance. In the evaluation presented in this
paper, Krc = 0.06 is used.

However, one can interactively use the Matlab app to tune the best Krc for the control
system. This interactive use would be conducted as follows:

(i) Firstly, the user would define a Krc gain for the initial analysis in the start screen of
the Matlab app;

(ii) Then, the user would evaluate the stability of the system using parameter a and a
constant attenuation—using the stability screen—or a FIR filter—using the FIR filter
screen;

(iii) Using the obtained parameters, the system must be simulated to verify whether
the performance requirements are met or not;
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(iv) If the requirements are not met, the control system designer must increase or
decrease the Krc gain to make the system faster/slower and redo the process from
step (ii).

The effects of the computational delay and PWM delay can make the system unstable
for most repetitive gain values. In order to solve this problem, in step (i), the control system
designer can add a lead compensator tuned to work around the desired 0 dB crossover
frequency (as conducted in [31]). By doing so, the effects of the delays are mitigated,
allowing the use of higher Krc gains, resulting in faster dynamic responses [31]. When
using the lead compensator Hl(z), its transfer function must be included in Gm(s), i.e., for
a discrete control system,

Gm(z) = Krc Hl(z) Zzoh{G(s)} z−1. (20)

In Equation (20), z−1 represents the computation delay, and ZzohG(s) represents the dis-
cretized version of G(s) using the ZOH (zero-order hold) method. According to [38], the
ZOH method introduces some dynamic characteristics into the system that are similar to
those obtained when using a PWM (pulse-width modulation) modulator. Therefore, it can
be used to represent the PWM dynamics in a simple way.

6.3. Validation of the Matlab app and the Proposed Algorithms

Firstly, it is important to obtain the Gm(z), which can be used to evaluate the repetitive
control system. Based on Equations (16) and (20), and in the data presented in Table 1,
Gm(z) is given by

Gm(z) = Krc Hl(z) Zzoh

{
Vdc

L f s + R f

}
z−1, (21)

where 
Zzoh

{
Vdc

L f s+R f

}
≈ 13.5

z−0.9931

Hl(z) = 0.6526−0.4301 z−1

1−0.08271 z−1

Krc = 0.06

. (22)

These data are entered in the Matlab app using the start screen. To do so, one must
enter Krc in the field shown in Figure 18b and Gm(z)/Krc in Figure 18c. Parameter Ts can
be calculated as 1/ fs, which is given in Table 1. Based on these inputs, the validation of the
Matlab app is organized into four steps, which are described below.

6.3.1. System Stability Analysis Varying Only parameter a (With Q(z) = 1 Being a
Constant Attenuation)

The stability domain of the repetitive control system was first observed by considering
Q(z) = 1 and Krc = 0.06. For this analysis, three distinct values for parameter a were
considered: a = 0.4; a = 0.5; and a = 0.8. The analyses were performed using the stability
screen of the Matlab app presented in this paper.

As can be seen in Figure 25 (graphs exported from the Matlab app), despite the fact
that the value of parameter a directly impacts the geometry of the stability domain, none of
the obtained domains fully contemplate the Nyquist contour of Gm(z). In fact, the Nyquist
contour of Gm(z) extends to the region on the left of the complex plane’s origin, thus, it is
not possible to make the system stable for constant Q(z) = 1. Since this system is unstable,
only the simulation results are presented in Figure 25.

From the above analysis, one can see that the Matlab app can be used to understand
and evaluate the effects of parameter a on the system stability.
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(a) (b)

(c) (d)

(e) (f)

Figure 25. System stability analysis using the created Matlab app for different values of a (with
Q(z) = 1) and simulation results of the control system for each case. The system is unstable in all
situations (a = 0.4, a = 0.5, and a = 0.8). (a) Stability domain and Nyquist contour for a = 0.4. Graph
exported from the Matlab app. (b) Phase-a grid current (iga) before and after enabling the SAPF
operation. Results are obtained from the simulation for a = 0.4. (c) Stability domain and Nyquist
contour for a = 0.5. Graph exported from the Matlab app. (d) Phase-a grid current (iga) before and
after enabling the SAPF operation. Results are obtained from the simulation for a = 0.5. (e) Stability
domain and Nyquist contour for a = 0.8. Graph exported from the Matlab app. (f) Phase-a grid
current (iga) before and after enabling the SAPF operation. Results are obtained from the simulation
for a = 0.8.

6.3.2. System Stability Analysis Varying Parameters a and Q(z) (With Q(z) Being a
Constant Attenuation)

As presented in Section 2, an easy solution to make the system stable is achieved
when using a constant attenuation Q(z) < 1 in the repetitive controller. The Matlab app
proposed in this paper can be used to conduct this evaluation. Once parameter a is chosen,
the control system designer can vary the constant value of Q(z) in the stability screen. By
doing so, one can see that the stability domain of the repetitive control system is altered.
Based on Section 2, it can be seen that as |Q(z)| decreases, the system becomes more stable,
however, it loses its capacity to achieve the zero steady-state error.

For the purpose of comparison, a value of a = 0.5 is used for the following analysis.
To evaluate the impact of Q(z) < 1, two distinct values of Q(z) are considered: Q(z) = 0.9
and Q(z) = 0.6. From Figure 26a,c, it is expected that the system only remains stable in
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the second case (for Q(z) = 0.6), which is confirmed when observing the corresponding
phase-a grid current (Figure 26d). In the first case (Q(z) = 0.9), despite the visibly better
behavior (compared to when Q(z) = 1), the current does not exhibit stable behavior. In
the second case, although the grid current is still not an ideal sinusoidal signal, it remains
stable.

(a) (b)

(c) (d)

Figure 26. System stability analysis using the created Matlab app for a = 0.5 and different values of
Q(z). (b,d) present the simulation results of the control system for each case. The system is stable
for a = 0.5 and Q(z) = 0.6. (a) Stability domain and Nyquist contour for a = 0.5 and Q(z) = 0.9
(unstable system). Graph exported from the Matlab app. (b) Phase-a grid current (iga) before and after
enabling the SAPF operation. Results are obtained from the simulation for a = 0.5 and Q(z) = 0.9.
(c) Stability domain and Nyquist contour for a = 0.5 and Q(z) = 0.6 (stable system). Graph exported
from the Matlab app. (d) Phase-a grid current (iga) before and after enabling the SAPF operation.
Results are obtained from the simulation for a = 0.5 and Q(z) = 0.6.

As explained in Section 2, the error signal does not diverge or converge to zero when
using a constant value for the parameter Q(z), which can be observed in Figure 27. In fact,
this solution can reduce the total harmonic distortion (THD) of the grid currents, as shown
in Figure 26d; however, the resulting THD does not meet grid requirements (it must be
lower than 5%) [39]. Therefore, using Q(z) as a zero-phase FIR filter is an interesting choice
to repetitive control systems.

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

Figure 27. Phase-a current error obtained for the evaluated repetitive control system considering
a = 0.5 and Q(z) = 0.6.



Energies 2023, 16, 2451 26 of 33

From the analysis presented in this subsection, one can see that the Matlab app can be
used to understand and evaluate the effects of parameter Q(z) (as a constant attenuation)
on the system stability.

6.3.3. Designing a FIR Filter for the RC System

In this section, the proposed algorithms that define the magnitude limit of Q(z) will
be used. The parameters entered in the FIR filter screen and the results are displayed in
Table 2.

Table 2. Parameters and results obtained from executing the proposed algorithms using the created
Matlab app.

Parameters

Parameter a 1
Maximum initial value 1
Decrement step (∆q) 0.005
Sampling rate 17.280 kHz
Initial frequency 100 Hz
Final frequency 10 kHz
Number of evaluated frequencies 1000

Results

Filter Order (M) 6
−3 dB Cutoff Frequency ( f3dB) 2.744 kHz

The best filter to be used in this application is the one whose magnitude response is as
close as possible to the magnitude limit curve. However, sometimes this ideal filter can
be too costly to be implemented. For this reason, the Matlab app allows the exportation
of the generated curve, in order to leave the user free to design a less costly filter (lower
order and cutoff frequency). Based on the magnitude limit curve of Q(z), after some tests
using the MATLAB function fir1(), suitable for generating FIR filters, it was observed that a
FIR filter of order 6 and cutoff frequency equaling 1.8 kHz meets the requirements defined
by the curve generated by the Matlab app (Figure 28). The estimation of the order of the
FIR filter by the proposed algorithm is not applied in this example (STEP 7 is not being
evaluated for now).

Figure 28. Design of a 6th-order FIR filter based on the magnitude limit curve of Q(z), which was
generated by the developed Matlab app.
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Based on the strategy presented in the previous paragraph, the following symmetrical
FIR filter was obtained:

Q(z) = 0.01269 z3 + 0.07715 z2 + 0.2415 z + 0.3372 + 0.2415 z−1 + 0.07715 z−2 + 0.01269 z−3. (23)

This filter was implemented in a RC to control the output currents of the SAPF. However,
as presented in Section 2.1, in order to make this filter implementable, the number of delays
in the periodic signal generator of the RC must be reduced to N −M/2, i.e., it must be
reduced in 3. This means that (23) can be implemented as:

Q(z) = z3
(

0.01269 + 0.07715 z−1 + 0.2415 z−2 + 0.3372 z−3 + 0.2415 z−4 + 0.07715 z−5 + 0.01269 z−6
)

. (24)

The experimental results are shown in Figure 29, where iga is the phase-a grid current, ila is
the phase-a load current, and i f a is the phase-a output SAPF current.

i  [5A/div]ga

i  [5A/div]la

i  [5A/div]fa

[20ms/div]

Figure 29. Experimental result using the FIR filter designed in Figure 28.

It is still possible to observe the impacts of varying the parameter a on system stability.
For that, the values of all other parameters are maintained constant while testing the
following configurations: a = 0.8; a = 0.6; and a = 0.4. Figure 30 shows the results of
these tests. Figure 30a,c,e show the magnitude limit for parameter Q(z) (in green) and the
magnitude response curve of the filter used in the experiment (in red). Figure 30b,d,f show
the phase-a grid (in red), load (in blue), and SAPF (in orange) currents. As seen, for the
first two scenarios, the FIR filter is still within the magnitude limits, resulting in stable and
well-controlled currents, unlike when a = 0.4, in which the grid current shows increasing
oscillation, indicating that the system tends towards instability.

From the analysis above, one can see that the Matlab app can be used to generate the
magnitude limit of Q(z), which is necessary to design the FIR filter of a RC. Experimental
validation is used to show the effectiveness of the proposed algorithm and the created
Matlab app.
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(a)

i  [5A/div]ga

i  [5A/div]la

i  [5A/div]fa

[20ms/div]

(b)

(c)

i  [5A/div]ga

i  [5A/div]la

i  [5A/div]fa

[20ms/div]

(d)

(e)

i  [5A/div]ga

i  [5A/div]la

i  [5A/div]fa

[20ms/div]

(f)

Figure 30. Experimental results considering the FIR filter presented in (23). Results obtained for three
different values of parameter a. (a) Comparison between magnitude limit and |Q(z)| for a = 0.8.
(b) Experimental results for a = 0.8. (c) Comparison between magnitude limit and |Q(z)| for a = 0.6.
(d) Experimental results for a = 0.6. (e) Comparison between magnitude limit and |Q(z)| for a = 0.4.
(f) Experimental results for a = 0.4.

6.3.4. Error Analysis for Distinct Choices of Filter Characteristics

In the previous subsection, the FIR filter used in the control system was chosen from
the magnitude limit curve of Q(z), generated by the Matlab app. Although the designed
FIR filter meets the application requirements, it was not the solution presented by the
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Matlab app, whose parameters are presented in Table 2. Thus, in this subsection, the
performance of the repetitive control system is compared for two distinct FIR filters, which
are (i) the solution presented in (23); and (ii) a FIR filter designed based on the “result data”
in Table 2.

According to the Matlab app (Table 2), the best FIR filter for this application is the
one with an order of 6 and a cutoff frequency of 2744 Hz (Figure 31). The algorithm
implemented in the Matlab app to obtain these values is presented in Figure 15.

Using this algorithm, the Matlab app can find a FIR filter that satisfies the requirements
imposed by the magnitude limit curve while keeping the filter gain as close to unity as
possible for the widest possible range of frequencies. It is worth noting that, as mentioned
in [23], in frequencies where the filter has a non-unity gain, the system tends to have a
non-zero steady-state error. This behavior is discussed in Section 3 of this paper. Therefore,
the best filter is the one with the widest possible unity-gain passband.

Figure 31. FIR filter screen showing that the FIR filter for the evaluated RC system should have an
order (M) of 6 and a cutoff frequency ( f3dB) of 2744 Hz.

Figure 32 shows the magnitude limit curve of Q(z) (in blue), the magnitude response
of the FIR filter suggested by the Matlab app (in red), and the magnitude response of
the FIR filter implemented by (23). From these curves, one can see that both evaluated
FIR filters meet the magnitude limit graph demanded by the RC system. The magnitude
response of the FIR filter suggested by the Matlab app has a larger passband, leading to
a wider range of frequencies that the filter gain is close to unity. As a consequence, this
solution is expected to result in a smaller steady-state error, which is proved to be true
when evaluating the THD of the two repetitive control systems (Figure 33). Simulation
results are used to ensure similar electrical grid characteristics and the same window of
data to calculate the THD for all evaluated cases.

From the analysis above, one can see that the Matlab app can suggest a FIR filter
that keeps the repetitive control system fully functional. Due to the effectiveness of the
proposed algorithm, the obtained FIR filter leads to an optimized steady-state behavior. A
performance comparison between all results obtained in this section is presented below.
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Figure 32. Magnitude response of the FIR filters that are compared.

(a)

(b)

Figure 33. Phase-a grid current (iga) before and after enabling the SAPF operation. Results are
obtained from the simulation. (a) Results obtained considering the Q(z) presented in Section 6.3.3.
(b) Results obtained considering the Q(z) suggested by the Matlab app.

6.4. Performance Comparison

The THD results of the phase-a grid currents obtained in this section are presented in
Table 3. All THD data were obtained from simulation results in Matlab/Simulink software.
This was done to ensure similar electrical grid characteristics and the same window of data
to calculate the THD for all evaluated cases. From Table 3, one can see that the use of the
proposed Matlab app (cases #3 and #4), especially when using the suggested FIR filter,
results in a significant reduction in the THD of grid currents.

Although cases #3 and #4 present similar THDs, it is worth mentioning that in case #3,
the Matlab app was only used to generate the superior magnitude limit curve of Q(z) (the
FIR filter was obtained via manual tuning). Therefore, the duration of the design process
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was significantly higher than the duration of the design of Q(z) for case #4, which was the
filter suggested by the Matlab app (based on STEP 7 and STEP 8 of the algorithm proposed
in this article). Furthermore, as expected, when evaluating Figure 32, the Q(z) used in case
#4 results in a lower THD than the Q(z) used in case #3, given its larger bandwidth. Finally,
it is also worth noting that the designer can fine-tune the filter suggested by the Matlab
app (increasing its cutoff frequency and/or order) to further improve the performance of
the control system.

Table 3. Performance comparison of the evaluated SAPF considering the RC-based controller pro-
posed in [23]. THD of the phase-a grid current obtained for all Q(z) evaluated in this paper. IAE
and ITAE performance indices obtained comparing phase-a SAPF and reference currents for all Q(z)
evaluated in this paper. Results are obtained from the simulation.

Cases Evaluated Scenarios THD
ISE

(×103)
ITAE

(×103)

#1 Grid currents without SAPF 27.10% – –
#2 SAPF controlled by a RC with Q(z) as a constant attenuation (Q(z) = 0.6). 9.57% 87.46 7.01
#3 SAPF controlled by a RC with FIR filter Q(z) presented in Section 6.3.3 (M = 6 and f3dB = 1.800 kHz) 4.77% 15.27 2.88
#4 SAPF controlled by a RC with FIR filter Q(z) suggested by the Matlab app (M = 6 and f3dB = 2.744 kHz) 4.60% 14.27 2.80

Two other performance indices are also compared in Table 3, they are: (i) the integral
of the square of the error (ISE); and (ii) the integral of time multiplied by absolute error
(ITAE). The ISE index is calculated using the squared error of the control system, having
as its main contribution the transient error. This happens because the steady-state error
tends to zero for controllers based on the internal model principle (such as the repetitive
controller), resulting in a significantly lower squared error for steady-state response when
compared to transient response. This means that the ISE index can be used to compare the
transient performance of control systems. On the other hand, the ITAE index weighs the
absolute error using time, as a result, having the stationary error as the main contribution of
this index. In the analysis presented in Table 3, an interval of 0.2 seconds (after enabling the
SAPF operation) was used for computing the ISE and ITAE indices (the lower the better).

From Table 3, it is observed that case #4 results in the lowest ISE and ITAE indices
among all. This means that when using the proposed algorithm in this paper, it was
possible to achieve the lowest transient and stationary errors among evaluated cases.

7. Conclusions

This paper presents a detailed, step-by-step algorithm for designing zero-phase FIR
filters to be used in RC-based control schemes. Additionally, this paper presents a Matlab
app developed to perform the stability analysis of RC systems and the design of their FIR
filters. The proposed algorithm enables the user to obtain functional parameters for the
FIR filter of an RC-based controller (Q(z)), thus avoiding gross errors that could lead to
system instability. A shunt active power filter is used to validate the proposed algorithm.
The simulation and experimental results confirm that:

• The greater the passband of the FIR filter Q(z), the smaller the steady-state and
transient errors of the RC system;

• Despite the characteristics mentioned in the previous item, the cutoff frequency of
the FIR filter Q(z) must not be high to the point of violating its superior magnitude
limit. This limit can be obtained from the system stability analysis using the proposed
Matlab app;

• The algorithm presented in this article is functional and it results in a FIR filter Q(z)
that does not violate its magnitude limits. Furthermore, the algorithm chooses a cutoff
frequency for the filter that enables better steady-state results than most filters.
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