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Abstract: Gas disasters threaten the safe operation of coal mines. Improving the accuracy of gas
concentration predictions can effectively prevent gas disasters and reduce disaster losses. Traditional
gas concentration prediction methods poorly couple the gas concentration and its influencing factors
when dealing with a great number of features and data, which results in low prediction accuracy
and poor efficiency. To solve this problem, we used an innovative Pearson-LSTM prediction model,
which uses the Pearson coefficient to select features of gas concentration data. It then uses long
short-term memory (LSTM) that has been optimized using adaptive moment estimation (Adam)
to predict a time series. In the process of model establishment, the optimal prediction model was
obtained by constantly adjusting the number of network layers and batch size based on the fitting
effect, performance issues, and result errors. Taking monitoring data from the 2407 working face at
Yuhua Coal Mine as the sample, we compared our method with the traditional Bi-RNN and GRU
machine learning methods. The results show that, compared with the Bi-RNN and GRU models, the
mean square error of the Pearson-LSTM model can be reduced to 0.015 with an error range of 0.005
to 0.04, which has higher prediction accuracy. This method has excellent precision and robustness
for forecasting gas concentration time series. The model was able to make predictions 15 min in
advance for the 2409 working face of the Yuhua Coal Mine, and the mean square error could be
lowered to 0.008, which verifies the applicability and reliability of the model and provides a reference
for ensuring the safety of coal mine operations. In summary, Pearson-LSTM models have higher
accuracy and robustness and can effectively predict changes in gas concentration, thus allowing for
more response time for accidents, which is important for coal mine production safety.

Keywords: coal mine safety; recurrent neural network; gas control; gas concentration prediction;
deep learning

1. Introduction

China is a large coal-consuming and -producing country [1]. During the coal mining
process, gas emissions from coal seams increase dramatically, and accidents due to the
gas overlimit phenomenon and coal and gas outbursts occur frequently [2]. The key to
preventing gas catastrophes is accurately predicting gas concentrations and reasonable
mining plans. Underground gas concentrations in coal mines are impacted by several
factors, such as temperature and flow rate [3]. The change trend has a certain amount of
volatility and complexity, so it is difficult to predict or describe the change trend only by
studying the linear relationships of the gas concentration. Gas concentration data are part
of a dynamic dataset that changes infinitely over time, and there is obvious continuity in
the timescale of these changes. Many scholars at home and abroad have researched gas
concentration prediction problems. Hua [4–7] proposed a gas concentration prediction
method based on a combination of phase space reconstruction theory, adaptive chaotic
particle swarm optimization theory, and support vector machine (SVM). Yanmeng [8] estab-
lished a prediction model using SVM and differential evolution (DE) algorithms, predicting
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the gas concentration trends based on the residual correction of Markov chains. Yang [9]
dynamically predicted gas concentrations based on the multivariate distribution hysteresis
model. Zhaofa [10] predicted gas concentration trends based on interpolated trapezoidal
fuzzy information granulation. Peng et al. [11] conducted a study on the real-time pre-
diction of gas concentrations based on the Lagrange-ARIMA model. Xiangwei et al. [12]
proposed an improved gray gas concentration series prediction method based on ensemble
learning. Yunpei et al. [13] proposed a method of intelligently predicting gas concentra-
tions at working faces based on CS-LSTM, which also relatively improved the prediction
accuracy. Dezhong [14] et al. designed a GA-LSTM-based gas concentration prediction
model to improve the accuracy and precision of predictions. Yu [15] used CO concentration,
temperature, wind speed, and methane concentrations as monitoring data, designing a
sensor layout scheme to optimize the weights and thresholds of the BP neural network
model with a GA algorithm to improve the accuracy of the gas concentration prediction
model. Jingdao et al. [16] proposed a combined prediction model based on an autore-
gressive sliding average model (ARIMA) and a support vector machine (SVM) model to
address the problem where a single gas prediction model is weak in mining all features
of the mine gas concentration time series, and they found that errors in the combined
ARIMA-SVM model were substantially reduced. The prediction results were significantly
better than those of the single model, with higher prediction accuracy. Ningke et al. [17]
constructed a new IWOA-LSTM-CEEMDAN model to improve the IWOA-LSTM one-factor
residual correction model by using the complete ensemble empirical model decomposition
with adaptive noise (CEEMDAN) method, which ultimately improved the accuracy of
gas concentration prediction. Dengk et al. [18] proposed a gas concentration prediction
model based on a multisequence long short-term memory network considering the spatial
correlation between the gas concentration in the return airway and the upper corner to
improve the accuracy of a recurrent neural network in predicting gas concentrations in the
upper corner of a mine roadway. Pengtao et al. [19] proposed a model for predicting gas
concentrations in mines based on gated recurrent units (GRUs) in the context of deep learn-
ing, which has a simple structure and high prediction accuracy and can make full use of the
time series characteristics of mine gas concentration data. Zhaozhao et al. [20] proposed a
spatiotemporal graph neural network gas prediction model based on spatiotemporal data,
which is essentially a fusion of graph convolutional networks and WaveNet networks, to
improve the accuracy of gas concentration predictions.

Although all of the above studies successfully predicted gas concentrations, they
only improved in terms of accuracy. The research samples were small in terms of the
time dimension and the total amount of data, and there are some difficulties in practical
applications due to different scenarios. It is difficult to adapt models to gas concentration
time series with complex change trends.

With the development of artificial intelligence and cloud computing, long short-term
memory (LSTM) neural networks have achieved remarkable results in the fields of energy
prediction [21], intelligent devices [22], traffic intelligence management [23], etc. The most
important feature of LSTM is that it is good at dealing with complex multivariate time series
and mining the mutual intrinsic relationship effects between each variable [24]. Therefore,
long short-term memory recurrent neural networks can be used to deepen the correlation
between gas concentrations and the optimization of the model’s hyperparameters to make
accurate and efficient predictions about gas concentrations in underground coal mines.
On this basis, Pearson coefficients can be introduced for feature selection to implement
a recurrent neural network gas concentration prediction model based on Pearson-LSTM.
The model analysis and validation are then completed by using actual monitoring data,
which are evaluated in terms of running time, the fitting effect, and result errors to ensure
the better applicability of efficient and accurate gas concentration predictions. This pro-
vides a scientific basis for the development of production safety guidelines for the coal
mining industry.
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2. Long Short-Term Memory (LSTM) Neural Networks

Long short-term memory is an excellent variant of the recurrent neural network model.
Proposed by Hochreiter and improved by several scholars, its excellent performance in
processing time series and nonlinear system problems means it is widely used in natural
language processing and data mining [25]. Its effective handling of the problem of RNN
gradient explosion or disappearance makes it one of the most advanced deep-learning
architectures for sequence learning tasks [26]. The internal structure of its unit is shown in
Figure 1.
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Figure 1. LSTM structural unit diagram.

ft, it, Ct, and Ot in Figure 1 represent the forgetting gate, input gate, output gate, and
output moment, respectively; w, tanh, and b are corresponding weight coefficients, the
excitation function, and the deviation amount, respectively. The forgetting gate decides
how many state units (Ct−1) from the last moment are kept to the moment (Ct), and its
input (xt) and output (ht−1) from the previous moment are combined with the state unit
(Ct−1) through the sigmoid function to determine the forgetting content; the input gate
determines how much of the input (xt) from the network at the current moment is kept in
the state unit (Ct), and the input gate can avoid unimportant information from entering the
memory, where the input (xt) and output (ht−1) of the current moment are combined with
the tanh function to produce a new memory, that is, the intermediate vector (Ct). Combined
with the output (it) of the sigmoid function, this controls the addition of new information;
the output gate controls (Ct) how much of the state unit has output to the current output
(ht) value of the LSTM model. The operation mechanism is shown in Equations (1)–(6) [27].

Retention of forgotten gate control information:

ft = σ
(

w f · [ht−1, xt] + b f

)
(1)

Storage of updated information:

it = σ(wt · [ht−1, xt] + bi) (2)

C′ = tanh(wc · [ht−1, xt] + bc) (3)
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Aggregate input information and update information:

Ct = ft · Ct−1 + it · C′t (4)

Determine the output information:

Ot = δ(wo · [ht−1, xt] + bo) (5)

Output information activation:

ht = Ot · tanh(Ct) (6)

3. Construction of a Gas Concentration Prediction Model in a Working Face

Statistical methods are more representative of the correlations between data than
machine learning feature selection methods, such as Relief, Lasso regression, and Random
Forest. One of the most representative measures of data correlation is Pearson analysis,
which is the fundamental reason we used Pearson coefficients in this study. The Pearson
correlation coefficient measures the degree of correlation between the main indicator and
the eigenvalue. The coefficient is between −1 and +1, and the larger the absolute value,
the stronger the correlation. A negative value indicates the opposite change trend between
the main indicator and the feature, and a positive value indicates the same change trend
between the two.

Pearson correlation coefficient-based neural network models for long short-term
memory (Pearson-LSTM) can be divided into three parts: the input layer, the hidden
layer, and the output layer. The model runs as shown in Figure 2. First, the input layer
performs Pearson feature selection, shrinkage treatment, and dataset-partitioning on the
original data.

Energies 2023, 16, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Pearson-LSTM gas prediction model framework. 

( )
( )

Min
std

Max Min

X X
X

X X
−

=
−   

(7)

( )scaled stdX X Max Min Min= ⋅ − +
  

(8)

In the formula, maxX  indicates the series maximum, and axM  and M in  indicate 
the final size range. 

The training set is trained based on the hidden layer, and the LSTM neural network 
weights are continuously updated by the Adam optimization algorithm to optimize the 
model based on the principle of minimizing the value of losses. 

Finally, the optimal structure and parameter combinations are obtained by continu-
ously adjusting the number of network layers and the batch size and using the Relu acti-
vation function to enhance the computational capacity. Dropout is added to prevent over-
fitting, and the output layer predicts the data based on the model trained in the hidden 
layer, thus reducing the data. 

4. Example Analysis 
4.1. Correlation Analysis 

To make better use of the Pearson-LSTM model, we applied it to the Yuhua Coal 
Mine of Shaanxi Coal Tongchuan Mining Co. Yuhua Coal Mine mainly mines the 4# coal 
seam, with a maximum coal seam gas content of 5.4 m3/t, a minimum of 3 m3/t, and an 
average of 4.2 m3/t. The maximum gas resolution is 2.7 m3/t, the minimum is 0.69 m3/t, and 
the average is 1.695 m3/t, which means that it is a high-gas mine. The coal seam thickness 
ranges from 3 to 12 m, with an average thickness of 7.5 m. The coal seam mining process 
is top coal mining, and the coal mine advances approximately 6 m per day, which is a 
strong disturbance to the overburden of the working face [28]. 

We used the daily production monitoring data of the 2407 working face at Yuhua 
Coal Mine, recorded from March 20 to 2 April 2021. The data include eight indexes, work-
ing face gas concentration, gas concentration in the upper corner, return air gas concen-
tration, temperature, pure volume, negative pressure, carbon monoxide concentration, 

Adam 
Optimisation

Loss Computing

Optimisation of 
Tuning Parameters

Model Training

Gas Prediction Data

Data Inversion

Model Prediction
Output 
Layer

Y Y

LSTM1 LSTM2…Hidde
n

Layer

X X

Data Scaling and Division

Pearson Feature Selection

Output
Layer

Testing data

Training data

Figure 2. Pearson-LSTM gas prediction model framework.



Energies 2023, 16, 2318 5 of 16

The deflation uses the MinMaxScaler normalization formula to run the principle as
shown in Equations (7) and (8).

Xstd =
(X− XMin)

(XMax − XMin)
(7)

Xscaled = Xstd · (Max−Min) + Min (8)

In the formula, XMax indicates the series maximum, and Max and Min indicate the
final size range.

The training set is trained based on the hidden layer, and the LSTM neural network
weights are continuously updated by the Adam optimization algorithm to optimize the
model based on the principle of minimizing the value of losses.

Finally, the optimal structure and parameter combinations are obtained by contin-
uously adjusting the number of network layers and the batch size and using the Relu
activation function to enhance the computational capacity. Dropout is added to prevent
overfitting, and the output layer predicts the data based on the model trained in the hidden
layer, thus reducing the data.

4. Example Analysis
4.1. Correlation Analysis

To make better use of the Pearson-LSTM model, we applied it to the Yuhua Coal Mine
of Shaanxi Coal Tongchuan Mining Co. Yuhua Coal Mine mainly mines the 4# coal seam,
with a maximum coal seam gas content of 5.4 m3/t, a minimum of 3 m3/t, and an average
of 4.2 m3/t. The maximum gas resolution is 2.7 m3/t, the minimum is 0.69 m3/t, and the
average is 1.695 m3/t, which means that it is a high-gas mine. The coal seam thickness
ranges from 3 to 12 m, with an average thickness of 7.5 m. The coal seam mining process is
top coal mining, and the coal mine advances approximately 6 m per day, which is a strong
disturbance to the overburden of the working face [28].

We used the daily production monitoring data of the 2407 working face at Yuhua Coal
Mine, recorded from 20 March to 2 April 2021. The data include eight indexes, working
face gas concentration, gas concentration in the upper corner, return air gas concentration,
temperature, pure volume, negative pressure, carbon monoxide concentration, and carbon
dioxide concentration [29], with a sampling interval of 15 min and 1000 datasets.

The gas concentration at the working face was taken as the explanatory variable, and
all explanatory variables were divided using Pearson coefficients to find the high, moderate,
low, and irrelevant variables in the explanatory variables. The results of the coefficients are
shown in Table 1.

Table 1. Pearson correlation coefficients.

Correlation Strength Indicators Pearson Coefficient

High correlation
Temperature 0.882

Drainage negative pressure 0.841
Pure volume 0.802

Moderate correlation
Gas concentration in upper corner 0.562

Return air gas concentration 0.523

Low correlation
CO concentration 0.357
CO2 concentration 0.198

According to the magnitude of the coefficients temperature, negative pressure and
pure volume are highly correlated, indicating that these three explanatory variables are sig-
nificantly linked to the explanatory variable work-surface gas concentration and inherently
necessary. To avoid the LSTM model’s running time lengthening and accuracy degradation
due to too many indicators, we eliminated the moderate and low correlated characteristic
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indicators, and took the highly correlated indicators as the final explanatory variables, with
the explanatory variables themselves as the inputs to the model.

4.2. Data Preprocessing

The Pearson coefficient filtered data were divided into a validation set, a training set,
and a test set in a ratio of 2:6:2, and then the data were cleaned up by supplementing the
missing data with approximate averages and removing abnormal data. The data were
normalized by using the MinMaxScaler method in Section 3 and scaled to [0, 1] for easier
calculation and improved accuracy; the processed data are shown in Figure 3.
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The computer configuration used for this experiment was as follows: an Intel Core
CPU (i7-8550U) processor running at 1.80 GHz/2.00 GHz, 16 GB RAM, Windows 10 Home
Edition (64-bit). The program was designed using the Python 3.7 development language,
PyCharm Community Edition Integrated Development Environment. The LSTM model
used in the development of the program was from the Keras deep-learning framework
package with TensorFlow as the backend. The mean squared error (MSE) was used as an
indicator of the precision of the model, as shown in Equation (9).

MSE =
1
n

n

∑
i=1

( fi − yi)
2 (9)

In the formula, fi indicates the predicted value; yi indicates the true value.
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4.3. Batch Size Tuning

The batch size represents the length of sequences that the LSTM can utilize, and it is
a response to the size of the data selected by the neural network and the degree of data
association. The batch size determines the direction of gradient descent: too large, and it
leads to a stable gradient direction change, and it is easy for it to fall into the local optimal
solution; too small, and it leads to difficult convergence, thus affecting the model accuracy.
Therefore, the selected batch size must meet the application requirements of the model.

Therefore, to research the influence of batch size on the model, we selected samples
numbered from 700 to 1000 for this experiment and adopted a broad strategy of gradually
increasing the batch size. The neuronal number was set to 128 to prevent overfitting, and
the Epoch was set to 200 to make the model loss value decrease sufficiently and compare
the effect of batch sizes of 10, 20, 50, and 100.

From Figures 4 and 5, it can be seen that when the batch size is 50, the loss value is
significantly lower than that of batch sizes 10, 20, and 100, and the loss value decreases the
fastest during iterations without significant oscillations. Thus, prediction fit is the best. As
can be seen from Table 2, a batch size of 50 has the smallest mean square error, although the
run time is not the shortest. The predictive ability of gas concentration prediction models
can be improved with an increase in batch size. However, when the batch size increases to
a certain size, the accuracy and imitative effect of the model decreases even if the run time
is shortened. Considered comprehensively when the batch size is 50, the model has the
greatest predictive power with a run time of about 4 min and an error of 0.008.
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4.4. Network Layer Tuning

Theoretically, the more hidden layers, the better the fitting ability, but with an increase
in layers, the structure will become more complex and harder to train, and there may be an
overfitting situation, worsening the generalization ability. In this paper, we compared the
effects of two-layer, three-layer, and four-layer LSTMs. The experimental results are shown
in Figures 6 and 7 and Table 3.
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Table 3. LSTM layer prediction results.

Batch Size = 50 Neuronal Number = 128

LSTM Layers Operation Time MSE

2 4min 0.0587
3
4

5min
8min

0.0801
0.1292

Figure 6 shows the results of the comparative analysis of the loss values for different
layers. From Figure 6, it can be seen that the two-layer LSTM continues to maintain a low
loss value range during the iterative process, with no significant fluctuations compared to
the three- and four-layer LSTMs. Figure 7 shows the fitting results with different numbers
of layers. The prediction results of the three- and four-layer models are slightly higher than
the actual values, but the prediction results of two-layer LSTM are closer to the real data
values. Table 3 shows that the two-layer LSTM has the shortest runtime and the smallest
error. The model’s learning ability increases with the increase in the number of LSTM layers,
but the precision of its predictions decreases, and the running time increases. The prediction
effect of the LSTM model with two hidden layers is optimal when considered together.

Both the batch size and the size of the network layers have a significant impact on the
model’s training time, testing time, and learning ability. An appropriate combination of
parameters can significantly improve the model performance when multivariate fusion
inputs are used. In this study, a batch size of 50 and 2 hidden layers are the best parameters
for a working face gas concentration prediction model, and the model can better forecast
the gas concentration change trends after training.

4.5. Model Comparison Analysis

To verify the superiority of the Pearson-LSTM model, in this experiment, the hidden
layer structure of the Pearson-LSTM model’s main training layer was replaced by the
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Bi-RNN [30,31] and GRU [32,33] structures. The test set was selected and performed with
the same parameters. The results are shown in Figures 8 and 9 and Table 4.

Energies 2023, 16, x FOR PEER REVIEW 11 of 17 
 

 

smallest error. The model’s learning ability increases with the increase in the number of 
LSTM layers, but the precision of its predictions decreases, and the running time increases. 
The prediction effect of the LSTM model with two hidden layers is optimal when consid-
ered together. 

Both the batch size and the size of the network layers have a significant impact on 
the model’s training time, testing time, and learning ability. An appropriate combination 
of parameters can significantly improve the model performance when multivariate fusion 
inputs are used. In this study, a batch size of 50 and 2 hidden layers are the best parameters 
for a working face gas concentration prediction model, and the model can better forecast 
the gas concentration change trends after training. 

4.5. Model Comparison Analysis 
To verify the superiority of the Pearson-LSTM model, in this experiment, the hidden 

layer structure of the Pearson-LSTM model’s main training layer was replaced by the Bi-
RNN [30,31] and GRU [32,33] structures. The test set was selected and performed with the 
same parameters. The results are shown in Figures 8 and 9 and Table 4. 

Table 4 shows that Bi-RNN has the longest run time among the three models, and as 
shown in Figure 8, Pearson-LSTM is the most stable during the iterations, with the fastest 
decrease in error compared with GRU and Bi-RNN. In Figure 9, GRU and Bi-RNN can fit 
only the peaks of A, C, D, F, and H efficiently, but the fitting effect at the valley values of 
B, E, G, and I are much smaller than those of the Pearson-LSTM model. Compared with 
GRU and Bi-RNN, the Pearson-LSTM model can effectively accommodate the general gas 
concentration trend, as well as the peaks and valleys, and it has the lowest error rate in 
terms of predicting the trend change process with minimum error. 

Table 4. Comparison of operation results. 

Parameter Setting Batch Size = 50; Layers = 2; Neuronal Number = 128 
model Pearson-LSTM GRU Bi-RNN 

operation time 5569 s 4540 s 18,640 s 
MSE 0.0521 0.0689 0.0801 

 
Figure 8. Loss comparison for the three models. Figure 8. Loss comparison for the three models.

Energies 2023, 16, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 9. Test results comparison for the three models. 

This paper compared the overall fitting results of GRU and Bi-RNN to verify the su-
periority of the Pearson-LSTM model in a deeper way, as shown in Figures 10–12 and 
Table 5. 

Table 5. Comparison of prediction results. 

Model Maximum Error Minimum Error Mean Error 
Pearson-LSTM 0.046283 0.00589 0.015479 

GRU 
Bi-RNN 

0.063648 
0.073761 

0.00916 
0.0372 

0.04246 
0.042919 

 

Figure 9. Test results comparison for the three models.



Energies 2023, 16, 2318 11 of 16

Table 4. Comparison of operation results.

Parameter Setting Batch Size = 50; Layers = 2; Neuronal Number = 128

model Pearson-LSTM GRU Bi-RNN
operation time 5569 s 4540 s 18,640 s

MSE 0.0521 0.0689 0.0801

Table 4 shows that Bi-RNN has the longest run time among the three models, and as
shown in Figure 8, Pearson-LSTM is the most stable during the iterations, with the fastest
decrease in error compared with GRU and Bi-RNN. In Figure 9, GRU and Bi-RNN can fit
only the peaks of A, C, D, F, and H efficiently, but the fitting effect at the valley values of
B, E, G, and I are much smaller than those of the Pearson-LSTM model. Compared with
GRU and Bi-RNN, the Pearson-LSTM model can effectively accommodate the general gas
concentration trend, as well as the peaks and valleys, and it has the lowest error rate in
terms of predicting the trend change process with minimum error.

This paper compared the overall fitting results of GRU and Bi-RNN to verify the
superiority of the Pearson-LSTM model in a deeper way, as shown in Figures 10–12 and
Table 5.
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In the gas concentration time series, the overall trend was predicted by all three models;
however, compared with Bi-RNN and GRU, the Pearson-LSTM model has a better overall
fitting effect. A detailed comparison of the forecast data errors is shown in Table 5. The
Bi-RNN and GRU prediction models are almost identical, with an average mean square
error of approximately 0.02. The Pearson-LSTM prediction model has good saturation and
greater precision, and the average mean square error could be lowered to 0.015, with an
error range of 0.005 to 0.04.
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4.6. Application Effect Investigation

To verify the suitability and credibility of the working face gas concentration pre-
diction model presented in this paper, we used the Keras deep-learning framework with
TensorFlow as the main backend to implement the model’s online training as shown in
Figure 13. First, the data were acquired using a sensor for Pearson feature selection and
normalization. Second, the LSTM grid model with two hidden layers and a batch size of 50
was constructed based on the results of the model tuning in Section 3. The preprocessed
data were fed into the network for training, during which the gradient and loss values
were calculated, and their weights were updated continuously. Finally, the real-time sensor
data were fed into the prediction model to obtain the predicted gas concentration value at
the overburdened working face.

Energies 2023, 16, x FOR PEER REVIEW 14 of 17 
 

 

4.6. Application Effect Investigation 
To verify the suitability and credibility of the working face gas concentration predic-

tion model presented in this paper, we used the Keras deep-learning framework with 
TensorFlow as the main backend to implement the model’s online training as shown in 
Figure 13. First, the data were acquired using a sensor for Pearson feature selection and 
normalization. Second, the LSTM grid model with two hidden layers and a batch size of 
50 was constructed based on the results of the model tuning in Section 3. The preprocessed 
data were fed into the network for training, during which the gradient and loss values 
were calculated, and their weights were updated continuously. Finally, the real-time sen-
sor data were fed into the prediction model to obtain the predicted gas concentration 
value at the overburdened working face. 

 
Figure 13. Advanced prediction scheme of gas concentration in the working face. 

The 2407 and 2409 working faces are neighboring working faces, and their geology 
and mining conditions are basically the same. Using a sensor, the 2409 working face of the 
Yuhua Coal Mine was analyzed by the three models of Bi-RNN, GRU, and Pearson-LSTM 
models for advanced corresponding time outputs starting at 13: 10: 00 on 19 August 2021 
at an interval of 15 min. By 01: 30: 00 on 22 August 2021, a total of 240 sets of results were 
selected. The predictions from the three models are shown in Figure 14. The models auto-
matically calculated the errors after inputting the data, and the error calculation process 
is shown in Equation (10). The error statistics were plotted in a box plot, as shown in Fig-
ure 15, where the horizontal line in the middle of the box plot represents the mean value. 
The Pearson-LSTM model’s result is closer to the true value, with an average error of 
0.008, which is 55.6% and 52.2% lower than Bi-RNN and GRU, respectively. 

Pearson 
feature 

selection

Data set 
partitioning 

and 
normalization

data pre-processing

The sensor obtains 
the relevant data 

of the 
corresponding 
working face

LSTM network construction
Network structure determination 

and hyper parameter setting

Input data and circular training

Loss function 
and gradient calculation

update weight 
with gradient descent method

Pearson-
LSTM
model

Sensor real-time data

Advanced 
prediction

……

Data 
monitoring

Safety Officer

Client access

Organizational 
leadership

System application 
layer

Data processing 
applications
Data storage 
applications

User management 
system

Gas prediction 
applications Back-end process handling 

and visualisation

Data processing 
layer

Cloud Platform 
Services

Virtual Resource 
Layer

Physical resource 
layer

online training

Figure 13. Advanced prediction scheme of gas concentration in the working face.

The 2407 and 2409 working faces are neighboring working faces, and their geology
and mining conditions are basically the same. Using a sensor, the 2409 working face of the
Yuhua Coal Mine was analyzed by the three models of Bi-RNN, GRU, and Pearson-LSTM
models for advanced corresponding time outputs starting at 13: 10: 00 on 19 August
2021 at an interval of 15 min. By 01: 30: 00 on 22 August 2021, a total of 240 sets of
results were selected. The predictions from the three models are shown in Figure 14. The
models automatically calculated the errors after inputting the data, and the error calculation
process is shown in Equation (10). The error statistics were plotted in a box plot, as shown
in Figure 15, where the horizontal line in the middle of the box plot represents the mean
value. The Pearson-LSTM model’s result is closer to the true value, with an average error
of 0.008, which is 55.6% and 52.2% lower than Bi-RNN and GRU, respectively.
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5. Conclusions

(1) During the training process, the value of the target function, the fit, and the running
time were influenced by the choice of batch size and the number of layers in the
Pearson-LSTM model. An appropriate batch size and number of network layers can
efficiently improve the model. An experimental Pearson-LSTM gas prediction model
with a batch size of 50 and 2 hidden layers is the best combination to predict gas
concentration with maximum accuracy.
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(2) The Pearson-LSTM model has a better predictive effect compared with traditional
recurrent neural networks, such as Bi-RNN and GRU. Taking the prediction results
of the 2407 working face of the Yuhua Coal Mine as an example, the average error
of the model can be lowered to 0.015. The margin of error is 0.005~0.04, with high
robustness.

(3) The Pearson-LSTM gas concentration prediction model was employed to forecast gas
concentrations at the 2409 working face of the Yuhua Coal Mine 15 min in advance,
with an average error of 0.008. It demonstrated the reliability of the model and
guaranteed the safety of daily coal mine operations. Thus, the reliability of the model
has been fully demonstrated, proving that it can be applied to the coal mining process
and can effectively predict gas concentrations. It can be promoted and applied to
other coal mines to guarantee the safety of daily coal operations.
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