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Abstract: Stochastic simulations enable researchers to incorporate uncertainties beyond numerical
discretization errors in computational fluid dynamics (CFD). Here, the authors provide examples of
stochastic simulations of incompressible flows and numerical solutions for validating these newly
emerging stochastic modeling methods. A numerical scheme is constructed for finding solutions to
stochastic parabolic equations. The scheme is second-order accurate in time for the constant coeffi-
cient of the Wiener process term. The stability analysis of the scheme is also provided. The scheme
is applied to the dimensionless heat and mass transfer model of mixed convective non-Newtonian
nanofluid flow over oscillatory sheets. Both the deterministic and stochastic energy equations use
temperature-dependent thermal conductivity. The stochastic model is more general than the deter-
ministic model. The results are calculated for both flat and oscillatory plates. Casson parameter,
mixed convective parameter, thermophoresis, Brownian motion parameter, Prandtl number, Schmidt
number, and reaction rate parameter all impact the velocities, temperatures, and concentrations
shown in the graphs. Under the influence of the oscillating plate, the results reveal that the concentra-
tion profile decreases with increasing Brownian motion parameters and increases with increasing
thermophoresis parameters. The behavior of the velocity profile for the deterministic and stochastic
models is provided, and contour plots for the stochastic model are also displayed. This article aims to
provide a state-of-the-art overview of recent achievements in the field of stochastic computational
fluid dynamics (SCFD) while also pointing out potential future avenues and unresolved challenges
for the computational mathematics community to investigate.

Keywords: stochastic scheme; stability; mixed convective flow; non-Newtonian fluid; chemical reaction

1. Introduction

Numerical solutions of differential equations with stochastic touch significantly impact
areas such as uncertainty quantification, stability of noisy systems, and coarse-grained
and multiscale formation. In the past few years, research in uncertainty quantification
with respect to large-scale numerical simulation has dramatically increased, raising many
questions about the results’ accuracy and model construct. However, simulation is similar
to an experimental science construct model from the very beginning rather than at the
end as an afterthought, often bound to error as a posteriori. Today, the greatest focus of
contemporary society lies in the study of flow simulation with controlled error and an
accurate construct, which raises a problem of physical factors such as constitutive laws,
boundary and initial conditions, transport coefficients, source and interaction terms, and
geometric irregularities.

Systems from nano- to macro-scales such as self-assembly processes and large, sudden
disturbances in flow past an aircraft are considered noisy non-linear systems. The stochastic
dynamical system comprises bifurcation and messy transitions that extensively vary from
deterministic dynamical systems [1]. However, the system’s non-linear interaction predicts
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the extrinsic and intrinsic stochastic simulation, which needs further research for more
elaboration. Turbulent boundary layer flow consists of several wide ranges of small
scales and background turbulence, which otherwise did not affect the overall flow [2].
Alternatively, other flow systems with a decreased Reynolds number and little noise could
highly disturb the mean flow structure [3].

The turbulent flow model with increased Reynolds numbers or atomistic simulations
of microscopic systems is the most intriguing system that involves a complex degree of
freedom. Progressively, using a coarse-grained system reduces the degree of freedom and
contributes to the system’s gross energy. For effective and scalable stochastic equations,
such systems are of crucial importance. A method that involves coarse graining of the
molecular dynamics is referred to as a dissipative particle dynamic method [4], which leads
to a system of stochastic ordinary differential equations which require an accurate solving
procedure, as constituted by several particles.

Authentication of the stochastic fluid dynamic (CFD) model requires a high de-
gree of accurate characterization of input and output, which is arduous and lacking in
the literature.

Flow analysis has a renowned attraction among various fields of fascinating research
and effective technology implementation due to its experimental and computational re-
search aspects. Polymer processing activities involve using non-Newtonian fluids, for
which different configurations have been formed using the optimal layout of fluid fol-
lowing the examination of thermal flow in the convective-free zone. Lou and Yang [5]
performed a numerical analysis to evaluate the effect of blood as a non-Newtonian fluid
on the aorta during bifurcation pulsative flow. On the other hand, rheological blood data
were obtained using the Casson equation with a weak form. Rather than identifying yield
surfaces, Papanastasiou and Boudouvis [6] looked at the material flow with a continuous
viscoplastic equation. Unstructured grid discretization of the convective flux, diffusion
flux, and source term was determined by Li et al. [7]. Casson fluid’s non-Newtonian
characteristics are investigated by comparing it to a Newtonian fluid of varying viscos-
ity. Venkatesan et al. [8] treated blood as a Casson fluid by studying blood flow via a
bell-shaped stenosis in a tiny artery. The results showed that flow resistance and skin
friction are directly related to stenosis depth and that an increase in yield stress reduces
flow rates. Amlimohamadi et al. looked at the numerical flow of a Casson fluid through a
2D permeable medium with a local compression using Darcy’s law [9].

Casson fluid subjected to Lorentz force was the focus of a study [10,11] that aimed to
examine the dynamics of the fluid by focusing on its thermally stratified melting surface
at the upper horizontal plane. The research indicated that the effect of Lorentz force on
the flow of Casson fluid is minimal when the surface thickness is small but grows as the
thickness of the paraboloid of revolution increases and the domain approaches the free
stream. There is also an inverse effect. However, when the Casson parameter increases,
velocities fall in both directions.

Nowadays, incompressible non-Newtonian flow problems are solved using dynamic
schemes such as finite difference, finite element, and finite volume approaches. These
approaches have extensive utilization in solving 2D flow configurations. However, stochas-
tic computational simulation has its worth in solving physical problems. The advent
of powerful multiprocessing computers and user-friendly cluster management software
has given this method new life. The literature lacks stochastic computational analysis
of non-Newtonian fluid, which needs further investigation [12–17]. Additionally, using
a higher-order computational scheme combined with Casson fluid would embellish the
given study.

The intellectual computation approach involves the stochastic methodologies, which
have wide applications in rotary hybrid nanofluid movement exposed to stretching sheet [18],
Magneto-Cross nanomaterial flow [19], the MERS-Corona model [20], and fluid flow sys-
tems [21–23]. Details of fluid flowing behavior can be found in [24–26].
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As we enter the era of stochastic modeling in fluid mechanics, there is a great deal
of ground to cover. This concept, stochastic modeling of computational fluid mechanics,
explains how to apply a mathematical modeling procedure to foretell the responses of a real-
world structural system in its surroundings. Due to the presence of both external (variations
in the real system) and internal (uncertainties in the model itself) factors, computational
models require robust optimization, design, and updating in order to be useful.

In contrast to their deterministic counterparts, stochastic simulations typically have a
higher computational complexity than an order of magnitude. However, parallel methods
are relatively simple to construct and can greatly reduce the time needed for the simulation.
Adding credibility to simulation and making it a vital tool in designing complicated
flow systems is the establishment of “error bars” in CFD that reflect not just numerical
uncertainty but also uncertainty in physical modeling and geometry. It is a significant
milestone toward creating flow design certificates of fidelity based on simulation. In
addition, stochastically simulated responses can be used as a sort of sensitivity analysis that
could potentially influence experimental work and dynamic instrumentation and make
the connection between simulations and experiments more relevant. There are still open
questions regarding long-term integration, stochastic discontinuities, adaptability, and high
dimensionality. All these factors contribute to making multi-element gPC (with Galerkin
or collocation projections) a “mainstream” stochastic simulation approach and a potent
substitute for Monte Carlo (MC) simulation. These techniques outperform MC by several
orders of magnitude for the stochastic coupled inputs found in most CFD applications and
are better suited for unsteady simulations.

Time-dependent von Karman fluid flow over a rotating disk has been studied in [27].
It was mentioned in [27] that a better technique than the finite difference method was
proposed based on the spectral Chebyshev collocation method in a direction normal to the
disk. Forward marching was applied to discretize the time variable. The method applied
the continuity equation, the Navier–Stokes equation, and the energy equation with effects
of joule heating and viscous dissipation. One more scheme has been developed [28] for
solving non-linear differential equations obtained from heat transfer problems. This scheme
has solved a few fin problems, and those illustrated that the algorithm generated highly
accurate solutions. Since many phenomena in mathematical physics and astrophysics are
modeled by singular, strongly non-linear initial or boundary value problems of the Lane–
Emden–Fowler type, it is of interest [29] to devise a computational method for calculating
exact and analytic approximate solutions to these problems. In [30], a mathematical
analysis is aimed at proving the equivalence of the ratio approach and the conventional
residual approach, particularly regarding root-finding difficulties, using the homotopy
analysis technique. For additional fluid flow studies, readers can refer to [31–33]. Using
a non-linear radiation effect over a bidirectional stretching surface, the authors of [34]
investigate the heat transfer characteristics of a continuous, three-dimensional, rotating
flow of magnetohydrodynamic hybrid nanofluids. The work [35] attempts to analyze the
three-dimensional flow of an engine oil-based nanofluid under the impact of rotation and
partial slip phenomenon on a stretchy surface.

Several researchers are now working to develop a deeper understanding of stochastic
partial differential equations and their numerical solutions. For stochastic differential
equations in both linear and infinite dimensions, Tessitoe [36] coincided with the general
conditions of the modified solution, which is definitely a major finding here. With homoge-
neous Dirichlet boundary conditions, the authors of [37] investigated the classical version
of the stochastic equation to find the likelihood of finite-time blowup of positive solutions
and the presence of non-trivial positive global solutions. The authors of [38] examined the
Holder continuous coefficient, which was created using steady colored noise, and studied
the stochastic partial differential equation (SPDE). In order to achieve path-wise uniqueness
and precisely control the Laplacian, a backward doubly stochastic differential equation
(SDE) is used. The weak limit of a series of SDE system variables, however, provides the
solution. By exchanging the discrete Laplacian operator in the SPDE, we can construct this
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sequence. Cell repolarization was described by Altmeyer et al. using a stochastic variant of
the Meinhardt equation. They proved that mild SPDE solutions exist, and that the driving
noise process influences the solution pattern evolution [39]. The solution is described in
full in the aforementioned citations.

Estimating SPDE numerically is a challenging endeavor. Nevertheless, lattice ap-
proximations of elliptic stochastic PDEs were developed by Gyorgy et al. [40]. The rate
of convergence of approximations is determined for white noise on a restricted domain,
in Rd, for d = 1, 2, 3. Analysis of the approximation of solutions to Itô-type stochastic
partial differential equations and proof of their mean-square consistency and stability using
explicit and implicit finite difference methods are presented in [41]. The mean-square
consistency was made clear, and a numerical solution was provided for the stochastic Fitz–
Hugh–Nagumo model by Yasin et al. [42]. This study demonstrates the scheme’s stability
via the Von Neumann technique. The forward Euler method was tested for stochastic
nonlinear advection–diffusion models, and Yasin et al. [43] analyzed its consistency and
stability. Numerical approximations of the linear elliptic and parabolic spectral power
distribution functions driven by white noise are provided, analyzed, and tested in [44]
using finite element and difference methods. All the aforementioned references feature
difference approximations of the integral and weak formulations of the SPDEs and the
finite element methods.

Consistency, stability, and convergence are just some of the features of a good scheme
for numerical solutions. In [45], Kruse provides an error analysis of the Milstein–Galerkin
finite element method, which is used for the solution of semi-linear SPDs. Roth [46]
compared the difference to the Wong–Zakai method for Itô-type stochastic hyperbolic
differential equations. The investigation was bolstered by the schemes’ consistency, stability,
and convergence. In [47], stability, convergence, and consistency studies were obtained for
the numerical solution of the stochastic advection–diffusion equation of Itô-type using a
stochastic implicit difference scheme.

With the help of the Euler–Maruyama method, Li et al. [48] were able to find nu-
merical solutions to the McKean–Vlasov stochastic differential equations (SDES). Lipchitz
conditions were applied in practice to demonstrate their one-of-a-kind existence and robust
convergence. For a set of SDEs, Hu et al. [49] determined the convergence rate of the
Euler–Maruyama scheme, which provides information about the asymptotic stability of the
underlying SDEs. The stability of the zero solution of stochastic delay differential equations
was investigated by El-Metwally et al. [50] by examining computer approximations of
Nicholson’s blowfly equation using the Euler–Maruyama technique and the Lyapunov
functional technique. The aforementioned sources provide a wealth of information on the
transmission of illnesses, mathematical simulation, immunization, and analytical methods.

Differential equations resulting from mathematical models of many physical phe-
nomena must be solved using analytical or numerical methods. Some existing analytical
methods produce exact solutions of mathematical models, and some solutions are in the
form of infinite series that converge to the exact solution. Since the exact solution of ev-
ery mathematical model cannot be found easily, some approximate solution techniques
would be preferred. The analytical approximate solution techniques may consume more
time to obtain accurate solutions on the large domain, so the numerical approximate solu-
tion technique may be preferred. This study uses a finite difference method that handles
time-dependent stochastic differential equations.

2. Proposed Numerical Scheme

The work on stochastic parabolic equations can be seen in [51]. For constructing
a numerical scheme for the stochastic partial differential equation (SPDE), consider the
following equation:

du = d1∂xxudt + σdW (1)

where W denotes the Weiner process and d1, σ are constants.
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The time discretization for Equation (1) is built as follows:

un+1
i = aun

i + bun−1
i + cdun+1

i (2)

where a, b, and c are unknown, whose values will be determined in the given procedure.
For doing so, consider the Taylor series expansion for differential as:

un+1
i = un

i + dun
i +

1
2

d2un
i + . . . (3)

un−1
i = un

i − dun
i +

1
2

d2un
i + . . . (4)

dun+1
i = dun

i + d2un
i + . . . (5)

Now, substituting Equations (3)–(5) in Equation (2) yields:

un
i + dun

i +
1
2

d2un
i = aun

i + bun
i − bdun

i +
b
2

d2un
i + cdun

i + cd2un
i (6)

Comparing coefficients of un
i , dun

i , and d2un
i on both sides of Equation (6) gives:

1 = a + b (7)

1 = −b + c (8)

1
2
=

b
2
+ c (9)

Solving Equations (7)–(9) gives:

a =
4
3

, b = −1
3

and c =
2
3

. (10)

Inserting values of a, b, and c in Equation (2) yields:

un+1
i =

4
3

un
i −

1
3

un−1
i +

2
3

dun+1
i (11)

Considering Equation (1), Equation (11) can be rewritten as:

un+1
i =

4
3

un
i −

1
3

un−1
i +

2
3

dt
(

d1∂xxun+1
i

)
+ σ

(
3Wn+1 − 4Wn + Wn−1

)
(12)

The Weiner process term in Equation (12) is expressed as:

3Wn+1 − 4Wn + Wn−1 = 3
(

Wn+1 −Wn
)
−
(

Wn −Wn−1
)

(13)

since
(
Wn+1 −Wn) ∼ ∆W, where ∆W is the normal distribution with mean zero and

standard deviation
√

dt.
Due to Equation (13) and by using the normal distribution, Equation (12) can be stated

as:
un+1

i =
4
3

un
i −

1
3

un−1
i +

2
3

dt
(

d1∂xxun+1
i

)
+

2
3

σ∆W (14)

Equation (14) is a semi-discrete equation that gives time discretization of Equation (1).
Obtaining a fully discrete scheme applying central difference approximation for the second-
order spatial derivative in Equation (13) gives:

un+1
i =

4
3

un
i −

1
3

un−1
i +

2
3

dtd1

(
un+1

i+1 − 2un+1
i + un+1

i−1

(∆x)2

)
+

2
3

σ∆W (15)
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Thus, Equation (15) is the fully discrete equation that discretizes both time and space
terms in Equation (1).

3. Stability Analysis

To find the stability conditions of the constructed scheme (15), consider the equation:

dv = ∂xxvdt + vσdW (16)

By applying the constructed scheme in Equation (16), it yields:

vn+1
i =

4
3

vn
i −

1
3

vn−1
i +

2
3

dtd1

(
vn+1

i+1 − 2vn+1
i + vn+1

i−1

(∆x)2

)
+

2
3

vn+1
i σ∆W (17)

By adopting the stability procedure of Von Neumann analysis, the following transfor-
mations are adopted:

vn+1
i = En+1eiIψ, vn

i = EneiIψ

vn−1
i = En−1eiIψ, vn+1

i±1 = En+1e(i±1)Iψ

}
(18)

where I =
√
−1.

By using Transformation (18) in Equation (17), it yields:

En+1eiIψ =
4
3

EneiIψ − 1
3

En−1eiIψ +
2
3

dt

{
e(i+1)Iψ − 2eiIψ + e(i−1)Iψ

(∆x)2

}
En+1 +

2
3

En+1eiIψ∆Wσ (19)

Dividing both sides of Equation (19) by eiIψ, it results in:

En+1 =
4
3

En − 1
3

En−1 +
2
3

dt

(∆x)2

(
eIψ − 2 + e−Iψ

)
En+1 +

2
3

En+1σ∆W (20)

By using the trigonometric formula for eIψ and e−Iψ in Equation (20), rewrite the
resulting equation as:[

1− 2
3

dt

(∆x)2 {2cosψ− 2} − 2
3

∆Wσ

]
En+1 =

4
3

En − 1
3

En−1 (21)

Equation (21) can be written as:

En+1 = AEn + BEn−1 (22)

where A =
4
3

1− 4
3

dt
(∆x)2

{cosψ−1}− 2
3 ∆Wσ

and B =
− 1

3
1− 4

3
dt

(∆x)2
{cosψ−1}− 2

3σ∆W
.

Stability analysis using a specific method yields an additional equation:

En = 1.En + 0.En−1 (23)

By combing Equations (22) and (23), the equation of a vector matrix can be written as:[
En+1

En

]
=

[
A B
1 0

][
En

En−1

]
(24)

The Eigenvalues of the coefficient matrix in Equation (24) can be expressed as:

λ1 =
A−
√

A2 + 4B
2

and λ2 =
A +
√

A2 + 4B
2

(25)
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The amplification factor, considering the independent state of the Weiner process, can
be expressed as:

|λ1|2 ≤
|A|2

4
+

∣∣A2 + 4B
∣∣

4
+

A
√

A2 + 4B
2

(26)

Inequality (26) can be simplified as:

E|λ1|2 ≤ 1 +
8
√

1 + d

3
(

1 + 4d
)2

+ 12σ2dt
(27)

4. Consistency Analysis

The consistency of the constructed scheme for Equation (16) was performed. For this,
consider the Taylor series expansion for vn+1

i+1 and vn+1
i−1 as:

vn+1
i+1 + vn+1

i−1 = 2vn+1
i + (∆x)2∂xxvn

i + O
(
(∆x)4

)
(28)

Insert Expressions (3), (4), and (28) into Equation (16), as:

vn
i + dvn

i +
1
2

d2vn
i =

4
3

vn
i −

1
3

vn
i +

1
3

dvn
i −

1
6

d2vn
i +

2
3

dt∂xxvn
i +

2
3

(
vn

i + dvn
i +

1
2

d2vn
i

)
σ∆W (29)

Equation (29) can be expressed as:

2
3

dvn
i +

2
3

d2vn
i =

2
3

∂xxvn
i dt +

2
3

vn
i σ∆W +

2
3

(
dvn

i +
1
2

d2vn
i

)
σ∆W (30)

Multiplying both sides of Equation (30) by 3
2 , it yields:

dvn
i + d2vn

i = ∂xxvn
i dt + vn

i σ∆W + dvn
i σ∆W +

1
2

d2vn
i σ∆W (31)

By using dvn
i = ∆t ∂v

∂t

∣∣∣n
i

and applying the limits ∆t→ 0 and ∆x → 0 in Equation (31),
the original Equation (16) can be obtained. Therefore, the constructed scheme is consistent.

5. Problem Formulation

Consider the incompressible, laminar, unsteady, and one-dimensional Casson nanofluid
flow over the sheet. The sheet is moving with velocity uw = u◦ cos(awt∗) or u◦ sin(awt∗).
The flow in the fluid is generated by the sudden movement of the sheet toward the positive
x∗ axis. The y∗ axis is perpendicular to the x∗ axis, or the direction of the flow. The flow is
considered with viscous dissipation effects, variable thermal conductivity, and the chemical
reaction. Figure 1 shows the geometry of the problem. By considering the assumption of a
large Reynolds number, the governing equations of the phenomenon are written as [52]:

∂u∗

∂t
=

(
1 +

1
β

)
ν

∂2u∗

∂y∗
+ g
(

β◦(T − T∞) + β1(T − T∞)2 + β2(C− C∞) + β3(C− C∞)2
)

(32)

∂T
∂t∗

=
1

ρcp

∂

∂y∗

(
k(T)

∂T
∂y∗

)
+ τ

(
DB

∂T
∂y∗

∂C
∂y∗

+
DT
T∞

(
∂T
∂y∗

)2
)

(33)

∂C
∂y∗

= DB
∂2C
∂y∗2

+
DT
T∞

∂2T
∂y∗2

− k1(C− C∞)2 (34)
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Subject to the initial and boundary conditions:

u∗(0, y∗) = T(0, y∗) = C(0, y∗) = 0 (35)

u∗ = Uw, T = Tw, C = Cw at y∗ = 0
u∗ → 0, T → T∞, C → C∞ when y∗ → ∞

}
(36)

where u∗ is the horizontal component of velocity, ν is the kinematic viscosity, g is gravity,
β◦ and β1 are coefficients of linear and non-linear thermal expansion, respectively, β2
and β3 are coefficients of linear and non-linear solutal expansion, respectively, k(T) =
k∞(1 + ε1θ) is the variable thermal conductivity, k1 is the dimensional reaction rate, DB is
the Brownian motion coefficient, DT represents the thermophoresis diffusion coefficient,
Tw is the temperature of the fluid on the sheet, T∞ is the ambient temperature, Cw is the
concentration at the wall, and C∞ is the ambient concentration.

For making Equations (32)–(36) dimensionless, the transformations are provided as:

u =
u∗

u◦
, y =

√
w
ν

y∗, t = wt∗, θ =
T − T∞

Tw − T∞
, φ =

C− C∞

Cw − C∞
(37)

By using the transformations in (37) in Equations (32)–(36), it yields:

∂u
∂t

=

(
1 +

1
β

)
∂2u
∂y2 + λθ + λδ1θ2 + λφ + λδ2φ2 (38)

∂θ

∂t
=

1
Pr

{
ε1

(
∂θ

∂y

)2
+ (1 + ε1θ)

∂2θ

∂y2

}
+ Nb

∂θ

∂y
∂φ

∂y
+ Nt

(
∂θ

∂y

)2
(39)

∂φ

∂t
=

1
Sc

∂2φ

∂y2 +
Nt

Nb

∂2θ

∂y2 − γφ2 (40)

Subject to the initial and boundary conditions:

u(0, y) = θ(0, y) = φ(0, y) = 0 (41)

u = cos(at)or sin(at) , θ = 1, φ = 1
u→ 0, θ → 0, φ→ 0

}
(42)

Equations (38)–(40) are deterministic equations, and for considering stochastic differ-
ential equations, these equations are rewritten as:

du =

(
1 +

1
β

)
∂xxudt +

(
λθ + λδ1θ2 + λφ + λδ2φ2

)
dt + σdW (43)
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dθ =
1
Pr

{
ε1
(
∂yθ
)2

+ (1 + ε1θ)∂yyθ
}

dt +
{

Nb∂yθ∂yφ + Nt
(
∂yθ
)2
}

dt + θσdW (44)

dφ =
1
Sc

∂yyφdt +
Nt

Nb
∂yyθdt− γφ2dt + φσdW (45)

subject to the same boundary conditions considered for the deterministic model, (38)–(40).

6. Results and Discussion

The constructed scheme was applied to Equations (43)–(45) using initial and boundary
conditions (41)–(42). The integrated Weiner process term was approximated by the normal
distribution with zero and a standard deviation of

√
∆t. The constructed scheme was

second-order accurate when the coefficient Weiner process term was constant. The second-
order central difference discretization was considered for the spatial second-order partial
derivative term. Mostly, the deterministic results were calculated, but some stochastic
results were also provided. Since randomly generated numbers are involved, a scheme
may yield different solutions on each run of a computational code. The scheme has one
disadvantage of using any scheme on the first time level because it is constructed on three
time levels.

The correspondence between the deterministic and stochastic solutions is displayed
in Figure 2. As mentioned earlier. The stochastic solution can be different on each code
run, so the obtained solution is one of the possible stochastic solutions. The effect of
Casson and mixed convection parameters on velocity is depicted in Figure 3. Figure 3
shows that the velocity profile has dual behavior by growing Casson and mixed convec-
tion parameters. The growth in the Casson parameter resulted from the decay in the
diffusion coefficient, and consequently enhanced the velocity. The enhancement in the
mixed convection parameter produced either decay in the viscosity of the fluid or growth
in the temperature difference between the wall and the ambient fluid, and de-escalation
of viscosity decreased the resistance to flow, so the fluid’s velocity increased. For mixed
convective flow, the temperature gradient is one of the forces that enhances the fluid’s
velocity, and therefore if the temperature increases, the velocity escalates. The effect of
the thermophoresis parameter on the temperature profile is depicted in Figure 4. The
temperature profile escalated by increasing that values of the thermophoresis parameter.
By increasing the thermophoresis parameter, the thermophoresis force grew, which was
responsible for late circulating the fluid’s particles near p, leading to enhancement in the
temperature profile. Figure 5 depicts the effect of the Prandtl number on the temperature
distribution. An increase in the Prandtl number caused a decreasing temperature profile.
Reducing thermal conductivity and diffusivity due to a rising Prandtl number caused a
downward shift in the temperature distribution.
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Figure 2. Deterministic and stochastic velocity profile using Nt = 110, Ny = 70, σ = 0.3, β →
∞ λ1 = 0, λ2 = 0.
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Figure 4. Deterministic variation of the thermophoresis parameter on the temperature profile using
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Figure 5. Deterministic variation of the Prandtl number on the temperature profile using Nt = 100,
Ny = 50, σ = 0, Sc = 0.9, γ = 0.1, ε1 = 0.1, Nt = 0.01, Nb = 0.01, λ2 = 0.1, δ1 = 0.1, δ2 = 0.1,
λ1 = 0.1, β = 3.

Figures 6 and 7 exhibit concentration profiles as a function of Brownian motion and
thermophoresis parameters. As the Brownian motion and thermophoresis parameters in-
creased, the concentration profile decreased and expanded. Figure 8 depicts the effect of the
Schmidt number on the concentration profile. The concentration profile declined with the
increasing Schmidt number. Since mass diffusivity decays decreased by raising the Schmidt
number, therefore the concentration profile declined. The influence of the dimensionless
reaction rate parameter on the concentration profile is depicted in Figure 9. The concentra-
tion profile decreased by enhancing the reaction rate parameter. The concentration profile
decreased as the development or dissolution of chemical bonds between atoms did not
affect the nuclei. The contours for the velocity profile are displayed in Figures 10–12, with
varying periods of cosine boundary conditions. The height of the profiles in contour plots in
Figures 10–12 is described in the sidebar. Colors reflect the maximum to minimum profile
heights. The contour plots represent the stochastic model’s solution, whereas Figures 3–9
depict the deterministic model’s solutions.
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λ1 = 0.5, β = 3.
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Figure 9. Deterministic variation of the reaction rate parameter on the concentration profile using
Nt = 100, Ny = 50, σ = 0, Pr = 0.9, Nt = 0.01, Sc = 0.9, ε1 = 0.1, Nb = 0.01, λ2 = 0.1, δ1 = 0.1,
δ2 = 0.1, λ1 = 0.5, β = 3.
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Figure 10. Stochastic contours of the velocity profile using Nt = 100, Ny = 50, σ = 0.15, Pr = 0.9,
Nt = 0.01, Sc = 0.9, ε1 = 0.1, Nb = 0.025, λ2 = 0.1, δ1 = 0.1, δ2 = 0.1, λ1 = 0.5, β = 3,
γ = 0.1, Uw = cos(0.5t).
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Figure 11. Stochastic contours of the velocity profile using Nt = 100, Ny = 50, σ = 0.15, Pr = 0.9,
Nt = 0.01, Sc = 0.9, ε1 = 0.1, Nb = 0.025, λ2 = 0.1, δ1 = 0.1, δ2 = 0.1, λ1 = 0.5, β = 3,
γ = 0.1, Uw = cos(3t).

Energies 2023, 16, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 11. Stochastic contours of the velocity profile using �� = 100, �� = 50, � = 0.15, �� =
0.9, �� = 0.01, �� = 0.9, �� = 0.1, �� = 0.025, �� = 0.1, �� = 0.1, �� = 0.1, �� = 0.5, � = 3, � =
0.1, �� = ���(3�). 

 

Figure 12. Stochastic contours of the velocity profile using �� = 100, �� = 50, � = 0.15, �� =
0.9, �� = 0.01, �� = 0.9, �� = 0.1, �� = 0.025, �� = 0.1, �� = 0.1, �� = 0.1, �� = 0.5, � = 3, � =
0.1, �� = ���(10�).  

t

y

 

 

0 2 4 6 8 10
0

5

10

15

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

y

 

 

0 2 4 6 8 10
0

5

10

15

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 12. Stochastic contours of the velocity profile using Nt = 100, Ny = 50, σ = 0.15, Pr = 0.9,
Nt = 0.01, Sc = 0.9, ε1 = 0.1, Nb = 0.025, λ2 = 0.1, δ1 = 0.1, δ2 = 0.1, λ1 = 0.5, β = 3, γ = 0.1,
Uw = cos(10t).

7. Conclusions

This study comprised a numerical scheme for handling time-dependent stochastic
partial differential equations (PDEs). The scheme was constructed on three time levels.
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At the first time level, the stochastic Crank–Nicolson scheme was utilized. The stability
and consistency of the constructed scheme have been reported. A new and improved
mathematical model of a non-Newtonian Casson nanofluid flow across an oscillatory sheet
was presented. The model was reduced to a dimensionless stochastic partial differential
equations (SPDEs) system. The current method can be used in other applications after
completing this project [53–57]. The proposed method solves a wider variety of stochastic
partial differential equations (SPDEs) and is straightforward to apply. The concluding
points can be expressed as:

1. The velocity profile had dual behavior by incrementing Casson and mixed convection
parameters.

2. The temperature profile was escalated by enhancing the thermophoresis parameter.
3. The concentration profile decayed and grew by increasing the Brownian motion and

thermophoresis parameters, respectively.
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