
Citation: Brännvall, R.; Gustafsson, J.;

Sandin, F. Modular and Transferable

Machine Learning for Heat

Management and Reuse in Edge Data

Centers. Energies 2023, 16, 2255.

https://doi.org/10.3390/en16052255

Academic Editors: Lioua Kolsi, Walid

Hassen and Patrice Estellé

Received: 2 February 2023

Revised: 18 February 2023

Accepted: 23 February 2023

Published: 26 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Modular and Transferable Machine Learning for Heat
Management and Reuse in Edge Data Centers
Rickard Brännvall 1,2,* , Jonas Gustafsson 1 and Fredrik Sandin 2

1 ICE Data Center, RISE Research Institutes of Sweden AB, 973 47 Luleå, Sweden
2 EISLAB, Luleå University of Technology, 971 87 Luleå, Sweden
* Correspondence: rickard.brannvalll@ri.se

Abstract: This study investigates the use of transfer learning and modular design for adapting a pre-
trained model to optimize energy efficiency and heat reuse in edge data centers while meeting local
conditions, such as alternative heat management and hardware configurations. A Physics-Informed
Data-Driven Recurrent Neural Network (PIDD RNN) is trained on a small scale-model experiment
of a six-server data center to control cooling fans and maintain the exhaust chamber temperature
within safe limits. The model features a hierarchical regularizing structure that reduces the degrees
of freedom by connecting parameters for related modules in the system. With a RMSE value of 1.69,
the PIDD RNN outperforms both a conventional RNN (RMSE: 3.18), and a State Space Model (RMSE:
2.66). We investigate how this design facilitates transfer learning when the model is fine-tuned over
a few epochs to small dataset from a second set-up with a server located in a wind tunnel. The
transferred model outperforms a model trained from scratch over hundreds of epochs.

Keywords: edge data center; heat management; heat reuse; modular machine learning; transferable
machine learning; recurrent neural network; transfer learning; meta-learning

1. Introduction

The number of data centers (DCs) around the globe is growing with the expanding
digitization of society and the increasing demand for edge computing capacity. Thus, the
amount of electric energy converted to heat by decentralized computing is also increasing,
and the diversity of operating conditions is growing. Cooling units and fans remove
heat from the chip, server, and rack levels [1], which further increases the total electricity
consumed. Reusing excess heat has considerable potential for improving the energy
efficiency of the DC industry, both in large-scale facilities and smaller edge data centers.
Edge DCs are expected to be prevalent in cities and co-located in residential or commercial
buildings where they can contribute to space heating demands, for example, in urban
horticulture, as illustrated in Figure 1. Upcoming EU regulation will require larger DCs
to report energy efficiency, including agreed-on heat reuse metrics although it is still
unclear how this would apply to decentralized computing infrastructure, such as edge DC
networks.

It is a challenging problem to optimize the overall electricity consumption of a system
as complex as a modern edge DC while simultaneously meeting space heating constraints
and avoiding damage to the equipment caused by overheating. Machine learning-based
approaches that attempt to address this problem have received considerable attention
recently (see, e.g., [2] or [3]). However, it remains to be demonstrated that such solutions
are cost-efficient and scalable, given the diversity of operating conditions and components
available on the market. Training modern machine learning models requires access to
large amounts of data and may demand substantial resources in terms of human labor
and electric energy. These methods will not scale well if the data collection and training
procedure need to be carried out from scratch every time the model is applied in a new

Energies 2023, 16, 2255. https://doi.org/10.3390/en16052255 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16052255
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4293-6408
https://doi.org/10.3390/en16052255
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16052255?type=check_update&version=2

Energies 2023, 16, 2255 2 of 24

context or configuration. This motivates the following investigation of modular architecture
and transfer learning.

Figure 1. Example illustration of edge data center (1) heat reuse for a small urban greenhouse (2).

Contribution. Modular architectures for data center models describe physically identi-
fiable system components (such as servers, fans, and aisles) and how they can be combined
for a specific edge data center configuration. We allow the parameters for each identified
component to be learned from data while simultaneously training a higher-level model
that generalizes between components of the same type that share meta parameters. This
regularizes the training process and facilitates transfer learning in a different configuration
and context, as illustrated in Figure 2. Our experiment showed that after fine-tuning on a
small dataset for only a few epochs, the transferred model can outperform a model trained
from scratch over hundreds of epochs.

model
1

meta
parameters

model
2

model
m+1

transfer
learn

learn
jointly

model
m

Figure 2. Hierarchical set-up transfer learning which can adapt to local circumstances (represented in
the figure as odd shaped.

Outline. The remainder of this section reviews related work. Section 2 describes the
experiment set-up, Section 3 details the model, while Section 4 presents the results from the
machine learning exercise. Finally, Section 5 discusses the results and Section 6 concludes.

Related Work

At the level of an individual computer server, it is the control over the speed of
the cooling fan and the computational workload that typically can be considered for
thermal management purposes. An efficient server fan controller aims to hold server
component temperatures at a given set point while also using a minimum of cooling power,
as, for example, studied for closed loop settings in Wang et al. [4], Han and Joshi [5],
Wang et al. [6], and specifically for edge computing servers cooling in Li et al. [7]. Controls
based on physical models of the system face considerable challenges that spring from
non-trivial long-range spatial and temporal dependencies. Computational Fluid Dynamics
(CFD) can be used to model both static thermal properties and dynamic flows in detail,
such as demonstrated in data center settings in Iyengar et al. [8], and more recently in

Energies 2023, 16, 2255 3 of 24

Wibron et al. [9]. However, the computational cost of such simulation is prohibiting for use
in online closed-loop control. Pardey et al. [10] reviews compact models for the thermal
inertia of servers and methods for their calibration. These predict exhaust temperatures
in response to internal heating and time-varying ambient temperatures, such as those
developed in parallel by VanGilder et al. [11] and Erden et al. [12] to use as simple, compact
components for heat-producing servers and racks for larger CFD-based models.

Lucchese et al. [13] propose a control-oriented, non-linear, thermal model of individual
servers and identify model parameters by CFD simulations of an idealized server set-up.
Further simulations are then used to (in silico) both validate the model and test a Receding
Horizon Control (RHC) strategy, aiming to keep IT component temperatures below thermal
bounds while minimizing fan energy use. Building on this work, Eriksson et al. [14]
first describe means for collecting detailed data from Open Compute Servers used by
Facebook [15] and then write a control-oriented model for the thermal dynamics of the
CPU and RAM as functions of computational load and mass flow produced by server fans.

VanGilder et al. [16] propose a compact model for data center applications with
various chilled-water cooling systems. It includes a heat exchanger term in series with
an “additional mass” term, which captures the thermal inertia of the cooling system. The
first term is either a discretized numerical model of a simple counterflow heat exchanger
or a quasi-steady-state model for applications when accuracy can be traded for model
simplicity. This compact model is developed further in [17] that adds “additional mass”
components for the room, plenum, walls, floor, ceiling, and water storage tank in order to
better represent the complete thermal mass of a data center. The model is used to simulate
a chiller failure and compared with a real-world incident in a 300 kW data center.

A similar modeling approach with thermally connected nodes in a network is followed
by Lucchese and Johansson [18], but with improved models of the internal components of
the server such that the thermal mass of each CPU and its associated aluminum fin heat
exchanger are included. This allows finer details of the components’ transient temperatures
to be explained. Combined with a simple model of the thermal leakage for the hot chip,
the thermal network is then used in an RHC strategy to control the cooling fans under an
objective function that penalizes energy consumption (from both sources) while keeping
the CPUs within temperature constraints. This thermal network-based model is again
employed in [19] to examine heat recovery from Open Compute Windmill (V2) servers.
Here the model-based controller is given the objective to maximize exhaust air temperature
and encourage fan control signal smoothness, all while keeping CPU temperatures within
limits for safe operation. Brannvall et al. [20] investigates a similar problem for a six-server
cluster, and in a subsequent work [21] builds a model predictive control for an application
where the excess heat is reused for drying fruit. Alternatively, type-2 fuzzy system have
been proposed to handle abrupt changes of the reference signal or uncertainty in the
parameters, such as, for example, in [22].

Geyer and Singaravel [23] proposes a component-based machine learning method
for thermal management of a building design and argues that this extends the reusability
and generalization of a model compared to monolithic designs. Gokhale et al. [24] uses
physics-informed neural networks for control-oriented thermal modeling that is guided by
building physics. For a data center, Berezovskaya et al. [25] describes a modular design
with model components for CPU, server fans, chiller, and economizers. As is the case for
the work presented in the present article, they demonstrate how to adjust parameters for
individual servers to time-series measurements, although their model does not connect
parameters for components of the same type together by regularization.

Transfer learning. When data are scarce, one can sometimes take a model trained
on data from a related task and then fine-tune the model by training it on the target
task. This procedure is an example of transfer learning (see, for example, a recent review
Zhuang et al. [26]), which aims to address the difference in data distributions of the source
and target tasks. On the other hand, meta-learning usually accumulates experience not
only on one but often on multiple tasks to improve the efficiency of learning a new task. It

Energies 2023, 16, 2255 4 of 24

has been demonstrated to be efficient, for example, in image classification [27]. Bayesian
learning involves other methods that facilitate transfer learning (see, e.g., book [28]), such
as the use of hierarchical priors that provide probabilistic links between related system
variables.

Control. When an empirical dynamical model has been obtained by system identifi-
cation, as described in the works referenced above, it can be used for model predictive
control (MPC). MPC is achieved by optimizing an objective function (relevant to the control
problem) over a finite-time horizon. It obtains the control signal for the current time slot
while taking likely system variable trajectories at future time slots into account. The opti-
mization is repeated at subsequent time steps, which also moves the prediction window
forward—that is why MPC is also sometimes called receding horizon control (RHC). There
are many excellent review articles and books on MPC, see, for example, Rawlings et al. [29]
and references therein.

Proportional-Integral-Derivative (PID) control is a model-free alternative to MPC-
based approaches. It is popular in industrial applications because of its simplicity and
relative robustness (see, for example, the review by Åström and Hägglund [30]), but unlike
MPC, it does not have the capacity to anticipate future variable trajectories by a predictive
model. Fuzzy proportional integral control was applied to constrain the gain and output
values for cooling fan control by [31], with reported energy efficiency improvements for a
Industry 4.0 data center. We do not however consider PID control further in this work.

2. Materials

Two experimental set-ups are considered in the following. The first is schematically
illustrated in Figure 3a and comprises six servers, each equipped with two CPUs and
onboard cooling fans. The work by the fans can be set programmatically via a custom-
made control board that overrides the factory control logic. The fans create an airflow
that transports heat away from the CPUs and other components in the servers into a
shared chamber, where the air mixes before it passes into the outside room. The six
OCP windmill v2 servers are housed by three server chassis arranged in a stack. The
set-up was sealed to eliminate airflow outside of servers. Open source software (stress-
ng: https://wiki.ubuntu.com/Kernel/Reference/stress-ng accessed on 25 February 2023)
controlled the computational load on the servers according to pre-programmed schedules.
The second experimental set-up is a small wind tunnel with room for one or two servers.
Only the central section of the 5-meter-long wind tunnel is illustrated in Figure 3b.

1-2 servers

2 servers

Air Inlet
Chamber

Exhaust
Chamber2 servers

Chimney

2 servers

80 cm

200 cm

Up

Down

Air Inlet 27 cm

200 cm

Up

Down

a) First experimental set-up

b) Second set-up: "wind tunnel"

Exhaust

Figure 3. Two set-ups used in the scale-model experiments to investigate transfer learning between
different hardware configurations: (a) wood box with a chamber that is heated by the exhaust air
from a small server cluster, and (b) the central 2-meter section of a 5-meter-long wind tunnel.

The two set-ups are used in a scale-model experiment to investigate how transfer
learning can be leveraged by first pre-training a model on the small-scale data center model

https://wiki.ubuntu.com/Kernel/Reference/stress-ng

Energies 2023, 16, 2255 5 of 24

of Figure 3a to improve the performance on the wind tunnel setup of Figure 3b by adapting
the pre-trained model to local hardware configurations and heat management conditions.

2.1. Fan Control Board

The fan control board is a custom-designed printed circuit board that enables external
control of local server fans. It is specifically designed to fit OCP windmill v2 servers as a
shim which is installed between the OCP backplane and the fan connectors. This enables
the server fans to either be controlled by the server (same as the factory default) or manually
controlled by the user. The board also allows the user to shut off the fans, which is not
possible in the factory configuration.

To control the fans, the user sends a Modbus RTU command from the server via
the USB port. The user can specify if the board should operate in the default factory
mode, where the server has control of the fans, or if the user’s control signal should take
precedence instead. This is performed by toggling a hardware multiplexer to choose
between sending the pulse width modulation (PWM) signal from the server or the fan
controller. If the user has control, the fans can be controlled by sending a signal from 0–320,
corresponding to 0–100% PWM. Along with control, many parameters are being measured
on the fan control board, including fan speed, fan power, server PWM signal, user PWM
signal, board temperature, and air temperature.

2.2. Data Collection

Time series for the modeled quantities, i.e., CPU temperatures (two per server) and
chamber temperature measured at a central point, were collected at five-second sampling
intervals together with the input variables server load and PWM percentage. Figure 4
shows example data from a step-response experiment that tested different combinations of
fan control signal U and computation load P.

0 10 20 30 40 50 60
minutes

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Si
gn

al
 %

U

0 10 20 30 40 50 60
minutes

50

100

150

200

250

Po
we

r W

P

0 10 20 30 40 50 60
minutes

20

22

24

26

Te
m

p
°C CHA

AMB

0 10 20 30 40 50 60
minutes

40

50

60

70

Te
m

p
°C

CPU2
CPU1

a)

time (minutes)time (minutes)

time (minutes)time (minutes)

b)

c) d)

Figure 4. Example of one-hour experimental time series in panels; (a) top-left panel shows fan control
signal (U), (b) top-right panel shows computational load (P), (c) bottom-left panel shows chamber
(CHA) and ambient (AMB) temperatures, and (d) bottom-right panel shows CPU temperatures.

We make some observations from Figure 4 to gain an understanding of the system that
we want to model and its transient behavior. CPU temperatures react quickly to changes
in computational load and fan speed. They are observed to take values from below 40 °C
when servers are idle to above 80 °C when they are fully utilized. The second CPU can be
about 10 °C warmer than the first.

Energies 2023, 16, 2255 6 of 24

The chamber temperature changes much slower and keeps within a more limited
range. In our experiments, it was observed to take values from 25 °C to above 35 °C
depending on the ambient temperature, that is, the temperature of the room from which
the server fans take in cooling air. The ambient temperature varies slowly between 16 and
20 °C over a day.

A visual inspection of Figure 4 tells us that CPU temperature typically appears to
change over time-scales of a few minutes or less, while changes for chamber instead occur
over tens of minutes. A rough calculation of response times to the step-wise changes
supports this intuition, with the CPU taking, on average, 1.5 min before two-thirds of the
trough-to-peak distance is traversed. The corresponding 2/3 response time for the chamber
is about 20 min.

Sensors capture chamber and ambient temperatures at 0.1 °C resolution, while the
sensor resolution is only 1 °C for the CPU measurements. All observations feed through a
data collection chain developed at the lab as described by Gustafsson et al. [32].

2.3. Experiment Design

The load per server can be controlled between 50W at idle and 250W at full com-
putational load. Different artificial loads were placed on the server while the fan speed
was varied to generate data for training the machine learning algorithms. The experiment
sequences were composed of multiple steps when the load and fan signal was held constant.
All servers were exposed to the same sequences. The steps varied in length between 1
and 15 min, with the computational load and the fan signal strength determined by Latin
hyper-cube sampling [33] in order to traverse the control variable space.

Experiments were also conducted to test the machine learning-based control algo-
rithms. For these tests, pre-determined load sequences were again run on the servers while
the server fans were regulated with the control algorithm.

3. Method

Figure 5 is a conceptual illustration of the server model described further in this section.
First, we make a few short comments on notation and nomenclature. Note that although
the framework for transfer learning illustrated in Figure 2 can accommodate many different
source models, we only explore the single-source single-target set-up in this work (see
Figure 6) as we only had access to two test-beds.

 6

 i
i=1

 fZ3 =

heat convection

heat conduction

cpu temperature

heat generation

xHEX2 (°C)

air flows through server

all bypass flow
zone 1 bypass
zone 1 flow: fZ1 zone 2 merged: fZ2 all merged: fZ3

xCPU2

pCPU2

xHEX1

xCPU1

pCPU1

qCD2

qCV2

heat exchanger

qCD1

qCV1

heat conduction

heat convection

thermal mass

environment loss

exhaust chamberserver cluster

fCHA

qCHA,CV

qCHA,CD

xCHA

xAMB

fCHA fZ0 heat recovery

Figure 5. Conceptual illustration of the physics-informed thermal network model that is implemented
as the custom cell of the physics-informed data-driven recurrent neural network (PIDD RNN).

3.1. Notation

The temperatures of the system are denoted with the letter x, computational load by p,
the server fan control signal by u, and an unobserved unit-free mass flow f . Superscript

Energies 2023, 16, 2255 7 of 24

labels are used to indicate the position of the component for which the temperature is
observed, such that for CPU1 we write

xCPU1
i,t ,

where subscripts i and t determine, respectively, for which server and at what time the
observation was made.

In addition to physical position, the superscript is also used to distinguish related
quantities, for example, the temperatures,

xZ1,IN
i,t and xZ1,OUT

i,t

which are the temperatures of the air that enter and exit zone 1 in the server (which houses
CPU 1). Similarly, it is used to enumerate trainable model parameters, for example

θCPU1,D
i and θZ1,RCD

i

for the lump thermal capacitance of CPU1 and its conductive thermal resistance (in zone 1)
with the heat exchanger. Note that the (lowercase) Greek letter θ (with different subscripts
and superscripts) is used throughout the text to denote trainable parameters.

Capital letter Θ denotes the set of all trainable parameters for the six servers and
the chamber module of the first experiment. We find these to the left in the conceptual
illustration of parameter transfer of Figure 6, which belongs to the six-server experimental
set-up—where [SRV] and [CHA] are used to represent any superscript associated with
the server or the chamber, respectively. To the right in the same figure, we show the
corresponding parameters set, Θ̃, that are the target for fine-tuning on the wind tunnel
experiment.

θ[CHA]

③ θ*∈ Θ*

 θi[SRV]

 ① θ ∈ Θ

 θ*[CHA]

θ[CHA] θi[SRV]

② θ ∈ Θ

Mini rack 6 servers Chamber Chamber

Meta parameters

Set-up with 1 server
 ~

 ~ ~

~

Model pre-training and
hyperparameter search

jointly transfer

Fine-tuning
 θ*[SRV],

Hyperparameters
φ*

Figure 6. Conceptual illustration of the transfer learning procedure where in pre-training (1: blue
area), the model for the six server set-up (with parameter set Θ) and the meta parameter set Θ∗ are
first trained together. Transfer learning (2: green area) is then obtained when the single server model
(with parameters in set Θ̃) is fine-tuned under regularization by the meta parameters. Note that the
meta parameters (3: red area) are updated in pre-training (indicated by two-way arrows) but remain
fixed during fine-tuning (one-way arrows). Hyper-parameters φ are also transferred.

One level up in the hierarchical model of Figure 6, we find the meta parameter set
Θ∗, which contains generalized model parameters. These lack (server) index and are
subscripted by a star symbol. The meta-model facilitates regularization and transfer
learning.

Energies 2023, 16, 2255 8 of 24

3.2. Thermal Model

The server fan cooling system is complex with long-range spatial and temporal depen-
dencies that are hard to model precisely. Instead, we use a physics-informed data-driven
models [34].

Lucchese and Johansson [18] models the server as a network of interacting nodes that
represent the different components of the system: extraction fans, self-heating components
such as CPU and RAM, and passive components such as thermal sinks. The specifics of
such a thermal network are determined by the relevant mass flows and heat exchanges that
occur within the server; limited in the model to heat sources, convection, and conduction.
The temperature dynamics of a generic node j are given in differential equation form by

dj ẋ = p + qCV
j + qCD

j , (1)

where dj is the lumped thermal capacitance of the node, p a self-heating term, and qCV
j and

qCD
j convective and conductive heat transfer, respectively.

The general thermal network model outlined above was developed for an individual
server with two CPUs, each equipped with aluminum heat sink, and by assuming that:

1. Conductive heat transfer only occurs between a CPU and its heat sink;
2. Only heat sinks are affected by convection of the cooling air-flow f j.

where f j is the strength of the airflow passing node j. Furthermore, in that model, the heat
conduction is approximated using Fourier’s law and convection by Newton’s law. That
is, conduction is taken as being proportional to the temperature difference between two
nodes, with the coefficient of proportionality being the (inverse) thermal resistance.

Additionally, we connect the outlet nodes of the server thermal networks with an
outlet chamber node, assuming it has a thermal mass affected by convection and conduction
(also modeled by Equation (1)). As illustrated in Figure 5 the airflow into the chamber is
the sum of the air flows through each server. The distribution of airflow within each server
is modeled such that net mass flow is preserved by using a categorical soft-max function of
the fan speed with trainable parameters. The Appendix A has details and equations for the
thermal model.

As we have six servers of the same type for the first experiment, it is reasonable to
assume that they share some characteristics, although there may be individual variations
between servers due to their placement in the rack, wear from years of service, or differences
already present when delivered from factory. Therefore, we let each server have its own
set of model parameters but tie all parameters of the same function in nodes together in a
hierarchical construct (illustrated by the blue area in the left half of Figure 6). This is similar
to setting a prior on all parameters in the server model, and we can, therefore, also refer to
these generalized parameters as prior parameters. These structural relations reduce the
number of degrees of freedom in the system and regularize the loss function of the training
procedure.

3.3. Physics-Informed Data-Driven RNN

We refer to our model as physics-informed data-driven RNN, or in short, PIDD RNN,
to borrow a term from Li et al. [35] for models that incorporate physics into machine
learning model construction. It is implemented as a custom RNN cell, by sub-classing the
corresponding object in the machine learning software package that we use.

The state and input variables of the PIDD RNN cell are:

State : xHEX1
i,t , xCPU1

i,t , xHEX2
i,t , xCPU2

i,t , xCHA
t , (2)

Input : pi,t, ui,t, (3)

for i being the index of the server, i.e., i is 1, 2, 3, 4, 5, or 6. The state variables are
passed on to the next RNN cell as time is stepped forward. The initial state and the input

Energies 2023, 16, 2255 9 of 24

variables are taken from the observation time series. As we do not have sensor data for
the heat exchangers, the steady-state temperatures (obtained from Equation (A9) from the
Appendix A) are used to initialize these hidden variables.

For clarity, we note that it is the thermal network with trainable parameters of Figure 5,
and described in Section 3.1, Section 3.2, and the Appendix A, that are implemented in
place of the weighted transformations and activation functions of a conventional RNN cell.

3.4. Alternative Models

For comparison, two alternative models are also tested: one based on a conventional
RNN and one on the linear state-space model (SSM), both taking the same state variables
and control variables as input to predict the next state. Architectures with up to two hidden
layers are tested for the conventional RNN, with the non-linearity taken to be the rectified
linear unit (relu). The SSM model also follows a conventional formulation and allows
full coupling between all state variables, although the observed variables do not directly
depend on the external or control variables (i.e., the D matrix sometimes seen in the SSM
formulation is not included).

Xt = AXt−1 + BUt−1 (4)

Yt = CXt (5)

A comparison is also made to the persistence model, i.e., the model which always
predicts the next state to be the same as the current state. It is implemented as the RNN cell
that only does an identity multiplication on the state and ignores any other inputs.

3.5. n-Step PEM

In a traditional time-series framework, we would proceed by letting the prediction
error be described by a particular probability distribution and obtain estimates for model
parameters by Maximum Likelihood. For analytic and computational convenience this
would often mean that we make one-step ahead predictions and assume Gaussian errors.

In this study, however, we leverage on the flexibility of the open source software
package for expressing non-standard cost functions and write down a n-step PEM objective.

For each component, observation time 0 < t < N − n and prediction horizon 0 < τ ≤
n, we make a n-step prediction and calculate the prediction errors

εCPU1
i,t,τ = xCPU1

i,t,τ − x̃CPU1
i,t+τ (6)

where x̃CPU1
i,t+τ is the actual observation corresponding to the prediction xCPU1

i,t,τ . The errors for
CPU2, chamber (CHA), and server outlet (OUT) are similarly written.

The loss function sums these errors in an error norm of our choice, e.g., the squared
L2-norm for ‖X‖η = X2

lPEM
t,τ = ωCHA‖εCHA

t,τ ‖η + ωOUT
k

∑
i=1
‖εOUT

i,t,τ ‖η +
k

∑
i=1
‖εCPU1

i,t,τ ‖η +
k

∑
i=1
‖εCPU2

i,t,τ ‖η (7)

for constants ωCHA and ωOUT that determine the relative weighting between deviations
for CPUs, and chamber and outlet, respectively. For this study, we take ωCHA = 12 to give
as high relative strength to the chamber as to the aggregated error of all CPUs. The server
outlet temperatures are considered less important and receive weight ωOUT = 0.1 as they
are not used in the target control problem.

The losses are aggregated for all observation times and prediction horizons

l =
1

Nn

N−n

∑
t=0

n

∑
τ=1

lPEM
t,τ

ωCHA + ωOUT + 2k
+ γh(Θ) (8)

Energies 2023, 16, 2255 10 of 24

adding a penalty through a regularizing function h that depends on the parameters of the
model Θ.

3.6. Regularization

The hyper-parameter γ in (8) controls the strength of the regularization that directly
targets the model parameters and is associated with a measure of dispersion in the distri-
bution of the top-level prior parameters. For a square penalty function h(Θ), we would
have that γ is (inversely) proportional to the variance of a Gaussian top-level prior. In this
work, we are content with just pointing out the similarity to hierarchical Bayes [28] but do
not take it further to a full formal model.

Next, the actual penalty functions h(Θ) used are then defined specifically for each
model in the following paragraphs.

PIDD RNN: This model takes a hierarchical penalty for parameters associated with
the server components

h(Θ) = ∑
θ∈Θ
‖θ − θ∗‖ξ , (9)

with θ∗ being the member of the top-level hierarchical parameter set Θ that corresponds
to the server or chamber level parameter θ. These are auxiliary parameters that tie all
model parameters together in a hierarchical structure, such that, for example, the zone 1
convective resistance parameters, θZ1,RCD

i , for all servers are regularized by the auxiliary
parameter θZ1,RCD

∗ at the higher level in the hierarchy. The top-level hierarchical parameters
are learned together with all other model parameters (as illustrated in Figure 6).

As the parameters of the model have different units, we use a customized norm for
the penalty

‖x− y‖ξ = 2
|x− y|
x + y

+

(
2
|x− y|
x + y

)4

, (10)

which is similar to a percentage difference when the parameters compared are close (domi-
nated by the first term) but boosts the penalty when the parameters are of different orders
of magnitude (dominated by the second term).

Conventional RNN: We apply L2-regularization on the kernel coefficient of the RNN cell.
State Space Model: We apply in L2-regularization of the A and B matrices towards the

persistence model.
Persistence model: Losses are not considered for the persistence model as it has no

parameters and is not subject to training.
Noise layer: An additional means of regularization is provided through the addition

of Gaussian noise to all RNN initialization values, that is, all initial CPU and chamber
temperatures. This is because it is expected that long-term values for the state would
depend more on the aggregated power inserted into the system and on the heat transferred
away by the mass flow and less on the starting values.

The strength of this regularization is controlled by the standard deviation of the
noise distribution, σ, which we treat as another hyper-parameter by which we can explore
the effect of the perturbation and, by extension, on whether model performance on val-
idation/test set is improved by encouraging the training procedure to discount starting
values.

Other hyper-parameters: The length of the prediction window, n, the learning rate, r, and
the number of training epochs, K, are other hyper-parameters associated with the training
procedure. The choice of error norm for the PEM loss is also treated as a hyper-parameter.
We test mean squared error (MSE), mean absolute error (MAE), and the Huber loss (Hub),
which can be understood as a cross-over between MSE and MAE loss [36].

We denote the set of hyper-parameters for a model by the Greek letter φ and write φ∗
for the model with the best performance on the validation set.

Energies 2023, 16, 2255 11 of 24

4. Results
4.1. Model Training

Manual derivation of the gradients over a n-step prediction would be a tedious task,
but as the software package already supports the necessary functions and norms also for
automatic differentiation we can immediately expose the model to the data through a built-
in gradient-based optimizer. More specifically we use the ADAM optimizer by Kingma
and Ba [37].

Observation data from a total of 54 h of experiments were available for analysis. From
this 4 h were set aside as a validation set for hyper-parameter tuning, and an 8-hour section
was set aside for out-of-sample testing. Models were trained for up to 1000 epochs on the
training set with different combinations of hyper-parameters taken from a predefined grid
of values.

Cross-model comparison of the score on the PEM loss function (8) is not meaningful,
as the loss function is different for each model variation. Instead, we use RMSE, which
is related to the loss and furthermore can be calculated separately for each component of
the system.

For CPU, the RMSE is calculated for the first 1.5 min (i.e., 18 timesteps), while the
chamber RMSE uses the last 5 min of the 15-minute prediction window. These windows
were selected based on the relevant time-scale identified from inspecting the data as
discussed in conjunction with Figure 4.

Hyper-parameter selection. A grid search over hyper-parameters φ = {γ, σ, n, r, K} was
performed to select the hyper-parameters φ∗ for which the candidate model shows the
best weighted average RMSE on the validation set, where the chamber was given weight 6
compared to CPUs (as this gives equal weight to the chamber and each of CPU1 and CPU2
after summing over all servers). Note that deviations for predicted outlet temperatures
were ignored for the RMSE.

Performance metrics. A comparison of the models’ RMSE calculated on the test set
is displayed in Table 1. It is evident that the PIDD RNN model outperforms both the
conventional RNN and the SSM on both CPU and chamber total RMSE. All three models
show an improvement over persistence on CPU scores, although both non-trivial alternative
models fail to do better at describing the chamber dynamics. We note that the PIDD RNN
model only shows a modest improvement over persistence on chamber RMSE.

Table 1. RMSE for prediction on the test set (°C) for PIDD RNN model compared with three
alternative models.

Model CPU1 CPU2 CHA TOT

PIDD RNN 2.41 2.32 0.34 1.69
Persistence 6.93 7.54 0.38 4.95

Standard RNN 3.6 4.11 1.72 3.18
Standard SSM 3.04 2.98 1.97 2.66

Residual analysis. The low resolution (temperatures only in whole °C) complicates
residual analysis as it induces a stratification pattern for the difference between the one-step
ahead predicted temperature and its corresponding measured value. Tests for whiteness
(normality) are, therefore, of limited use. We note that the auto-correlation of residuals
for both chamber temperatures and CPU temperatures in the PIDD RNN model quickly
diminishes to become insignificant (95% confidence intervals by Bartlett’s standard formula)
within 4–6 time steps (30 s). This is however not the case for the conventional RNN and
SSM, which exhibits significant auto-correlation out to more than 60 timesteps (5 min).

Uncertainty envelopes. The uncertainty of the estimates grows with the length of the
prediction horizon. This is visualized for CPU temperature in Figure 7 that plots the
standard deviation of the prediction error against the prediction horizon. While there is
very little bias in the estimate, the standard deviation for the PIDD RNN model predictions

Energies 2023, 16, 2255 12 of 24

grows gradually for the first couple of minutes and approaches a stable level. In contrast,
the stdev envelope for the Persistence model is much wider, indicating that our model
captures some important dynamics of the server system. The corresponding plot for the
chamber does not show such a strong dominance of the PIDD RNN model (see Figure 8).

time (minutes)

PIDDRNN

Figure 7. The standard deviation of the CPU test-set prediction error increases with the length of the
prediction horizon. For the PIDD RNN model, its envelope quickly reaches a stable width, visibly
narrower than that for the persistence model.

0 2 4 6 8 10 12 14
minutes

0.4

0.2

0.0

0.2

0.4

CH
A

st
de

v
°C

greybox
persist.

time (minutes)

PIDDRNN

Figure 8. The width of the chamber test set stdev envelopes increases with the prediction horizon
without reaching a stable level. The PIDD RNN model performs somewhat better than the persistence
reference model.

Long term predictions. Figure 9 and 10 shows predictions over 2000 consecutive time-
steps initialized only with starting values for CPU and chamber temperatures. Visual
inspection of the predicted versus the true time series does indicate that the model is
able to robustly describe the important thermal dynamics of the system, especially for the
CPU where the large swings in component temperature (30–80 °C), caused by changing
computational load and fan speed, appear to be accurately predicted by the model. Changes
in the chamber temperature are slower and more limited in range (28–31 °C) mean it is
difficult to make conclusions.

Energies 2023, 16, 2255 13 of 24

0 25 50 75 100 125 150
time (minutes)

40

50

60

70

CP
U

te
m

p
°C

CPU 1 true
CPU 2 true
CPU 1 pred
CPU 2 pred

Figure 9. Long-term predictions for CPU temperatures on the test set. The PIDD RNN model was
initialized at t=0, and then received only computational load and fan signal experiment sequences.

0 25 50 75 100 125 150
time (minutes)

28.5

29.0

29.5

30.0

CH
A

te
m

p
°C

CHA true
CHA pred

Figure 10. Corresponding test set long-term predictions for chamber temperature.

4.2. Fan Control

In this section, we explore different strategies for managing the system’s temperature,
assuming that the computation load is an external (stochastic) process outside of our control.
It is then the work of each server fan (PWM) that must be dynamically set such that the
CPUs do not overheat.

The starting point for each control strategy is the formulation of a loss function that
penalizes system temperature deviations from a predefined set point. Secondary objectives
are related to the cost of electricity used for cooling and smoothness of the control signal,
as the pulsing of the fan (turning it on and off) tends to consume more power and cause
increased wear and shorter life span of components.

Let Ut be the control signal for all servers over the next n time steps. This is a two-
dimensional array taking prediction horizon τ on one axis and server index i on the
other. The PIDD RNN model can then be used to make a n-step ahead prediction of the
future temperatures conditional on this assumed fan control signal, the observed system
temperatures, and what we know about the computational load. The flexibility of the model
would allow for many alternative control strategies, for example, targeting a preferred
CPU temperature, chamber temperature, or delta over the ambient temperature. To make a
concrete example, we will in this section consider a scenario where we (1) cool the server
CPUs such that for each server there is only a need for cooling when the hotter of its CPUs
has a temperature above the setpoint setpointx, and (2) target a fixed chamber temperature.

Energies 2023, 16, 2255 14 of 24

We denote the deviations from setpoint as follows (using a similar notation as for the
PEM loss)

εCPU1
i,t,τ = relu

(
xCPU1

i,t,τ − x̂CPU1
)

(11)

and similarly for CPU 2. Note that this uses the asymmetric relu function such that no
deviation is registered if the CPU temperature is below the setpoint.

For the chamber, we have

εCHA
t,τ = xCHA

t,τ − x̂CHA (12)

and sum over deviations according to

lDEV
t,τ = ŵCHA‖εCHA

i,t,τ ‖η +
k

∑
i=1
‖εCPU1

i,t,τ ‖η +
k

∑
i=1
‖εCPU2

i,t,τ ‖η (13)

and finally, over the entire prediction horizon

lMPC
t =

1
n

n

∑
τ=1

lDEV
t,τ

ŵCHA + 2k
+ Λ(Ut), (14)

with Λt a combination of different penalty terms that depend on the different signals

Λt =
λSIG

nk

n

∑
τ=1

k

∑
i=1

(
ui,t,τ

)2
+

λSIM

k

k

∑
i=1

(
ui,t,1 − ui,t,0

)2
+

λSRV

nk

n

∑
τ=1

k

∑
i=1

(
ui,t,τ − ūt,τ

)2. (15)

Here the first term gives the penalty for the strength of the signal, the second for
abrupt changes compared to the prevailing value of the signal ui,t,0, and the third term for
variance away from the server average ūt,τ .

A fourth term that promotes smoothness of the signal could have been added, but
instead, we incorporate that naturally by constraining the signal functional form, which
specifically is chosen to be piece-wise linear with fixed pivots at τ0 = 0, τ1 = 6, and τ2 = 30
time-steps.

The optimization to find Ut is performed by gradient descent as both the n-step
predictive model and the cost function is encoded as a differentiable computational graph
in TensorFlow, where model parameters Θ are now held constant. With U appropriately
initialized, a few tens of iterations are sufficient to approximate the control sequence and
can fit within the time step of a realistic online application. The action at the present time
step is then the τ = 0 entry in the n-step control signal sequence. This procedure is repeated
for each time step t.

The penalty hyper-parameters λSIG, λSIM, and λSRV, should be chosen such that one
finds an acceptable trade-off between set-point deviance and signal regularization.

Two different MPC formulations were tested on the experimental set-up, each given
control over the internal server fans as a random, artificial load sequence was run on the
servers.

CPU-focused controller. We set ŵCHA = 0 to zero out the chamber weight and obtain a
controller with the objective only to keep CPU temperatures below the limit given by the
CPU temperature set-point at 75 °C while having penalties λSIG = 10 and λSIM = 10 for
the signal strength and shape, respectively.

Figure 11 displays results from a one-hour experiment with server-focused control.
The upper panel shows CPU temperatures; the second CPU starts out at around 80 °C
but is brought down below the 75 °C set-point within minutes, where it is kept for the
remainder of the experiment. The lower panel shows the fan control signal, which is
relatively stable but shows spikes when the computational load on the server changes.

Energies 2023, 16, 2255 15 of 24

Average temperatures are 64.9 °C and 72.0 °C for CPU1 and CPU2, respectively. The
average control signal is 22.5%.

0 10 20 30 40 50 60

60

70

80

Te
m

p.
 °C

CPU1
CPU2

0 10 20 30 40 50 60
time (minutes)

0.2

0.3

0.4

0.5

Si
gn

al
 %

U

Figure 11. Results for control scenario (a) CPU focused control, which shows temperatures below
threshold (upper panel) and control signal (lower).

Chamber-focused controller. Here the chamber is given equal weight to each CPU,
ŵCHA = 1, with a chamber set-point at 28 °C. The other MPC parameters are the same as
for the Server focused controller.

Figure 12 shows results from the corresponding experiment with chamber-focused
control. The upper panel shows the chamber temperature, which hovers around a 28.2 °C
average over the experiment—not far from the 28 °C set-point. The fan control signal
displayed in the lower panel is relatively stable around a 48.8 % average. Average CPU
temperatures are 57.3 °C and 60.5 °C for CPU1 and CPU2, which is well below the set-point
limit at 75 °C.

0 10 20 30 40 50 60
27.0

27.5

28.0

28.5

29.0

Te
m

p.
 °C

CHA

0 10 20 30 40 50 60
time (minutes)

0.35

0.40

0.45

0.50

Si
gn

al
 %

U

Figure 12. Results for control scenario (b) chamber focus which shows chamber temperatures close
to set-point (upper) and control signal (lower).

The chamber-focused temperature controller could be used where one targets a specific
output temperature, for example, a smart heating application for a room, a greenhouse, or
a food-drying plant.

4.3. Transfer Learning

To investigate the transfer learning capacity of the model, it is fine-tuned (according to
the illustration in Figure 6) to a smaller but similar experimental set-up in our data center
experimental research facilities. The set-up consists of a wind tunnel used for testing indi-
vidual or pairs of computer servers under controlled environmental conditions with respect
to temperature, pressure, and humidity of the cooling airflow; see Sarkinen et al. [38] for a

Energies 2023, 16, 2255 16 of 24

detailed description. A single OCP Windmill v2 server was used for the transfer learning
experiment (the same server type as for training the original model). An exit chamber
where the server exhaust air mixes are also present in the wind tunnel set-up, although it is
of different dimensions and design compared to the first experiment.

Sensor data from an experiment running a 5 h sequence that varied computational
load and fan speed on a single server was used for fine-tuning the transferred model over
up to 100 additional training epochs. Meta parameters, θ∗, were directly transferred. Half
the data were used as training data and half as test data. Hyper-parameters, φ, were taken
as same as when training the source model—hence there was no need for a validation set.
Model parameters related to server components were initialized at the average of those for
the six servers of the source cluster, while the chamber parameters were directly transferred
to the target model.

Table 2 compares the performance of the directly transferred model with a model
fine-tuned over progressively more epochs, and finally with a model re-trained entirely
from scratch. Each result is an average of over 10 repeated training experiments. Already
after a few epochs, we see that fine-tuning shows clear improvements in RMSE over the
direct transfer model (first row) and re-start (last row). Figure 13 visualizes in log-scale
the RMSE scores averaged over both CPUs and chamber. We note that the model that was
re-initialized and trained from scratch does not match the transferred and fine-tuned model
even after 100 training epochs, except for CPU2 which sees a slight improvement over
direct transfer in Table 2 (crossing occurs after about 50 epochs).

Table 2. RMSE results for transfer learning (°C).

Mode Epoch CPU1 CPU2 Chamber

transfer 0 2 2.02 0.85
finetune 1 1.84 1.67 0.72
finetune 10 1.88 1.53 0.74
finetune 100 1.9 1.47 0.66
re-start 100 2.2 1.96 1.63

0 20 40 60 80 100
epoch

101

102

RM
SE

re-start
transfer
finetune

Figure 13. Total test set RMSE by epoch for transfer learning example.

A closer look at how the parameters are updated revealed that it is the chamber that
is most affected by fine-tuning. It is also the physical set-up of the exit chamber that is
most different compared to the original experiment. The server model is the same for both
set-ups, which is a plausible explanation for why their related model parameters change
less with fine-tuning.

5. Discussion

The hierarchical formulation with meta parameters that are used to connect related
components of a modular design provides an intuitive and efficient means for exploiting

Energies 2023, 16, 2255 17 of 24

transfer learning when implementing the model on a server set-up of a similar design. It
is similar to soft-parameter sharing in multi-task learning [39] in that parameters are not
shared explicitly but instead tied together by regularization that constrains the distance
between the weights of models for different tasks. We are inclined to consider this a type
of meta-learning as the set-up generalizes the training of target models across potentially
many different configurations [27,35]. The PIDD model can thus support modular designs
where components are combined according to local conditions.

The physics-informed structure should be more robust and generalize well to unseen
conditions even with fewer training samples, as is also argued by [24]. The results from
our experiments indicate that this carries through also to transfer learning.

Our study shares the use of a component-based approach for modeling thermal
dynamics with [23] and their aim to improve the reusability and generalization of the
models. Like [24], the proposed PIDD model is guided by physics and utilizes a neural
network to model the complex thermal dynamics of the system. In contrast, the PIDD model
specifically targets edge data centers and incorporates a hierarchical modular structure.

Our study differs from [25] in that we focus on edge data centers rather than large-scale
data centers and propose a physics-informed data-driven model with a hierarchical modu-
lar structure that connects related components through meta-parameters. Additionally, our
study places greater emphasis on energy efficiency through heat reuse.

In summary, our study builds upon the ideas in [23–25], but proposes a novel approach
to thermal management of edge data centers that combines physics-informed modeling,
hierarchical modular design, and transfer learning. This design facilitates transfer learning,
allowing the model to be adapted to different local conditions, which extends the reusability
and generalization of the model compared to previous work.

Limitations. While we believe that the study presents a promising approach to transfer
learning for modular edge data center systems, there are several limitations to consider:

Limited experimental setup: the study was conducted on a small-scale experimental
setup with only six servers, which may not be representative of larger data centers. Further
work is needed to evaluate the proposed approach’s reliability and scalability on larger
edge data centers with different server hardware, more realistic load profiles, and space
heating requirements.

Transfer learning to more diverse conditions: while the approach shows promise
in facilitating transfer learning when implementing the model on a server set-up of a
similar design, further testing is required to determine the transferability to more diverse
conditions.

Modeling assumptions: the proposed model is based on a physics-informed data-
driven approach, which makes several assumptions about the system’s thermal behavior.
The model’s performance may be affected by the accuracy of these assumptions, and further
work is required to evaluate the model’s robustness to different system configurations and
operational conditions.

Computational complexity: while the proposed model can execute in real-time to
control the system under complex constraints, the computational complexity may be an
issue for models of larger data centers. We did not investigate the scalability of the proposed
approach, and further work is needed to evaluate the model in larger settings.

6. Conclusions

This study investigates the use of transfer learning and a modular design to facilitate
the adaption of a pre-trained model to different local conditions for edge data centers. The
objective is to improve energy efficiency and optimize the overall electricity consumption
of a system while meeting local space heating constraints. A Physics-Informed Data-
Driven Recurrent Neural Network (PIDD RNN) was trained on a scale-model experiment
representing the principal thermal dynamics of a small data center.

The PIDD RNN model performs better than other alternative models, with a lower
RMSE value of 1.69 compared to a persistence baseline (RMSE: 4.95) and non-trivial

Energies 2023, 16, 2255 18 of 24

alternative models based on a conventional RNN or State Space Model (RMSE: 3.18 and
2.66, respectively). It was subsequently used for model predictive control of the cooling fans
to maintain the exhaust chamber at a set-point temperature while ensuring safe operation
thermal limits. The proposed PIDD RNN model can execute in real-time to control the
system under complex constraints.

The hierarchical formulation with meta parameters used to connect related compo-
nents provides an efficient means for exploiting transfer learning when implementing the
model on a server set-up of an alternative design. Fine-tuning on a small data-set obtains
low test-set RMSE scores after only a few epochs that are not reached even after hundreds
of epochs for a re-initialized model trained from scratch.

The study is limited to a small-scale experimental setup, which may not be represen-
tative of larger data centers. There is therefore need for further testing to determine the
transferability of the proposed approach to more diverse conditions and to investigate the
potential complexity of implementing the model in larger data center settings.

Future work. Further work is required to evaluate the reliability and scalability of the
proposed modeling and transfer learning approach, particularly by considering a larger
edge data center with different server hardware, more realistic load profiles, and space
heating requirements. A natural extension would also include more than one source in the
pre-training stage by employing data from various edge data center experiment test beds.
Similarly, the design should also be tested for transfer to more diverse conditions.

Author Contributions: Conceptualization, R.B. and J.G.; methodology, R.B.; software, R.B.; valida-
tion, R.B., J.G. and F.S.; investigation, R.B.; writing—original draft preparation, R.B.; writing—review
and editing, J.G. and F.S.; visualization, R.B.; supervision, J.G. and F.S.; funding acquisition, J.G. All
authors have read and agreed to the published version of the manuscript.

Funding: Vinnova through the Celtic Next project AI-NET Aniara with project-ID C2019/3-2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations and Notation
The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
DC Data Center
MPC Model Predictive Control
MSE Mean Square Error
MAE Mean Average Error
OCP Open Compute Project
PEM Prediction Error Minimization
PWM Pulse Width Modulation
PID Proportional-Integral-Derivative
PIDD Physical Informed Data Driven
RHC Receding Horizon Control
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SSM State Space Model
ReLU Rectified Linear Unit (activation function)
Hub Huber (loss function)
AMB ambient (in experiments)

Energies 2023, 16, 2255 19 of 24

CHA chamber (in experiments)
CPU1 1st CPU (in experiments)
CPU2 2nd CPU (in experiments)
HEX1 heat exchanger 1 (in experiments)
HEX2 heat exchanger 2 (in experiments)
SRV server (in experiments)

Notation: The temperatures of the system are denoted with the letter x, computational load by
p, the server fan control signal by u, and an unobserved unit-free mass flow f . Superscript labels are
used to indicate the position of the component for which the temperature is observed, such that for
CPU1 we write xCPU1

i,t , where subscripts i and t determine, respectively, for which server and at what
time the observation was made.

In addition to physical position, the superscript is also used to distinguish related quantities, for
example, the temperatures, xZ1,IN

i,t , and xZ1,OUT
i,t , which are the temperatures of the air that enter and

exit zone 1 in the server (which houses CPU 1). Similarly, it is used to enumerate trainable model
parameters, for example θCPU1,D

i and θZ1,RCD
i , for the lump thermal capacitance of CPU1 and its

conductive thermal resistance (in zone 1) with the heat exchanger.
Note that the (lowercase) Greek letter θ (with different subscripts and superscripts) is used

throughout the text to denote trainable parameters. Capital letter Θ denotes the set of all trainable
parameters for the six servers and the chamber module of the first experiment.

The following table is a guide to the mathematical notation:

xAMB
t Ambient temperature at time t

xCPU1
i,t Temperature of CPU 1 for server i at time t

pCPU1
i,t Power input through CPU 1 for server i at time t

xHEX1
i,t Temperature of heat exchanger of CPU 1 for server i at time t

qCD1
i,t Conductive heat transfer in zone 1 server i at time t

qCV1
i,t Convective heat transfer in zone 1 server i at time t

xZ1,IN
i,t Temperature of air that enter zone 1 of server i at time t

xZ1,OUT
i,t Temperature of air that exit zone 1 of server i at time t

f Z1
i,t Mass (air) flow in zone 1 server i at time t

RCV1
i,t Convective thermal resistance in zone 1 of server i at time t

xCHA,IN
t Temperature of air entering exhaust chamber at time t

xCHA
t Temperature of lump mass of exhaust chamber at time t

qCHA,CD
t Conductive heat transfer in chamber at time t

qCHA,CV
t Convective heat transfer in chamber at time t

θCPU1,D
i Trainable parameter for lump thermal capacitance (CPU 1)

θZ1,RCD
i Trainable parameter for conductive thermal resistance (zone 1)

θF0
i Trainable regression intercept parameter for fan airflow for server i

θF1
i Trainable regression slope parameter for fan airflow for server i

θZ1,L0
i Trainable regression intercept parameter for zone 1 airflow for server i

θZ1,L1
i Trainable regression slope parameter for zone 1 airflow for server i

θCHA,D Trainable parameter for lump thermal capacitance of chamber
pCPU1

i,∗ Steady state input power for CPU 1
qCD1

i,∗ Steady state flow heat for zone 1 of server i
xCPU1

i,∗ Steady state temperature of CPU 1 of server i
xHEX1

i,∗ Steady state temperature for heat exchanger 1 of server i
wCHA Parameter that control the relative weight of chamber set-point
τ Parameter for the length of the model predictive control horizon
λSIG Penalty parameter for signal strength
λSIM Penalty parameter for signal smoothness
λSRV Penalty parameter for signal heterogeneity
γ Hyper-parameter for strength of hierarchical regularization
σ Hyper-parameter for strength of noise smoothing
n Hyper-parameter for length of prediction window
r Hyper-parameter for learning rate
K Hyper-parameter for number of training epochs

Energies 2023, 16, 2255 20 of 24

Note that variables labelled with CPU1 (HEX1,CV1, or CD1) also have an CPU2 (HEX2, CV2, or
CD2) analogue. Similarly, only Z1 labels (for zone 1) are tabled—analogues here exist for other zones:
Z0, Z2, and Z3. Hierarchical (trainable) parameters are denoted with subscript ∗ in place of server
index i (and for chamber). Temperature set-points are marked with a hat, for example, x̂CPU1 and
x̂CHA. Trainable parameters for the second set-up instead are marked above with the ˜ sign.

Appendix A. Model Details

This appendix contains a more detailed description of the components of the physics-
informed model. The reader can refer to Figure 5 for visual guidance and notation.

Appendix A.1. Server Model

Recall Equation (1) from the main text, which is the differential equation for the
temperature dynamics of a generic node j subject to heat convection and conduction that
was also used by Lucchese and Johansson [18]

dj ẋ = p + qCV
j + qCD

j (A1)

We rewrite it for each component of our system in our own notation, and then apply Euler’s
method to obtain approximations for the discrete time step ∆t. For the first CPU, CPU1, of
server i

xCPU1
i,t+1 = xCPU1

i,t + θCPU1,D
i

(
pCPU1

i,t + qCD1
i,t

)
, (A2)

with a time-constant related to the time-step ∆t and the lumped thermal capacitance of the
continuous model

dCPU1
i = θCPU1,D

i ∆t. (A3)

For the first on-chip heat exchanger, HEX1,

xHEX1
i,t+1 = xHEX1

i,t + θHEX1,D
i

(
qCV1

i,t − qCD1
i,t

)
, (A4)

where the time-constant is separate from CPU1 since their lumped thermal capacitance
may be different. Note also the changed sign of the conductive heat transfer term. The
equations for CPU2 and HEX2 within the same server are entirely analogous, with their
own time-constants, self-heating and heat transfer terms.

Heat transfer. The conductive heat transfer is written

qCD1
i,t = −

xCPU1
i,t − xHEX1

i,t

θZ1,RCD
i

, (A5)

assuming constant thermal conductive resistance.
The convective heat transfer is determined in relation to the temperature of the mass

flow entering the zone xZ1,IN
i,t

qCV1
i,t = −

xHEX1
i,t − xZ1,IN

i,t

RCV1
i (f Z1

i)
, (A6)

with convective thermal resistance assumed to depend on the mass flow f Z1
i,t according to

(
RCV1

i (f Z1
i)

)−1
=

f Z1
i,t

θZ1,RCV0
i + θZ1,RCV1

i f Z1
i,t

, (A7)

for constants θZ1,RCV0
i and θZ1,RCV1

i that determine the non-linear dependence of the mass-
flow on the strength of the convective heat transfer [40].

Energies 2023, 16, 2255 21 of 24

Steady state. From Equation (A2) we note that a steady state for the CPU and HEX
temperatures are reached if the power added from the computational load is balanced by
the heat transferred by convection between the two components, or

pCPU1
i,∗ = −qCD1

i,∗ = −
xCPU1

i,∗ − xHEX1
i,∗

θZ1,RCD
i

, (A8)

that is, for a HEX temperature given by

xHEX1
i,∗ = xCPU1

i,∗ − θZ1,RCD
i pCPU1

i,∗ , (A9)

with a corresponding equation that relates CPU2 and HEX2 for each server.
The steady state relations are used in the training procedure to determine starting

values for HEX temperatures, as these are not observed in the experiment, and instead
must be inferred from CPU temperatures.

Mass flow. A model for the airflow is also provided in [18], which however is not used
in the work presented here. Instead we use a formulation in terms of the soft-max function.

The total airflow entering (zone 0 of) server i depends on the speed at which we run
its fans. We assume a linear relation with the fan control signal ui,t according to

f Z0
i,t = θF0

i + θF1
i ui,t, (A10)

for trainable regression parameters θF0
i and θF1

i . This flow is split into three parts where the
first fraction LZ1

i,t goes directly to zone 1, the second fraction LZ2
i,t to zone 2 and the third LZ3

i,t
bypass all electronic components. We assume no re-circulation flows, and hence, due to
mass conservation, the total flow to each zone is now

f Z1
i,t = LZ1

i,t f Z0
i,t , f Z2

i,t =
(

LZ1
i,t + LZ2

i,t

)
f Z0
i,t , and f Z3

i,t = f Z0
i,t , (A11)

where we assumed
LZ1

i,t ∝ exp
(

θZ1,L0
i + θZ1,L1

i ui,t

)
, (A12)

and corresponding equations for zone 2 and zone 3, normalized by

LZ1
i,t + LZ2

i,t + LZ3
i,t = 1, (A13)

which completes the air flow model. Note that the use of the soft-max function makes our
formulation similar to multinomial logistic regression.

Air temperatures. The temperature of the airflow entering zone 0 is that of the ambient
air. As this is assumed to go directly to zone 1 we then have

xZ1,IN
i,t = xAMB

t . (A14)

The airflow that exits zone 1 has been heated by convection

xZ1,OUT
i,t = xZ1,IN

i,t −
qCV1

i,t

ρc f Z1
i,t

. (A15)

The airflow entering zone 2 is a mixture of air that passed zone 1 and air that come
directly from the ambient. We write its temperature

xZ2,IN
i,t = λZ1

i,t xZ1,OUT
i,t + λZ2

i,t xAMB
t , (A16)

and for the exit air

xZ2,OUT
i,t = xZ2,IN

i,t −
qCV2

i,t

ρc f Z2
i,t

, (A17)

Energies 2023, 16, 2255 22 of 24

and finally for the temperature of the airflow in zone 3

xZ3
i,t = (1− λZ3

i,t)xZ2,OUT
i,t + λZ3

i,t xAMB
t . (A18)

Appendix A.2. Chamber Model

The air flow entering the chamber is the sum of all air flows from servers

f CHA
t =

6

∑
i=1

f Z0
i,t , (A19)

and its temperature is taken as a weighted average

xCHA,IN
t =

∑6
i=1 f Z0

i,t ∗ xZ3
i,t

f CHA,IN
t

. (A20)

For the chamber we assume a single lump mass whose temperature is described by

xCHA
t+1 = xCHA

t + θCHA,D
(

qCHA,CV
t + qCHA,CD

t

)
, (A21)

that interacts with the airflow from the servers through convection

qCHA,CV
t = − xCHA

t − xCHA,IN
t

θCHA,RCV0 + θCHA,RCV1 f CHA
t

f CHA
t , (A22)

and which additionally loses heat to the environment by conduction

qCHA,CD
t = − xCHA

t − xAMB
t

θCHA,RCD . (A23)

This completes the detailed description of the Thermal model. Section 3.3 and forward
describes how it is used for inference and training after it is integrated in a RNN-like model
structure.

References
1. Khalaj, A.; Halgamuge, S.K. A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the

cooling system. Appl. Energy 2017, 205, 1165–1188. [CrossRef]
2. Athavale, J.; Yoda, M.; Joshi, Y. Comparison of data driven modeling approaches for temperature prediction in data centers. Int.

J. Heat Mass Transf. 2019, 135, 1039–1052. [CrossRef]
3. Manaserh, Y.M.; Tradat, M.I.; Bani-Hani, D.; Alfallah, A.; Sammakia, B.G.; Nemati, K.; Seymour, M.J. Machine learning assisted

development of IT equipment compact models for data centers energy planning. Appl. Energy 2022, 305, 117846. [CrossRef]
4. Wang, Z.; Bash, C.; Tolia, N.; Marwah, M.; Zhu, X.; Ranganathan, P. Optimal fan speed control for thermal management of

servers. In Proceedings of the ASME InterPack Conference 2009, IPACK2009, San Francisco, CA, USA, 19–23 July 2009; Volume 2,
pp. 709–719.

5. Han, X.; Joshi, Y. Energy reduction in server cooling via real time thermal control. In Proceedings of the Annual IEEE
Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 18–22 March 2012; pp. 74–81.

6. Wang, X.; Liu, Y.; Tian, T.; Li, J. Directly air-cooled compact looped heat pipe module for high power servers with extremely low
power usage effectiveness. Appl. Energy 2022, 319, 119279. [CrossRef]

7. Li, J.; Zhou, G.; Tian, T.; Li, X. A new cooling strategy for edge computing servers using compact looped heat pipe. Appl. Therm.
Eng. 2021, 187, 116599. [CrossRef]

8. Iyengar, M.; Hamann, H.; Schmidt, R.R.; Vangilder, J. Comparison between numerical and experimental temperature distributions
in a small data center test cell. In Proceedings of the 2007 ASME InterPack Conference, IPACK 2007, Vancouver, BC, Canada,
8–12 July 2007; Volume 1, pp. 819–826.

9. Wibron, E.; Ljung, A.L.; Lundström, T. Computational Fluid Dynamics Modeling and Validating Experiments of Airflow in a
Data Center. Energies 2018, 11, 644. [CrossRef]

10. Pardey, Z.; Demetriou, D.; Erden, H.; VanGilder, J.; Khalifa, H.; Schmidt, R. Proposal for standard compact server model for
transient data center simulations. Ashrae Trans. 2015, 121, 413–421.

http://doi.org/10.1016/j.apenergy.2017.08.037
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.02.041
http://dx.doi.org/10.1016/j.apenergy.2021.117846
http://dx.doi.org/10.1016/j.apenergy.2022.119279
http://dx.doi.org/10.1016/j.applthermaleng.2021.116599
http://dx.doi.org/10.3390/en11030644

Energies 2023, 16, 2255 23 of 24

11. VanGilder, J.; Healey, C.; Pardey, Z.; Zhang, X. A compact server model for transient data center simulations. Ashrae Trans. 2013,
119, 358–370.

12. Erden, H.; Ezzat Khalifa, H.; Schmidt, R. Transient thermal response of servers through air temperature measurements. In
Proceedings of the International Electronic Packaging Technical Conference and Exhibition, Burlingame, CA, USA, 16–18 July
2013; Volume 2. [CrossRef]

13. Lucchese, R.; Olsson, J.; Ljung, A.L.; Garcia-Gabin, W.; Varagnolo, D. Energy savings in data centers: A framework for modelling
and control of servers’ cooling. IFAC-PapersOnLine 2017, 50, 9050–9057. [CrossRef]

14. Eriksson, M.; Lucchese, R.; Gustafsson, J.; Ljung, A.L.; Mousavi, A.; Varagnolo, D. Monitoring and modelling open compute
servers. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29
October–1 November 2017; pp. 7177–7184.

15. Open Compute Project. Open Compute Project, 2019. Available online: https://www.opencompute.org/about (accessed on 25
February 2023).

16. VanGilder, J.W.; Healey, C.M.; Condor, M.; Tian, W.; Menusier, Q. A Compact Cooling-System Model for Transient Data Center
Simulations. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018. [CrossRef]

17. Healey, C.; VanGilder, J.; Condor, M.; Tian, W. Transient Data Center Temperatures after a Primary Power Outage. In Proceedings
of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm),
San Diego, CA, USA, 29 May–1 June 2018; pp. 865–870. [CrossRef]

18. Lucchese, R.; Johansson, A. On energy efficient flow provisioning in air-cooled data servers. Control. Eng. Pract. 2019, 89, 103–112.
[CrossRef]

19. Lucchese, R.; Johansson, A. On server cooling policies for heat recovery: Exhaust air properties of an Open Compute Windmill
V2 platform. In Proceedings of the 2019 IEEE Conference on Control Technology and Applications (CCTA), Hong Kong, China,
19–21 August 2019; pp. 1049–1055. [CrossRef]

20. Brannvall, R.; Sarkinen, J.; Svartholm, J.; Gustafsson, J.; Summers, J. Digital Twin for Tuning of Server Fan Controllers. In
Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019.
[CrossRef]

21. Brännvall, R.; Mattson, L.; Lundmark, E.; Vesterlund, M. Data Center Excess Heat Recovery: A Case Study of Apple Drying. In
Proceedings of the ECOS 2020: Proceedings of the 33rd International Conference on Efficiency, Cost, Optimization, Simulation
and Enviromental Impact of Energy Systems. ECOS 2020 Local Organizing Committee, Osaka, Japan, 29 June–3 July 2020;
pp. 2165–2174.

22. Xia, L.; Chen, G.; Wu, T.; Gao, Y.; Mohammadzadeh, A.; Ghaderpour, E. Optimal Intelligent Control for Doubly Fed Induction
Generators. Mathematics 2023, 11, 20. [CrossRef]

23. Geyer, P.; Singaravel, S. Component-based machine learning for performance prediction in building design. Appl. Energy 2018,
228, 1439–1453. [CrossRef]

24. Gokhale, G.; Claessens, B.; Develder, C. Physics informed neural networks for control oriented thermal modeling of buildings.
Appl. Energy 2022, 314, 118852. [CrossRef]

25. Berezovskaya, Y.; Yang, C.W.; Mousavi, A.; Vyatkin, V.; Minde, T.B. Modular Model of a Data Centre as a Tool for Improving Its
Energy Efficiency. IEEE Access 2020, 8, 46559–46573. [CrossRef]

26. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc.
IEEE 2021, 109, 43–76. [CrossRef]

27. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1126–1135.

28. Gelman, A.; Hill, J. Multilevel regression. In Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge
University Press: Cambridge, UK, 2007; pp. 235–236. [CrossRef]

29. Rawlings, J.; Mayne, D.; Diehl, M. Model Predictive Control: Theory, Computation, and Design; Nob Hill Publishing: San Francisco,
CA, USA, 2017.

30. Åström, K.J.; Hägglund, T. The future of PID control. Control. Eng. Pract. 2001, 9, 1163–1175. [CrossRef]
31. Ko, J.S.; Huh, J.H.; Kim, J.C. Improvement of Energy Efficiency and Control Performance of Cooling System Fan Applied to

Industry 4.0 Data Center. Electronics 2019, 8, 582. [CrossRef]
32. Gustafsson, J.; Fredriksson, S.; Nilsson-Mäki, M.; Olsson, D.; Sarkinen, J.; Niska, H.; Seyvet, N.; Minde, T.B.; Summers, J. A

demonstration of monitoring and measuring data centers for energy efficiency using opensource tools. In Proceedings of the
e-Energy 2018—Proceedings of the 9th ACM International Conference on Future Energy Systems, Karlsruhe Germany, 12–15
June 2018, pp. 506–512.

33. McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the
Analysis of Output from a Computer Code. Technometrics 1979, 21, 239. [CrossRef]

34. Rai, R.; Sahu, C.K. Driven by Data or Derived Through Physics? A Review of Hybrid Physics Guided Machine Learning Techniques
With Cyber-Physical System (CPS) Focus. IEEE Access 2020, 8, 71050–71073. [CrossRef]

35. Li, Y.; Wang, J.; Huang, Z.; Gao, R.X. Physics-informed meta learning for machining tool wear prediction. J. Manuf. Syst. 2022,
62, 17–27. [CrossRef]

http://dx.doi.org/10.1115/IPACK2013-73281
http://dx.doi.org/10.1016/j.ifacol.2017.08.1624
https://www.opencompute.org/about
http://dx.doi.org/10.1109/itherm.2018.8419515
http://dx.doi.org/10.1109/ITHERM.2018.8419583
http://dx.doi.org/10.1016/j.conengprac.2019.05.019
http://dx.doi.org/10.1109/CCTA.2019.8920656
http://dx.doi.org/10.1109/indin41052.2019.8972291
http://dx.doi.org/10.3390/math11010020
http://dx.doi.org/10.1016/j.apenergy.2018.07.011
http://dx.doi.org/10.1016/j.apenergy.2022.118852
http://dx.doi.org/10.1109/ACCESS.2020.2978065
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1017/cbo9780511790942.014
http://dx.doi.org/10.1016/S0967-0661(01)00062-4
http://dx.doi.org/10.3390/electronics8050582
http://dx.doi.org/10.2307/1268522
http://dx.doi.org/10.1109/ACCESS.2020.2987324
http://dx.doi.org/10.1016/j.jmsy.2021.10.013

Energies 2023, 16, 2255 24 of 24

36. Huber, P.J. Robust Estimation of a Location Parameter. Ann. Math. Stat. 1964, 35, 73–101. [CrossRef]
37. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.
38. Sarkinen, J.; Brännvall, R.; Gustafsson, J.; Summers, J. Experimental Analysis of Server Fan Control Strategies for Improved Data

Center Air-based Thermal Management. In Proceedings of The Intersociety Conference on Thermal and Thermomechanical
Phenomena in Electronic Systems (ITherm 2020), Orlando, FL, USA, 21–23 July 2020.

39. Duong, L.; Cohn, T.; Bird, S.; Cook, P. Low Resource Dependency Parsing: Cross-lingual Parameter Sharing in a Neural Network
Parser. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), Beijing, China, 26–31 July 2015. [CrossRef]

40. Moffat, R.J. Modeling Air-Cooled Heat Sinks as Heat Exchangers. In Proceedings of the Twenty-Third Annual IEEE Semiconductor
Thermal Measurement and Management Symposium, San Jose, CA, USA, 18–22 March 2007; pp. 200–207.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.3115/v1/p15-2139

	Introduction
	Materials
	Fan Control Board
	Data Collection
	Experiment Design

	Method
	Notation
	Thermal Model
	Physics-Informed Data-Driven RNN
	Alternative Models
	n-Step PEM
	Regularization

	Results
	Model Training
	Fan Control
	Transfer Learning

	Discussion
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

