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Abstract: For the offshore wind turbines (OWTs) located in a seismically active region, the occurrence
of earthquakes combined with scour is a highly possible multi-hazard event. This study developed an
alternative fragility analysis framework to assess the seismic performance of suction bucket-supported
OWTs under the action of scour. First, the probabilistic approach was applied to calculate the
occurrence probability of scour depth (SD) and earthquake events. Then, the possible combinations of
these two events were considered in the analysis model to establish the fragility surface of the suction
bucket foundation. Finally, by integrating the product of scour and earthquake hazard, as well as
fragility curves, the suction bucket foundation failure probability was obtained. The developed
framework provides a reliable approach to risk assessment for OWT-supporting structures in extreme
event situations and can be applied to other complex natural hazards.

Keywords: offshore wind turbine (OWT); risk assessment; earthquake; scour; multi-hazard; suction
bucket (SB)

1. Introduction

Despite the fact that the marine environment is extremely harsh and complex, offshore
wind farms have been widely established in many countries. Nowadays, a significant
number of offshore wind farms are constructed or being constructed. According to current
data [1], there are 122 offshore wind farm projects, of which 8 currently operating around
Korean coastlines, and the total offshore power capacity of the offshore wind industry in
Korea will reach 18–20 GW by 2030 [2].

Compared with onshore sites, offshore wind farms have more substantial and stable
wind speed conditions, reduced environmental impact, and more space for installation.
However, OWTs are confronted with more complex environmental load conditions such as
waves, typhoons, and ice. In particular, the planning and designing of wind turbines in
offshore environments needs to consider the scouring phenomena around the foundations
of the wind turbines. The bearing capacity of an SB foundation was mainly formed by
the interaction between the bucket skirt and the soil. Unfortunately, scour significantly
reduces this connection because a certain amount of soil layers around the SB have been
removed. Therefore, it can be concluded that scour is one of the causes of deterioration in
the bearing capacity of the foundation after installation. Scour has a negative impact on
the capacity of the foundation and thereby on the response of the upper structure [3–5].
Significant studies have been carried out to evaluate the influence of scour on the bearing
capacity of OWT support systems. Through his research, Li et al. [6] conclude that the
bearing capacity of the OWT foundation decreases non-linearly, and the foundation-bearing
envelope line shrinks. Zhao et al. [7] investigate the change in the bearing capacity of the
foundation due to scour and show that scour causes the embedded depth of the foundation
to decrease, thereby leading to the degradation of the bearing capacity of the foundation.
Moreover, the seismic effect on the dynamic response of OWTs under scour conditions
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has recently attracted many researchers. Ngo et al. [8] investigated the seismic fragility
of a novel SB foundation for OWTs under scour conditions and concluded that scour
significantly changed the seismic response of this novel SB foundation, but it had a better
bearing capacity than the tripod SB foundation. However, in this study, scour depth
was not considered as a random quantity. A scour model has been simulated by the
deterministic approach. Accordingly, seismic assessments were made under specific scour
depths without considering their randomness. Furthermore, the occurrence probability
of earthquake events was also not considered. Jiang and his colleagues [9] examined
the seismic response of monopile-supported offshore wind turbines in soft clays under
scoured conditions. The results of this study also showed that scour significantly changed
the seismic responses of the selected OWT structure. Currently, most of the research on
the effects of earthquakes and scour considers the scour process as a general scour by
assuming several specific scour depths without considering the randomness of scour depth.
Prendergast et al. [10] evaluated the scour effect on the shift of the fundamental frequency
and calculated variations of the fundamental frequency with general scour depths. Guan
et al. [11] investigated the relationship between the scour and foundation vibration where
the monopile top was excited by simple harmonic motions. Jia et al. [12] investigated the
dynamic responses of the SB foundation under combined effects of general scour and real
earthquake. Regarding risk assessment methods, many methods have been proposed and
developed. They can be divided into three main methods: qualitative, semi-quantitative,
and quantitative methods [13]. Among them, some popular methods can be mentioned,
such as the failure method and the effect analysis (FMEA), a type of qualitative method,
as well as the numerical simulation method (quantitative method). The FMEA allows
for the definition of failure mode and its effect on structural risk [14,15]. Meanwhile, the
numerical simulation method allows for the convenient simulation of potential hazards
to the structure under specific environmental conditions [16–18]. Moreover, the operation
management method to control the risk as multi-attribute decision-making (MADM) also
attracts many researchers [19–23].

Although many studies have been performed to evaluate the response of OWT-support
structures with environmental loads under scoured foundation conditions [24–26], the risk
assessment of OWT support structure exposed to several multi-hazard sources, which
considers the occurrence of hazards as an uncertain quantity, is still a relatively new topic.
Kim et al. [27] evaluated the scour risk of the suction bucket support structure for OWTs.
In this paper, a probabilistic distribution of scour depth was obtained considering the
uncertainty of related variables. Additionally, then, scour risk was obtained by combining
the scour hazard and the fragility.

For the offshore wind turbines (OWTs) located in a seismically active region, the
occurrence of earthquakes combined with scour is a highly possible multi-hazard event.
Earthquakes and scour are therefore potential multi-hazard events for the design and
construction of offshore wind turbines in such areas. In this study, in order to evaluate
the failure probability of the suction bucket foundation under the combined action of
post-scour and earthquake, a reliability-based framework has been proposed in which the
probabilistic approach was applied to calculate the occurrence probability of scour depth
(SD) and earthquake events. For the reliability assessment of scoured foundation under
earthquake, a 5.5 MW OWT with an SB foundation was used as a case study. It was located
on the Gunsan coast of Korea. The probability of failure of the SB foundation was finally
calculated by integrating the results of both scour and earthquake hazard as well as fragility
curve and then compared with a target failure probability.

2. Probabilistic Methodology
2.1. Probability Distribution of Scour Depth (SD)

Depending on the seabed and wave characteristics, the foundation of OWTs expe-
riences local scour and general scour (global scour). Experimental studies and previous
studies [28–30] showed that local scour causes the most significant degradation to the
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foundation of marine structures and adversely affects the stability of the structure. As
a result, this study considered local scour for foundation vulnerability evaluation under
multiple hazards. The design formula recommended by Sumer and Fredsoe [31] is an
empirical formula based on a set of experimental tests and calculates the scour depth by
using a number of parameters, such as the undisturbed current velocity (UC) at the distance
from the bed, the maximum value of the undisturbed orbital velocity at the bed (Um), and
peak period wave (Tp). This equation can be expressed as follows:

S
D

=
SC

D
[1− exp{−A(KC− B)}], KC ≥ 4 (1)

where S: SD; SC: SD in the case of steady current alone; D:pile diameter; KC = UmTp/D;
A = 0.03 + 0.75U2.6

cw; B = 6 exp(−4.7Ucw); Ucw = Uc/(Uc + Um). It can be seen that
Equation (1) included some uncertain parameters. For the reliability analysis of an SB
foundation under scouring effects, the probability distribution functions of these parameters
need to be used to consider their variability.

It was evident that the scour depth mainly depends on the KC parameter, which is
governed by peak period wave (Tp). Therefore, only the uncertainty of KC was considered
in this study. Consequently, the SD probability distribution can be obtained by considering
the variability of the KC parameter, whereas the variability of KC is governed by the peak
period wave (Tp).

Evidently, it can be seen from Equation (1) that scour depth is a function independent
of time. In fact, the scour depth develops toward the equilibrium stage after a certain
time, as illustrated in Figure 1. Hence, the depth corresponding to the fully developed
stage calculated by Equation (1) is not always achieved. For example, the scour condition
corresponding to KC = 4.5 does not always cause the scour depth to reach the equilibrium
stage due to its short time occurrence. Therefore, in this study, it is assumed that the scour
conditions occur long enough for the scour depth to fully develop. Considering the safety
assessment, this assumption is acceptable.
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2.2. Probability Distribution of Earthquake

The probability distribution of earthquakes fPGA(a) at a specific site is effective to
define the probability of occurrence for a specific earthquake intensity. In practice, seismic
hazard models can be obtained from the seismic hazard map of Korea for a given site in
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Korea. Normally, peak ground acceleration (PGA) and spectral acceleration at a certain
return period are commonly used. In this paper, the seismic hazard model in terms of PGA
is adopted.

2.3. Fragility Analysis

In this study, the allowable horizontal displacement of an SB foundation was used
to find the fragility curves, and it was set to 38 mm as described in the AASHTO LRFD
Bridge Design Specification for bridge foundation. The form of two-parameter log-normal
distribution functions is usually used to define the seismic fragility curves:

Fk(a) = Φ

 ln
(

a
ck

)
ζk

 (2)

where Fk(a) is the fragility which ranges from 0 to 1.0 according to the probability of failure.
Φ(.) is the standard normal cumulative distribution function (CDF), k and ck are damage
level and the standard deviation, respectively. With the aid of the maximum likelihood
method, k and ck can be estimated. It was performed by the function below:

L =
n

∏
i=1

[Fk(ai)]
xi [1− Fk(ai)]

1−xi (3)

{
ĉk, ζ̂k

}
= argmax

ck, ζk

(lnL) (4)

under the influence of an external force with intensity ai, if the structure becomes damaged,
xi = 1 will be assigned, otherwise, it will be set to 0. In this study, ai is the earthquake
intensity (peak ground acceleration, PGA) and n is the total number of used earthquake
records. Π is the product over i values form 1 to n.

2.4. Estimation of Failure Probability

The conditional failure probability of an SB foundation under the combination of
earthquake and scour can be calculated as follows:

Pf =
∫ smax

0

∫ amax

0
Fk(a, s) fPGA(a) fSD(s)dads (5)

where smax is the maximum possible scour depth and amax is the maximum intensity of
earthquake events (i.e., peak ground acceleration, PGA). The maximum here means that the
scour depth (or the earthquake intensity) has a near-zero probability of occurrence. fSD(s)ds
is the occurrence probability of specific scour depth. This probability can be obtained from
the PDF of scour depth. Additionally, fPGA(a)da is the occurrence probability of specific
earthquake intensity which can be obtained from the PDF of the earthquake.

The remaining parameter in Equation (5) is the failure probability of structure under
the defined damage state Fk(a, s). This probability was estimated from the seismic fragility
curves of the scoured SB foundation. Fragility curves provide the probability that an
intensity measure of an earthquake event will cause the scoured SB foundation to exceed a
damage state (k). As a result, by integrating the results of scour and earthquake hazard,
as well as fragility curves, the SB failure probability was obtained and assessed. During
the lifetime of the structure, at the time T-year, the structural failure probability can be
calculated by the difference between the total probability and the probability that no
damage occurs. Accordingly, the failure probability for T-years was expressed as follows:

Pf
T = 1−

∞

∑
n=0

(λET)n

n!
exp[λET]

(
1− Pf

)n
(6)
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where λE is the annual earthquake occurrence rate at a site of interest. Considering that an
earthquake intensity (PGA ≥ a0, a0 is the minimum PGA) occurs at a rate of λE per year,
the correlation between the probability distribution of the annual maximum PGA, FA(a),
and the probability of the PGA of one seismic event, FA1(a), can be expressed:

FA(a) = exp[−λE
(
1− FA1(a)

]
(7)

When a0 is considered, FA1(a0) = 0, and Equation (7) becomes:

λE = −lnFA(a0) (8)

The probability distribution of the annual maximum PGA, FA(a), can be estimased
from the data at the field sites. For example, let us assume that the estimated PDF of FA(a)
here is the Type-2 Gumbel distribution with two parameters k and b as Equation (9). By
combining Equations (8) and (9), the annual occurrence rate, λE, is calculated as Equation (10).

FA(a) = exp
[
−
( a

b

)k
]

(9)

λE = −
( a0

b

)k
] (10)

Mathematically, using the infinite series of the exponential function, Equation (6) can
be expressed simply as follows:

Pf
T = 1− exp

[
−λETPf

]
(11)

3. Numerical Analysis
3.1. Example OWT and Modeling

In this study, the FE model of a pentapod SB supporting a 5.5 MW OWT installed
on the Gunsan coast in Korea is established in Abaqus [32]. The geographic location of
the OWT is shown in Figure 2. The modeling was divided into two main parts, upper
structure (OWT) and soil model, as shown in Figure 3. The suction bucket was modeled
by shell elements with the parameters of diameter, skirt length, and thickness of 9 m, 7 m,
and 0.025 m, respectively. The upper frame structure and the tower were modeled by the
beam element. The soil medium is 100 m in length and 30 m in height width, in which
the boundary elements are modeled using infinite elements to illustrate the infinity of the
soil environment in the fact. The hub–blade–nacelle assembly is minimalistic using an
alternative centralized mass and is placed at the top of the tower. To model the interaction
between bucket and soil, contact pairs surface-to-surface were used for outer and inner
interaction where the normal and tangential behavior must be specified in Abaqus/CAE.
Although various uncertainty theories have been established in this study to estimate the
sour depth and seismic demand, the unpredictability of structural material has not been
investigated. Accordingly, the steel properties used for the tower and substructure were
described in Table 1 while masses of tower components are given in Table 2.
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Table 1. Steel properties.

Density 7850 kg/m3

Young’s modulus 210 GPa
Poisson’s ratio 0.3

Table 2. Mass of tower components (kg).

Main tubular steel of tower 299,983
Concentrated mass 71,972

Nacelle 247,900
Hub + Blade 143,521
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Soil properties at the survey site are shown in Table 3. Due to the fact that the suction
bucket length (L) is 7 m, the buckets were only embedded in the first two soil layers. To
model the scoured seabed, the soil layer within the scour depth was simply removed.
Hence, factors related to local scour formation are not considered. The maximum possible
sour depth in this study is 3 m. The scour depth is modeled with an interval of 0.5 m.
Combined with 40 earthquake records ranging from a PGA of 0.01 to 0.5 g, a total of
3000 analyses were performed to find the seismic fragility curve in this study.

Table 3. Soil profile of survey site.

Soil Layer Depth
(m)

Unit Weight
(kN/m3)

Modulus of
Deformation (MPa)

Internal Friction
Angle (deg)

Cohesion Yield
Stress (kPa) Poisson’s Ratio

Upper sand 0.0~3.0 17.5 35.56 32.3 5 0.400
Lower sand 3.0~7.0 17.5 67.48 37.0 5 0.400

Weathered rock 7.0~ 20.0 76.00 32.0 - 0.450

3.2. Occurrence Probability of Scour Depth

The occurrence probability of scour depth can be conveniently obtained from its
probability distribution. As demonstrated in Section 2.1, it is first necessary to determine the
distribution of KC’s important parameter. For this purpose, annual significant wave height
(Hs) data obtained from the HYPA model of the Korea Oceanic Research and Development
Institute [33] from 1979 to 2003 were used in this study. In order to find the probability
distribution function of the annual significant wave height, different distribution functions,
such as Normal, Lognormal, and Weibull, are examined, and their confidence intervals are
calculated. The best fit for the available data was the Weibull distribution with mean scale
and shape parameters of 5.56 and 9.66, respectively. The probability distribution of (Hs)
was shown in Figure 4.
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As discussed, to calculate the scour depth, it is necessary to know the KC parameter,
which is dependent on the peak period wave (Tp). The (Tp) parameter can be calculated
by using Bretschneider’s wave spectrum with significant wave height (Hs), period (Ts),
as follows:

S( f ) = 0.257H2
s T−4

s f−5exp
[
−1.03(Ts f )−4

]
(12)

In which Ts = 3.3H0.63
s . Then, scour depth can be calculated. As per the results, KC

was calculated and its probability distribution was presented as Figure 5. Equation (1)
shows that only KC values greater than 4 are valid, and the distribution of scour depth was
obtained as shown in Figure 6. It was found that a log-normal distribution fits well with
two parameters λ and ζ of 0.75 and 0.55, respectively [27].
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3.3. Occurrence Probability of Earthquake

Additionally to potential scour hazards, the effects of seismic hazards on the scoured
foundation should be taken into account in the risk assessment process. Seismic hazards
here are the occurrence probability of the specific earthquake intensity

, denoted by fPGA(a)da, of a specific area (herein, the coast of Gunsan, Korea). This
probability can be estimated from the demand probability distribution of the earthquake.
Based on the seismic hazard map of Korea, the earthquake probability distribution of
Gunsan was presented as Figure 7. It is a Weibull distribution with the shape (k) and scale
parameter (b) of 2.2071 and 0.0693, respectively. Its probability density function (PDF) and
cumulative distribution function (CDF) were presented by the following equations:

fPGA(a) =
k
b

( a
b

)k−1
exp

[
−
( a

b

)k
]

(13)

FPGA(a) = 1− exp
[
−
( a

b

)k
]

(14)
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3.4. Fragility Analysis of Scoured SB Foundation

Fragility curves were established in this study as the relationship between earthquake
intensity (PGA) and the probability of exceeding the allowable horizontal displacement of
the SB foundation. To find the fragility curves, a series of nonlinear time–history analyses
were performed on the OWT model with and without scour conditions. By using the
selected earthquake records, the seismic responses are then evaluated. For each analysis,
the probable damage state of the SB foundation is determined if its maximum horizontal
displacement exceeds the allowable displacement. The definition of damage state has
been derived into four levels as severe, considerable, moderate, and small corresponding
to 100%, 90%, 80%, and 70% of the allowable displacement, respectively. The fragility
curves are shown in Figure 8 prior to any scour event. Figure 8 indicates that, at the small
damage state, the probability of damage rapidly approaches a high probability (>50%)
when the PGA becomes greater than 0.2115 g, whereas this parameter at a moderate,
considerable, and severe damage state is 0.2255 g, 0.2545 g, and 0.3040 g, respectively.
Considering the scour effects, Figure 9 shows the fragility curves of the SB foundation at
the moderate damage state. As it can be seen from this figure, the exceeding probability
of a specific damage state is proportional to the scour depth. This trend is similar for all
earthquake intensities and it was explained that the removal of more soil increases the
extent of degradation of the foundation.
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For further illustration, the vulnerability of a scoured OWT foundation to earthquakes
in terms of PGA was also present by the fragility surface, as shown in Figure 10. It is
evident from Figure 10 that, when the PGA is 0.2255 g, the probability of damage increases
from 0.5 to 0.966 with the increase in scour depth. With a PGA = 0.0614 g (equivalently
corresponding to an occurrence probability of 50%), the probability of damage is still
insignificant (around 0.0036) even if the scour depth reaches the maximum possible depth
(3 m).
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3.5. Failure Probability Results

Fragility curves, the product of scour, and earthquake hazard are here to be combined
to calculate the failure probability. In this study, the failure occurs when the horizontal
displacement of the SB foundation exceeds the allowed displacement (0.038 m). The
occurrence probability of a specific earthquake intensity on the specific site where an
OWT is located can be efficiently evaluated using the PDF of the earthquake, which
can be obtained from seismic hazard maps in Korea. Then, the failure probability is
calculated by Equation (5), whereas its values for several service years can be obtained by
using Equation (11). Table 4 summarizes the results of failure probability for a one-time
occurrence of a hazard event, and several service years (in this study, 20, 50, 100, and
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200 years are considered) at the moderate and severe damage states. The calculated failure
probabilities were compared with the target probability of failure or its equivalent reliability
index for assessment. The probability of failure can be converted into a reliability index as
in Equation (15) and the results are shown in Table 5. The annual target reliability index
can be referred to from some design standards. DNV GL [3] and IEC 61400-1 [34] propose
the annual target reliability index of 3.719 and 3.3, respectively. The results of the analyses
presented in Tables 4 and 5 evidence that the probability of causing moderate-to-severe
structural damage under the effect of scour and earthquakes is relatively small. Specifically,
the reliability indices for one occurrence of a hazard event are 3.324 and 4.523 at a moderate
and severe damage state, respectively. Compared to the annual target reliability index
mentioned in IEC, these values both exceeded the target reliability index. However, the
reliability index for one occurrence of a hazard event at the moderate damage state is less
than the acceptable level in the DNV standard (3.324 < 3.719). Even though the risk for
200 years of both damage stages is 0.217 and 0.0013, respectively, it can still be considered
as a relatively small damage.

β = −Φ−1
(

Pf

)
(15)

Table 4. Failure probability results.

Damage State One Time 20 50 100 200

Moderate 4.336 × 10−4 0.0241 0.0592 0.115 0.217
Severe 3.056 × 10−6 1.257 × 10−4 3.143 × 10−4 0.0006 0.0013

Table 5. Equivalent reliability index results.

Damage State One Time 20 50 100 200

Moderate 3.324 1.976 1.561 1.201 0.782
Severe 4.523 3.661 3.419 3.239 3.0115

4. Conclusions

This study proposed a multi-hazard reliability-based framework to evaluate the per-
formance of an SB foundation supporting OWTs under the combination of scour and
earthquake. First, the seismic vulnerability of a structure is evaluated in the form of
fragility curves by using the range of possible combinations of earthquake intensity and
scour depth. The maximum possible values of earthquake intensity and scour depth were
determined based on their PDF. Finally, the failure probability of the structure was cal-
culated by integrating the results of scour, earthquake hazard, and fragility curves. The
proposed framework finally provided the single failure probability value of the structure
on the specific site with the specific scour and earthquake conditions. In the current study,
several highlighted conclusions are summarized as follows:

- In the survey area, the earthquake intensity (PGA) with a 50% occurrence probability
of occurrence is 0.0614 g, and the damage probability of the SB foundation, in this
case, is 0.0036 when scour depth reaches the maximum possible depth (3 m).

- The reliability indices for one occurrence of a hazard event at moderate and severe
damage states are 3.342 and 4.523, respectively. Both values are greater than the target
reliability index mentioned in IEC standards. Compared to the target reliability index
proposed by DNV GL standards, one occurrence of a hazard event can be caused
moderate damage. The final results of the OWT model case study indicate that, with
the condition of scour and earthquake on the Gunsan coast, the SB foundation located
here has a reliability index accepted by some design codes (DNV and IEC).

Although the authors believe that there are still other aspects of the environment
that affect the randomness of the scour depth that should be considered to illuminate the
regional effect, such as the randomness of wave velocity and seabed properties, etc., this
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paper still provides a suitable approach to evaluate the structural risk under multi-hazard
events and can be applied to other extreme events in its entirety.
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