
Citation: Omidi, S.A.; Baig, M.J.A.;

Iqbal, M.T. Design and

Implementation of Node-Red Based

Open-Source SCADA Architecture

for a Hybrid Power System. Energies

2023, 16, 2092. https://doi.org/

10.3390/en16052092

Academic Editors: Mazaher Karimi

and Gianfranco Chicco

Received: 11 January 2023

Revised: 10 February 2023

Accepted: 17 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Design and Implementation of Node-Red Based Open-Source
SCADA Architecture for a Hybrid Power System
Sayed Arash Omidi, Mirza Jabbar Aziz Baig * and Mohammad Tariq Iqbal *

Department of Electrical and Computer Engineering, Memorial University of Newfoundland, 230 Elizabeth Ave,
St. John’s, NL A1C5S7, Canada
* Correspondence: mjabaig@mun.ca (M.J.A.B.); tariq@mun.ca (M.T.I.)

Abstract: At present, hybrid renewable power systems (HRPS) are considered reliable combinations
for power generation under various conditions. The challenge facing researchers and engineers
today is designing and implementing a reliable, efficient, and applicable SCADA system for adequate
monitoring and control of hybrid power systems. In order to analyze, observe, and control the
essential parameters of an HRPS, a SCADA system is crucial. As part of this study, a low-cost,
low-power, open-source SCADA (Supervisory, Control, and Data Acquisition) system for hybrid
renewable energy systems is presented. The system utilizes two remote terminal units (RTUs), an
Arduino Mega2560 and a Wio terminal, to communicate with all actuators and measure vital system
characteristics such as voltage, current, and power. Using the Firmata protocol, a laptop serves as
the main terminal unit (MTU) to communicate with the Arduino. In addition to being the system’s
central component, Node-Red is utilized for processing, analyzing, storing, and displaying data. In
contrast, a Wio terminal is used to display the values of all sensors in real-time on its LCD screen. As
a whole, the proposed SCADA system is designed to keep the HRPS running smoothly and safely by
displaying vital parameters, reporting any significant faults, and controlling the generator so that the
batteries can be charged and discharged correctly. This article presents a complete description of all
algorithms, experimental setups, testing, and results.

Keywords: supervisory; control and data acquisition; hybrid renewable power systems; Node-Red;
open-source; photo voltaic

1. Introduction

Increasingly, clean and renewable energy sources are being integrated into today’s
power systems as energy professionals seek ways to harness these resources for the benefit
of humanity. These sources of clean, renewable energy are combined with traditional energy
production methods to create highly efficient power systems. Even so, battery storage
is generally necessary for the subsequent hybrid energy systems and sustainable energy
sources, including wind and solar energy, which are intermittent and highly influenced
by climate-related factors. As a multisource system, hybrid systems with energy storage
are the solution to overcoming these obstacles by supplying reliable power while meeting
environmental standards. Energy production and supply can, however, be difficult to
integrate due to several issues relating to grid synchronization, frequency control, voltage
tolerances, power quality and monitoring, data transfer between parts, and the security
and safety of both the investment and personnel [1]. Electrification of rural areas has
long been regarded as a successful strategy for the long-term development of such areas,
both in developing and developed countries. Globally, an increasing number of countries
have expressed interest in deploying hybrid power systems (HPSs) using wind-diesel,
PV-diesel, and wind-PV-diesel. In spite of the growing number of demonstrative projects,
a large market for these systems does not appear to have materialized despite various
indications that they may be in demand in the near future [2]. The HPS typically consists

Energies 2023, 16, 2092. https://doi.org/10.3390/en16052092 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16052092
https://doi.org/10.3390/en16052092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5855-2700
https://orcid.org/0000-0001-7056-4811
https://doi.org/10.3390/en16052092
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16052092?type=check_update&version=1

Energies 2023, 16, 2092 2 of 21

of a multitude of sensors, microcontrollers, actuators, etc. that are installed at different
points to collect valuable data, namely power, voltage, and current, as well as for real-time
monitoring of remotely installed devices. A state-of-the-art SCADA system is the ideal
solution for achieving these objectives. As these HPSs and their equipment are set up
in remote locations, a SCADA system is crucial to monitor, control, and record external
devices, actuators, and other field instrumentation devices (FIDs) connected to the different
focal points remotely. It allows real-time remote control, monitoring, and processing of the
power, voltage, and current generated by these variably dispersed sensors and actuators
using the SCADA system [3].

An initial version of SCADA was developed in the 1950s for minicomputers and
telephone relay systems [4]. Early “SCADA” systems collected data using meter panels,
lights, and strip chart recorders. Factory, industrial, and power production facilities have
used and continue to use these systems for supervisory control and data processing [4,5].
According to [6], there are four generations in SCADA architecture: the first generation is
monolithic SCADA, the second generation is distributed SCADA, the third generation is
networked SCADA, and the fourth generation is Internet of Things (IoT)-based SCADA.
Before networks became widely used, the first SCADA systems were developed, which
involved independent systems that had little or no connectivity to each other. Wide
Area Networks (WANs) were constructed using two identically configured mainframe
computers, and they only communicated through Remote Terminal Units (RTUs). As part of
the system, proprietary software was utilized primarily, and all of the RTUs were connected
to a backup mainframe to ensure a long service life. As part of the second generation
of SCADA systems, LAN technology is used to disseminate information and procedures
across multiple platforms. As compared with their predecessors, these systems were more
affordable and smaller. Near-real-time data exchange took place between stations, each of
which had its own set of duties. In addition to increasing the system’s processing power,
stability, and reliability, distribution was restricted to the local region, and most LAN
protocols used were proprietary. System operations and processes were distributed across
many platforms using LAN technology in the second generation of SCADA systems. These
systems were considerably less expensive and smaller than their counterparts. Between
stations, each with its own set of duties, data were exchanged almost instantly.

The third generation of SCADA included several linked systems communicating
across WANs, sharing master station responsibilities, and leveraging PLCs for monitoring.
This generation shared characteristics with the second generation in that it offered remote
SCADA capabilities across a WAN. However, unlike the second version, it could use
Internet Protocol (IP) to connect to the internet and peripherals from other manufacturers.
The fourth generation of SCADA systems now includes sophisticated software, powerful
microprocessors, the cloud, wireless, and the Internet of Things (IoT) [7,8]. As a result of
combining traditional SCADA with the cloud, IoT provides fourth-generation SCADA
systems with a viable alternative to PLCs. Through the use of intricate data modeling
and algorithm modeling, the system enhances data availability, adaptability, accessibility,
scalability, and cost-effectiveness. The authors used Node-Red as an IoT platform for
monitoring and controlling self-generated energy [9].

An efficient, versatile SCADA system has been designed, implemented, and experi-
mentally validated for an isolated hybrid renewable power system as a part of this study.
The sizing and dynamic modeling of the developed system are presented in [10]. To achieve
the purpose of this research, an Arduino Mega 2560 has been used as an RTU. The Arduino
collects data from five current sensors and one voltage sensor and sends it to the MTU
using the Firmata protocol through a serial port. Moreover, it receives all operating signals
from the MTU to control the diesel generator and show the healthy behavior status of
other essential components in the system; a PC has been utilized as an MTU to handle
the communication between the RTU and the analyzer and monitor unit. Node-Red is
used as an analyzer and monitoring unit for the purpose of receiving real-time data and
processing, analyzing, and displaying it. Moreover, it derives some information regarding

Energies 2023, 16, 2092 3 of 21

any fault in the system and controls charging and discharging the battery by turning the
diesel generator on/off. Furthermore, a Wio terminal is used as a standalone low-cost and
low-power RTU to receive and display all sensor values individually on an LCD. The Wio
terminal allows the user to specify which sensor value to monitor by giving a binary value.
The users can access the Node-Red dashboard remotely by connecting their cell phones to
the main Node-Red server. To add to this, a CSV file is used to store all data.

2. Literature Review

There has been considerable effort made by many research communities around the
globe in developing and improving SCADA systems to be used in various applications.
A concern has been raised in [11] concerning the detection of damage on wind turbine
blades following each lightning strike, which has been addressed with a SCADA system.
For this reason, a SCADA system has been designed to detect any blade damage caused by
lightning strikes so that the wind turbine can still run for a shorter period of time. In order
to make the SCADA system capable of recognizing anomalies in blades, the following
concepts have been studied: the relationship between wind speed and rotational speed;
the relationship between wind speed and power generated; and the relationship between
wind speed and pitch angle. As described in [12], the researchers developed a SCADA
system to detect equipment faults in power plants or other industrial infrastructures
caused by replay attacks, a more complex form of cyberattack. To detect and differentiate
equipment’s characteristics, the author claims to utilize state space, the Kalman filter, and
linear-quadratic Gaussian controller modeling frameworks. They have been able to detect
anomalies and faults in various scenarios through the design and development of this
SCADA system. According to [13], a low-cost open-source Internet of Things (IoT)-based
SCADA system has been developed using an ESP32 connected to ThingsBoard via the
Message Queuing Telemetry Transport (MQTT) protocol. The purpose of this SCADA
system is to remotely monitor, process, and control the voltage, current, and power of an
isolated photovoltaic (PV) system. Monitoring and controlling a renewable power system
remotely can be achieved using the MQTT protocol over a private WiFi connection using
the ESP32 and ThingsBoard server nodes as MQTT masters. An open-source, low-cost
SCADA system was designed and implemented in [14] for the purpose of logging data
locally from a PV plant. Using a remote terminal unit (RTU), an Arduino, and a master
terminal unit, an RPI, the author designed this system to record and monitor the logged
data from current and voltage sensors. A total of CAD $761.72 is claimed for this system,
which has a power consumption of 30 watts.

The development of a SCADA system for the detection, monitoring, and recognition
of faults in wind turbines has been illustrated in [15]. To improve the functionality of
this system, they present a covariate-adjusted preprocessing method to clarify different
weather working situations for the wind turbine. Moreover, to observe the overall situation,
functionality, and performance of the wind turbine, a global monitoring statistic has been
constructed based on all temperature functioning variables. By designing this system, they
achieve the goal of making a historical database for a wind turbine; they also make a system
that is able to isolate a fault after happening through a variable selection method; therefore,
they design an applicable SCADA system to observe a wind turbine and detect and isolate
any fault faster without relying on historical data or any expert knowledge. To estimate
and temper the impact of any fault or disturbance in integrated AC/DC grids, a Faster
Than SCADA system based on a flexible time-stepping algorithm and field-programmable
gate arrays (FPGAs) has been proposed in [16]. On FPGA, by utilizing a flexible time-
stepping algorithm, the researchers are able to adjust the time step value range from 1 ms
to 10 ms, which provides the faster SCADA system emulation of a sophisticated power
transmission system much faster due to the considerable parallelism in FPGAs. The authors
of [17] developed a SCADA system based on IoT for monitoring and controlling inverters
remotely. They split their approach into four layers for installation, dubbed the monitor,
server, cloud, and client layers. The sensor, WiFi data collector, inverter, and wireless router

Energies 2023, 16, 2092 4 of 21

components make up the monitor layer. The server layer was made up of a PC server,
the cloud layer was made up of a database, and the client plane comprised a laptop, a
tablet, and a smartphone. The human-machine interface (HMI) for inverter data monitoring
was constructed using Asynchronous JavaScript and XML (AJAX) and Responsive Web
Design (RWD) tools. The inverter data, such as voltage and frequency, were communicated
over a Wireless Sensor Network (WSN) to the database in the cloud. Through an RS-485
connection and the Modbus protocol, the inverter’s voltage and frequency may also be
controlled remotely.

In [18], an open-source-based SCADA system has been designed and implemented
for solar-powered reverse osmosis in a community. To log and display the related data of
the reverse osmosis system, an Arduino has been used as an RTU, a Debian system has
been utilized as an MTU, and there is also a Node-Red-based dashboard to display the
information that has been processed by the MTU. Grafana and InfluxDB are other tools
that have been applied to analyze and store the data. In [19], the researchers applied an
adaptive control technique and model predictive control to provide electrical frequency
control for a hybrid renewable power system based on the Multi-Objective Practical Swarm
Optimization Algorithm (MOPSO). This study provides the optimal point of the control
algorithm coverage, which improves the system’s robustness. A SCADA system has been
developed in [20] to predict and detect any anomalies in a wind turbine using collected data
from a healthy wind turbine to model the regular behavior of a wind turbine and generate
a Mahalanobis space to refer to and compare data. Results indicate that it can determine
matching breakdown components and identify abnormalities before the wind turbines
need to be taken offline for repair. The author of [21] provides an example of a monitoring
method involving WiFi for hybrid renewable energy-based power sources. A PV, wind,
and battery-integrated system with an IoT-based SCADA has been developed to monitor
and operate the various components remotely. Through the ThingSpeak website, electrical
characteristics, including voltage, current, and power, are continuously monitored and
displayed. Via the KEPServerEX client, the Matlab/Simulink software tool is linked with
the SCADA system. The suggested SCADA system in [22] is built on the Internet of Things
SCADA framework, which combines web applications with conventional (traditional)
SCADA for more reliable supervisory control and monitoring. It consists of an ESP32
Thing, a Raspberry Pi, analog current and voltage sensors, a regional WiFi router, and
ESP32 microcontrollers. The current and voltage sensors in its installation obtain the
required information from the processing facility, and the ESP32 microcontroller collects,
analyzes, and communicates the acquired sensor data to the Thinger through a WiFi
connection. It is described in [23] how to develop a low-cost SCADA system for remote
Base Transceiver Stations (BTS) using the ESP32 and Arduino IoT Cloud. A WiFi network
exchange of information is used to analyze and send the observed data to the Arduino
IoT Cloud. Current, voltage, temperature, and humidity sensors are configured to detect
pertinently desired parameters. The authors in [24] also used a Node-Red-based monitoring
and control system for peer-to-peer energy trading to monitor renewable energy. In [25,26],
data acquisition, monitoring, and control of renewable energy generation are carried out
using an IoT server.

During the course of this research, a considerable amount of literature has been
reviewed, and some issues that have been identified in the literature cited above include
lack of simplicity, overuse of tools and components, inability to access ultra-low power
tools, and difficulty during installation. Moreover, some studies lack active control of
components and take action based on the system’s current situation. The need for real-
time data storage is evident in some research. To the best of the author’s knowledge, a
state-of-the-art design and implementation of a SCADA system with the following key
contributions have not been presented before.

• With regard to its use and application, this study has distinguished itself as a pioneer
in the development of open-source SCADA systems that are low-cost and low-power
in their design.

Energies 2023, 16, 2092 5 of 21

• As a result of the system’s ability to detect three major alerts, including the inverter
fault check alert, the generator fault check alert, and the low battery alert, the HRPS’s
health can be monitored.

• Since the energy storage system is an essential part of a HRPS, in order to control
the charging and discharging current of the battery to provide a safe margin of the
available power for the consumers and keep the battery lifetime at a high level, the
diesel generator is controlled by the SCADA system.

• A Wio terminal has been used as a low-power and low-cost observer for the system.
This observer has been programmed to collect and process all required parameters on
its own and display them on a built-in small LCD screen.

• The design setup is completely based on open-source software and hardware.
• The design system is secure and can operate in isolated mode without the internet.

Following is the description of the rest of the paper organization. There are eight
sections in this article. The introduction, advantages, and objectives of SCADA systems
for HPSs and HRPSs are highlighted in the first section. An extensive overview of several
relevant recent texts has been covered in the section. The system is described in the third
part. All employed components are described in the fourth part, which also discusses the
relevant details. The implementation method is discussed in the fifth part. Experimental
setup and results are proposed and discussed in Section 6. The work has been addressed,
and its key components are outlined in Section 7. The task is finished in the final segment.

3. System Description

A schematic illustration of the proposed open-source SCADA system designed for
the HRPS can be found in Figure 1. In the SCADA system demonstrated in Figure 1,
there are six sensors, including one voltage sensor and five current sensors, to measure
battery voltage, battery current, solar panel current, generator current, and load currents,
respectively. In photovoltaic systems, the solar panels are connected to the Maximum
Power Point Tracker (MPTT) to keep the output power at an optimum level. The PV
sensor is connected to the output of the MPPT. Secondly, a diesel generator is used to
generate power. The generator current sensor is attached to the generator output to sense
the generator output current. The generated power is stored in a battery bank. Therefore,
the battery voltage sensor and battery current sensor are connected to the battery bank
ports to measure DC bus voltage and battery current.

Furthermore, the DC voltage is converted to AC voltage. An AC transformer isolates
the system from the load and increases the voltage value to the local accepted voltage level.
Two current sensors are connected to the AC transformer output ports to measure the
actual value of load currents. All sensors measure values received by two RTUs, including
an Arduino Mega 2560 and a Wio terminal. The Wio terminal receives all data in real
time from sensors, processes and scales values, and displays them individually on its LCD
screen, based on three command ports. The commanding ports specify the value that has
to be processed and displayed on the screen. Since the Wio terminal is a very low-power
module, the monitoring part of this system can be done with very low power consumption
by utilizing the Wio terminal as the monitoring RTU. On the other part, Arduino receives all
values and transmits them to the MTU based on the Firmata protocol, utilizing a serial port.
The operating system for the minimal computer utilized in this investigation was Microsoft
Windows 11 Home, which was installed on a 64-bit CPU. The PC is equipped with an Intel
i5, a 4-core CPU, and 8 GB of RAM. Node-Red 3.0.2, Node.js 16.16.0, and Dashboard 3.1.7
are installed within the programming terminal for programming and Human Machine
Interface (HMI) design. In Node-Red, all data are processed to be prepared for monitoring
on the dashboard. Moreover, the Node-Red produces one controlling signal and three
warning signals. The controlling signal is generated to turn the diesel generator on/off,
and the warning signals, which are inverter fault check, generator fault check, and low
battery, are produced to notify the user about the current system situation. Moreover, while
the system is processing data and displaying values, all information is stored in a CSV file.

Energies 2023, 16, 2092 6 of 21

Energies 2023, 16, x FOR PEER REVIEW 6 of 22

controlling signal and three warning signals. The controlling signal is generated to turn
the diesel generator on/off, and the warning signals, which are inverter fault check, gen-
erator fault check, and low battery, are produced to notify the user about the current sys-
tem situation. Moreover, while the system is processing data and displaying values, all
information is stored in a CSV file.

Figure 1. Designed SCADA system for a hybrid renewable power system.

4. System Components
The RTU collects field device data and transmits them to the Windows-Node-Red

server. Furthermore, the Wio terminal, a low-cost, low-power monitoring gadget, ana-
lyzes and displays the data using the Node-Red-based graphical user interface. Addition-
ally, the information is saved as a CSV file for later analysis. Field instrumentation devices
are an integral part of the system’s operation and are used to measure system activity. The
Node-Red open-source server receives the values from the FIDs, feeds them to RTU, and
then displays them.

4.1. Sensors
4.1.1. ACS 712 Hall-Effect-Based Linear Current Sensor Module

Allegro MicroSystems, LLC is the manufacturer and supplier of this fully integrated,
low-cost current sensor, as depicted in Figure 2. The sensor operates on the Hall effect
principle. This work uses a 30 A DC module with an output sensitivity of 66 to 185 mV/A
and runs on a single 5 V source. The current running via the copper conductivity line
creates a magnetic field when this 5 V supply voltage is provided, which the Hall IC

Figure 1. Designed SCADA system for a hybrid renewable power system.

4. System Components

The RTU collects field device data and transmits them to the Windows-Node-Red
server. Furthermore, the Wio terminal, a low-cost, low-power monitoring gadget, analyzes
and displays the data using the Node-Red-based graphical user interface. Additionally,
the information is saved as a CSV file for later analysis. Field instrumentation devices are
an integral part of the system’s operation and are used to measure system activity. The
Node-Red open-source server receives the values from the FIDs, feeds them to RTU, and
then displays them.

4.1. Sensors
4.1.1. ACS 712 Hall-Effect-Based Linear Current Sensor Module

Allegro MicroSystems, LLC is the manufacturer and supplier of this fully integrated,
low-cost current sensor, as depicted in Figure 2. The sensor operates on the Hall effect
principle. This work uses a 30 A DC module with an output sensitivity of 66 to 185 mV/A
and runs on a single 5 V source. The current running via the copper conductivity line creates
a magnetic field when this 5 V supply voltage is provided, which the Hall IC subsequently
transforms into a proportional output voltage. The specifications of the ACS712 are listed
in Table 1 [27].

Energies 2023, 16, 2092 7 of 21

Energies 2023, 16, x FOR PEER REVIEW 7 of 22

subsequently transforms into a proportional output voltage. The specifications of the
ACS712 are listed in Table 1 [27].

Table 1. Technical characteristics of ACS 712 [27].

Characteristics Range Unit
Supply Voltage 4.5–5.5 V
Supply Current 0–13 mA

Nonlinearity 1.5 %
Zero Current Output Voltage Vcc × 0.5 V

Sensitivity 96–104 mV/A
Optimized accuracy range −20–20 A

Figure 2. ACS712 current sensor module.

4.1.2. F 031-06 Voltage Sensor Module
F 031-06 is a low-cost voltage sensor. Two types of sensors were used in the system,

including the ACS 712 Hall effect-based linear current sensor module (Figure 2) and the
F031-06 voltage sensor module (Figure 3). Moreover, the F031-06 specifications are illus-
trated in Table 2. Figure 3 represents the voltage sensor used as a part of this study.

Table 2. Technical characteristics of F 034-06.

Characteristics Range Unit
Input Voltage Range 0–25 V

Voltage Detection Range 0.02445–25 V
Analog Voltage Resolution 0.00489 V

Figure 3. F031-06 voltage sensor module.

Figure 2. ACS712 current sensor module.

Table 1. Technical characteristics of ACS 712 [27].

Characteristics Range Unit

Supply Voltage 4.5–5.5 V
Supply Current 0–13 mA

Nonlinearity 1.5 %
Zero Current Output Voltage Vcc × 0.5 V

Sensitivity 96–104 mV/A
Optimized accuracy range −20–20 A

4.1.2. F 031-06 Voltage Sensor Module

F 031-06 is a low-cost voltage sensor. Two types of sensors were used in the system,
including the ACS 712 Hall effect-based linear current sensor module (Figure 2) and
the F031-06 voltage sensor module (Figure 3). Moreover, the F031-06 specifications are
illustrated in Table 2. Figure 3 represents the voltage sensor used as a part of this study.

Energies 2023, 16, x FOR PEER REVIEW 7 of 22

subsequently transforms into a proportional output voltage. The specifications of the
ACS712 are listed in Table 1 [27].

Table 1. Technical characteristics of ACS 712 [27].

Characteristics Range Unit
Supply Voltage 4.5–5.5 V
Supply Current 0–13 mA

Nonlinearity 1.5 %
Zero Current Output Voltage Vcc × 0.5 V

Sensitivity 96–104 mV/A
Optimized accuracy range −20–20 A

Figure 2. ACS712 current sensor module.

4.1.2. F 031-06 Voltage Sensor Module
F 031-06 is a low-cost voltage sensor. Two types of sensors were used in the system,

including the ACS 712 Hall effect-based linear current sensor module (Figure 2) and the
F031-06 voltage sensor module (Figure 3). Moreover, the F031-06 specifications are illus-
trated in Table 2. Figure 3 represents the voltage sensor used as a part of this study.

Table 2. Technical characteristics of F 034-06.

Characteristics Range Unit
Input Voltage Range 0–25 V

Voltage Detection Range 0.02445–25 V
Analog Voltage Resolution 0.00489 V

Figure 3. F031-06 voltage sensor module.

Figure 3. F031-06 voltage sensor module.

Table 2. Technical characteristics of F 034-06.

Characteristics Range Unit

Input Voltage Range 0–25 V
Voltage Detection Range 0.02445–25 V

Analog Voltage Resolution 0.00489 V

4.2. Remote Terminal Units
4.2.1. Arduino Mega 2560

The first RTU is a microcontroller board called the Arduino Mega 2560 [28], as il-
lustrated in Figure 4. It is based on the Atmega 2560 controller chip. There are 54 input
and output ports on the board, 14 of which can function as output pins for pulse width
modulation (PWM). Additionally, the board is equipped with four universal asynchronous

Energies 2023, 16, 2092 8 of 21

receiver transmitter pins (UARTs) and 16 analog inputs. This board includes a 16 MHz
crystal oscillator, a USB connection, a reset button, an in-circuit serial programming (ICSP)
connector, and a power jack. The Arduino Mega 2560 is further described in Table 3. The
Arduino Integrated Development Environment (IDE) is used to configure the Arduino
Mega. The IDE is a flexible editor where programmers may use various libraries, create
their own programs, and debug them to look for faults. Sketches refer to the code cre-
ated in an IDE. The usefulness of Arduino programming is improved by adding different
procedures and operations. For real-time observation and debugging, the programmer
can communicate with the board via the IDE’s serial monitor option. A type A/B cable is
used to connect an Arduino to the serial port of a computer so that it may be programmed
and communicated with. First, the field instrument parameters are determined using
an Arduino program named “sketches” created in an IDE. Then, using the appropriate
baud rate—in our example, 57,600 bits per second—the values of these parameters are
measured [28].

Energies 2023, 16, x FOR PEER REVIEW 8 of 22

4.2. Remote Terminal Units
4.2.1. Arduino Mega 2560

The first RTU is a microcontroller board called the Arduino Mega 2560 [28], as illus-
trated in Figure 4. It is based on the Atmega 2560 controller chip. There are 54 input and
output ports on the board, 14 of which can function as output pins for pulse width mod-
ulation (PWM). Additionally, the board is equipped with four universal asynchronous
receiver transmitter pins (UARTs) and 16 analog inputs. This board includes a 16 MHz
crystal oscillator, a USB connection, a reset button, an in-circuit serial programming (ICSP)
connector, and a power jack. The Arduino Mega 2560 is further described in Table 3. The
Arduino Integrated Development Environment (IDE) is used to configure the Arduino
Mega. The IDE is a flexible editor where programmers may use various libraries, create
their own programs, and debug them to look for faults. Sketches refer to the code created
in an IDE. The usefulness of Arduino programming is improved by adding different pro-
cedures and operations. For real-time observation and debugging, the programmer can
communicate with the board via the IDE’s serial monitor option. A type A/B cable is used
to connect an Arduino to the serial port of a computer so that it may be programmed and
communicated with. First, the field instrument parameters are determined using an Ar-
duino program named “sketches” created in an IDE. Then, using the appropriate baud
rate—in our example, 57,600 bits per second—the values of these parameters are meas-
ured [28].

Figure 4. Arduino Mega 2560.

Table 3. Technical specifications of Arduino Mega 2560 [28].

Specifications Values Units
Operating Voltage 5 V

Input Voltage 7–12 V
Digital I/O 54 Pins

Analog Input 16 Pins
I/O Pin Current (Individually) 40 mA

Flash Memory 256 KB
Clock Speed 16 MHz

Static Random Access Memory 8 KB
Electrically Erasable Programmable Read-Only Memory 4 KB

4.2.2. Wio Terminal
Figure 5 shows the Wio terminal, which is an Arduino and MicroPython compatible

SAMD51-based microcontroller with built-in wireless connectivity powered by Realtek

Figure 4. Arduino Mega 2560.

Table 3. Technical specifications of Arduino Mega 2560 [28].

Specifications Values Units

Operating Voltage 5 V
Input Voltage 7–12 V

Digital I/O 54 Pins
Analog Input 16 Pins

I/O Pin Current (Individually) 40 mA
Flash Memory 256 KB
Clock Speed 16 MHz

Static Random Access Memory 8 KB
Electrically Erasable Programmable

Read-Only Memory 4 KB

4.2.2. Wio Terminal

Figure 5 shows the Wio terminal, which is an Arduino and MicroPython compatible
SAMD51-based microcontroller with built-in wireless connectivity powered by Realtek
RTL8720DN. It has 192 KB RAM, 4 MB External Flash, and 120 MHz (boost up to 200 MHz)
of processing speed. This terminal provides a foundation for IoT applications with support
for Bluetooth and Wi-Fi. A 2.4” LCD screen, an inbuilt IMU (LIS3DHTR), a microphone, a
buzzer, a microSD card slot, a light sensor, and an infrared emitter are all included with
the Wio terminal (IR 940 nm). Additionally, it includes 40 Raspberry Pi compatible pins
for GPIO and two multipurpose Grove connectors for the Grove Ecosystem, allowing

Energies 2023, 16, 2092 9 of 21

for additional add-ons [29]. Table 4 illustrates the specifications of the Wio terminal. In
Figure 6, we have shown an overview of the hardware of the Wio terminal, and the RPI
pinout of the Wio terminal is depicted in Figure 7.

Energies 2023, 16, x FOR PEER REVIEW 9 of 22

RTL8720DN. It has 192 KB RAM, 4 MB External Flash, and 120 MHz (boost up to 200
MHz) of processing speed. This terminal provides a foundation for IoT applications with
support for Bluetooth and Wi-Fi. A 2.4” LCD screen, an inbuilt IMU (LIS3DHTR), a mi-
crophone, a buzzer, a microSD card slot, a light sensor, and an infrared emitter are all
included with the Wio terminal (IR 940 nm). Additionally, it includes 40 Raspberry Pi
compatible pins for GPIO and two multipurpose Grove connectors for the Grove Ecosys-
tem, allowing for additional add-ons [29]. Table 4 illustrates the specifications of the Wio
terminal. In Figure 6, we have shown an overview of the hardware of the Wio terminal,
and the RPI pinout of the Wio terminal is depicted in Figure 7.

Table 4. Specification of the Wio terminal [29].

Specifications Values
Manufacturer Part Number ATSAMD51P19

Core Processor ARM® Cortex®-M4F
CPU Speed 120 MHz (Boost up to 200MHz)

Program Memory Size 512 KB
External Flash 4 MB

RAM Size 192 KB
Operating Temperature −40 °C~85 °C

Display Size 2.4 inch
Resolution 320 × 240

GPIO 40-PIN (Raspberry Pi Compatible)
Grove 2 (Multifunction)

Figure 5. Wio terminal as the second RTU.

Figure 6. Hardware overview of the Wio terminal.

Figure 5. Wio terminal as the second RTU.

Table 4. Specification of the Wio terminal [29].

Specifications Values

Manufacturer Part Number ATSAMD51P19
Core Processor ARM® Cortex®-M4F

CPU Speed 120 MHz (Boost up to 200MHz)
Program Memory Size 512 KB

External Flash 4 MB
RAM Size 192 KB

Operating Temperature −40 ◦C~85 ◦C
Display Size 2.4 inch
Resolution 320 × 240

GPIO 40-PIN (Raspberry Pi Compatible)
Grove 2 (Multifunction)

Energies 2023, 16, x FOR PEER REVIEW 9 of 22

RTL8720DN. It has 192 KB RAM, 4 MB External Flash, and 120 MHz (boost up to 200
MHz) of processing speed. This terminal provides a foundation for IoT applications with
support for Bluetooth and Wi-Fi. A 2.4” LCD screen, an inbuilt IMU (LIS3DHTR), a mi-
crophone, a buzzer, a microSD card slot, a light sensor, and an infrared emitter are all
included with the Wio terminal (IR 940 nm). Additionally, it includes 40 Raspberry Pi
compatible pins for GPIO and two multipurpose Grove connectors for the Grove Ecosys-
tem, allowing for additional add-ons [29]. Table 4 illustrates the specifications of the Wio
terminal. In Figure 6, we have shown an overview of the hardware of the Wio terminal,
and the RPI pinout of the Wio terminal is depicted in Figure 7.

Table 4. Specification of the Wio terminal [29].

Specifications Values
Manufacturer Part Number ATSAMD51P19

Core Processor ARM® Cortex®-M4F
CPU Speed 120 MHz (Boost up to 200MHz)

Program Memory Size 512 KB
External Flash 4 MB

RAM Size 192 KB
Operating Temperature −40 °C~85 °C

Display Size 2.4 inch
Resolution 320 × 240

GPIO 40-PIN (Raspberry Pi Compatible)
Grove 2 (Multifunction)

Figure 5. Wio terminal as the second RTU.

Figure 6. Hardware overview of the Wio terminal.

Figure 6. Hardware overview of the Wio terminal.

Energies 2023, 16, 2092 10 of 21
Energies 2023, 16, x FOR PEER REVIEW 10 of 22

Figure 7. Wio terminal RPI pinout schematic.

4.3. Main Terminal Unit
4.3.1. Hardware

The main terminal unit is a vital component of this system. This is in charge of data
storage, information illustration, data programming, and data logging. This course can be
broken down into two categories—hardware and software—for easier comprehension. In
the hardware part, a Dell Inspiron 15 3000 machine has been utilized as a regular and
widely accessible piece of hardware for most people. The related specifications of the de-
vice are shown in Table 5.

Table 5. Dell Inspiron 15 3000 laptop specifications.

Specifications Value
System Manufacturer Dell Inc.

System Model Inspiron 15 3511
System Type x64-based PC

Processor Intel(R) Core(TM) i5@ 2.40 GHz, 2419 MHz, 4 Core(s)
Installed Physical Memory (RAM) 8.00 GB
Graphic card adapter description Intel(R) Iris(R) Xe Graphics

Adapter RAM 1.00 GB (1,073,741,824 bytes)
Display Size 15.6 inches
Resolution 1920 × 1080 × 60 hertz

4.3.2. Software
Two sections can be distinguished in the software component, namely the operating

system (OS) and the Node-Red server. As a part of this research, we have used Microsoft
Windows 11 Home OS to set up a Node-Red server. It provides the opportunity for dif-
ferent install applications, ranging from small-scale to industrial ones. Node-Red is the
application software employed in the system’s development. Flow-based visual program-
ming, which was created by IBM’s emerging technology services division, is used in the
Node-Red editor. With Node-Red, you may develop a program and use online coding to
connect the actual technology. It has a browser-based development environment where
you can set up a number of libraries to connect to and converse with the real world. The
main advantage of utilizing Node-Red is that it makes use of a visual programming

Figure 7. Wio terminal RPI pinout schematic.

4.3. Main Terminal Unit
4.3.1. Hardware

The main terminal unit is a vital component of this system. This is in charge of data
storage, information illustration, data programming, and data logging. This course can
be broken down into two categories—hardware and software—for easier comprehension.
In the hardware part, a Dell Inspiron 15 3000 machine has been utilized as a regular and
widely accessible piece of hardware for most people. The related specifications of the device
are shown in Table 5.

Table 5. Dell Inspiron 15 3000 laptop specifications.

Specifications Value

System Manufacturer Dell Inc.
System Model Inspiron 15 3511
System Type x64-based PC

Processor Intel(R) Core(TM) i5@ 2.40 GHz, 2419 MHz, 4 Core(s)
Installed Physical Memory (RAM) 8.00 GB
Graphic card adapter description Intel(R) Iris(R) Xe Graphics

Adapter RAM 1.00 GB (1,073,741,824 bytes)
Display Size 15.6 inches
Resolution 1920 × 1080 × 60 hertz

4.3.2. Software

Two sections can be distinguished in the software component, namely the operating
system (OS) and the Node-Red server. As a part of this research, we have used Microsoft
Windows 11 Home OS to set up a Node-Red server. It provides the opportunity for different
install applications, ranging from small-scale to industrial ones. Node-Red is the application
software employed in the system’s development. Flow-based visual programming, which
was created by IBM’s emerging technology services division, is used in the Node-Red

Energies 2023, 16, 2092 11 of 21

editor. With Node-Red, you may develop a program and use online coding to connect the
actual technology. It has a browser-based development environment where you can set up
a number of libraries to connect to and converse with the real world. The main advantage
of utilizing Node-Red is that it makes use of a visual programming language that allows
you to see how the code will be executed and how the node flows. There are so-called
“nodes” in programming, which can be connected by line programming for the flow of
data and have easily outlined purposes. The software may be employed by a wide range of
users thanks to the design, which includes a visual depiction of the flows. Node.js is the
foundation of the web-based programming tool used to change flows. As the software has
a large community where developers may code their nodes and share them with the rest of
the community, new nodes can be readily imported. The new flow may then be quickly
shared as JSON files, which stand for Javascript Object Notation [30]. The system was
developed using Node-Red version 3.0.2 and Node.js version 16.17.1. To maintain system
security and privacy, the authors in [13,17,30] utilized Node-Red as their recommended
IoT platform and highlighted the necessity of setting up the system locally. The dashboard
module is one of the most notable aspects of the Node-Red. Users may easily develop a
dynamic dashboard for observing variables. For the system’s development, Node-Red
dashboard version 3.2.0 was installed.

5. Implementation Methodology

In order to implement the system, all sensors, actuators, and LEDs must be connected
to the RTUs. The interconnection of all devices to the Arduino, as the first RTU, is illustrated
in Table 6.

Table 6. The Arduino interconnections with sensors, LEDs, and actuators.

Device # Specification Value Pin #

1 PV current Sensor Analog A0
2 Battery voltage Sensor Analog A1
3 Battery current sensor Analog A2
4 Generator current sensor Analog A3
5 Load 1 current sensor Analog A4
6 Load 2 current sensor Analog A5
7 Inverter fault check Digital 49
8 Generator fault check Digital 50
9 Low battery check Digital 51
10 Generator status Digital 52

Using serial communication, the sensor data that is received by the RTU is sent to the
MTU. The Firmata protocol is included within the RTU to speed up and simplify communi-
cation. Firmata is a computer-based software protocol for interacting with microcontrollers.
To enable the device to function, the firmware of the microcontroller includes this protocol.
Firmata for Arduino is the most widely used implementation. Node-Red programming is
completed when the link between the RTU and MTU is established utilizing the Firmata
protocol. Algorithms are used to describe Node-Red execution and development.

In Algorithm 1, Arduino receives data from sensors and sends all values to MTU using
the Firmata protocol via serial communication. Node-Red receives data and calculates PV
power and generator power values using other parameters. It then displays all the calcu-
lated values and stores them in a CSV file. While displaying and storing files, Node-Red
produces three alert signals and one controlling signal, including inverter fault, generator
fault, low battery, and generator status signals, respectively. If the battery voltage exceeds
14 V, it turns the generator off; otherwise, it keeps it on. To produce a generator fault check
signal, Node-Red checked the generator status signal and the generator output current
value. If the generator status signal is on but there is no current, or if the generator status
signal is off but the generator output signal is not zero, Node-Red turns the generator fault
check light on; otherwise, it keeps it off. In order to generate the inverter fault check signals,

Energies 2023, 16, 2092 12 of 21

the Node-Red server checks the battery voltage and the load current, assuming that the
load is on. If the battery voltage is not zero and the load currents are zero, it turns the
invertor fault check light on. By checking the battery voltage and determining that it is
below 11 V at a certain level, it turns the low battery check light on. If no data are received
from Arduino, Node-Red tries to connect after 5 s until it gets any signal, at which point it
resumes the whole procedure.

Algorithm 1: Data Acquisition and Control System Algorithm

Initialization;
1. Arduino reads sensors values on Analog pins A0, A1, A2, A3, A4, and A5 from battery

voltage, battery current, PV current, generator current, load 1 current, and load 2 current sensors;
2. Arduino sends data to Node-Red through Firmata protocol

while Data is being received from Arduino;
3. Calculate PV power as a product of PV current and battery voltage;
4. Calculate generator power as a product of generator current and battery voltage;
5. Display all sensors values and calculated values on dashboard for data visualization;

6. Convert all data to JSON file and store in a CSV file;
if Battery voltage exceeds a certain value then

7. Turn the generator off (the yellow LED);
else

8. Turn the generator on (the yellow LED);
end
if Generator is on AND generator current is zero then

9. Turn the generator fault check light on;
else if Generator is off AND generator current is not zero then

10. Turn the generator check light on;
else

11. Turn the generator check light off;
end
if Battery voltage is not zero AND loads currents are zero then

12. Turn the inverter check light on;
else

13. Turn the inverter check light off;
end
if Battery voltage is less than a certain amount then

14. Turn the Low Battery light on;
else

15. Turn the Low Battery light off;
end if

end while
if No data is received from Arduino then

16. Retry to connect for 5 s;
else

17. Go to step 3.

The interconnections of the sensors to the Wio terminal are depicted in Table 7.

Table 7. The Wio terminal interconnections with sensors.

Device # Specification Value Pin #

1 PV current Sensor Analog A0
2 Battery voltage Sensor Analog A1
3 Battery current sensor Analog A2
4 Generator current sensor Analog A3
5 Load 1 current sensor Analog A4
6 Load 2 current sensor Analog A5

Energies 2023, 16, 2092 13 of 21

Table 7. Cont.

Device # Specification Value Pin #

7 Command port 1 Digital D6
8 Command port 2 Digital D7
9 Command port 3 Digital D8

All sensors were connected to the Wio terminal ports. Since there are 9 GPIOs, six ports
were allocated to the six sensors, and three ports were assigned to the three commanding
ports as the Wio terminal has one screen. Therefore, in order to display each sensor value
individually, three command ports were specified. In Algorithm 2, the procedure for
receiving data from sensors and commanding ports was discussed. Moreover, the analysis,
selection modes, display setup, calculations, and visualization were illustrated. The Wio
terminal has nine input pins, as illustrated in Figure 7. Six of these input pins, which are
A0, A1, A2, A3, A4, and A5, were connected to the six sensors used in this study, which
are battery voltage, battery current, PV current, generator current, load current 1, and
load current 2. Similar to the Node-Red algorithm, PV power and generator power are
calculated by the Wio terminal. Moreover, the last three pins, which are D6, D7, and D8,
were allocated to three command switches to select one of the eight selecting modes to
display the eight values. By connecting the three commanding signals to the ground and
to 5 V ports, the user can select the mode to display the target value. Connecting to the
ground port means “low” or “0”, and connecting to the 5 V port means “high” or “1”.
Eight modes, the order of the commanding ports, and the target values are as follows:

1. If (D6, D7, D8) is equal to (0, 0, 0), target value is battery voltage.
2. If (D6, D7, D8) is equal to (0, 0, 1), target value is battery current.
3. If (D6, D7, D8) is equal to (0, 1, 0), target value is PV current.
4. If (D6, D7, D8) is equal to (0, 1, 1), target value is generator current.
5. If (D6, D7, D8) is equal to (1, 0, 0), target value is load current 1.
6. If (D6, D7, D8) is equal to (1, 0, 1), target value is load current 2.
7. If (D6, D7, D8) is equal to (1, 1, 0), target value is PV power.
8. If (D6, D7, D8) is equal to (1, 1, 1), target value is generator power.

Algorithm 2: Wio terminal programming and setup

Setup:
1. Connect A0, A1, A2, A3, A4, and A5 ports to battery voltage, battery current, PV current,

generator current, load 1 current, and load 2 current sensors signal ports, respectively;
2. Connect D6, D7, and D8 to selection section;

Initialization:
1. Consider A0, A1, A2, A3, A4, and A5 as analog input port;
2. Consider D6, D7, and D8 as Digital input port;

Processing and Displaying:
if (D6, D7, D8) is equal to (0, 0, 0) then

1. Receive data from A0 and ignore other ports;
2. Consider this data as the battery voltage and derive the actual value;
3. Setup the LCD screen graphical plot and its scale for battery voltage values;

else if (D6, D7, D8) is equal to (0, 0, 1) then
4. Receive data from A1 and ignore other ports;
5. Consider this data as the battery current and derive the actual value;
6. Setup the LCD screen graphical plot and its scale for battery current values;

else if (D6, D7, D8) is equal to (0, 1, 0) then
7. Receive data from A2 and ignore other ports;
8. Consider this data as the PV current and calculate the real value;
9. Setup the LCD screen graphical plot and its scale for PV current data;

Energies 2023, 16, 2092 14 of 21

Algorithm 2: Cont.

else if (D6, D7, D8) is equal to (0, 1, 1) then
10. Receive data from A3 and ignore other ports;
11. Consider this data as the generator current and calculate the real value;
12. Setup the LCD screen graphical plot and its scale for generator current data;

else if (D6, D7, D8) is equal to (1, 0, 0) then
13. Receive data from A4 and ignore other ports;
14. Consider this data as the load 1 current and calculate the real value;
15. Setup the LCD screen graphical plot and the scale for load 1 current data;

else if (D6, D7, D8) is equal to (1, 0, 1) then
16. Receive data from A5 and ignore other ports;
17. Consider this data as the load 2 current and scale it to the actual value;
18. Setup the LCD screen graphical plot and its scale for load 2 current data;

else if (D6, D7, D8) is equal to (1, 1, 0) then
19. Receive data from A0 and A2 and ignore other ports;
20. Calculate the product of these two values;
21. Consider it as the PV power and scale it to the actual value;
22. Setup the LCD screen graphical plot and its scale for PV power data;

else if (D6, D7, D8) is equal to (1, 1, 1) then
23. Receive data from A0 and A3 and ignore other ports;
24. Calculate the product of these two values;
25. Consider it as the generator power and scale it to the actual value;
26. Setup the LCD screen graphical plot and its scale for generator power data;

end if
27. Plot the obtained value with related topic.

6. Experimental Setup and Results

The experimental setup of the proposed system is illustrated in Figure 8. The hardware
components discussed earlier were used to implement the system. Figure 9 illustrates the
hardware configuration of the proposed system. A DC power supply as well as the DC
diesel generator were installed. Figure 10 depicts the battery bank as an energy storage
system. Moreover, there was an MPPT panel powered by rooftop PV panels (Figure 11). It
consisted of a 130 W, 12 V solar module that is able to generate 20 A of current on a sunny
day. The outputs of the solar panel, the battery bank, and the power supply were connected
to the DC bus as well as the DC/AC inverter input. A 200 W Sunforce DC/AC inverter
was implemented to convert the DC voltage to AC voltage properly. There were two 40 W
120 V AC light bulbs connected to the AC bus as the load. As shown in Figure 9, the Battery
Voltage Sensor (BVS), Battery Current Sensor (BCS), PV Current Sensor (PCS), Generator
Current Sensor (GCS), Load Current Sensor 1 (LCS1), and Load Current Sensor 2 (LCS2)
were implemented to measure the mentioned values and send them to RTUs.

In order to connect to the DC bus, the power supply was set to the same voltage as
the DC bus. As part of this setup, the Arduino was first programmed with the Firmata
protocol, and the Wio terminal was then programmed with the help of computer code.
The Node-Red server is run on a Windows machine. The Arduino connected to the MTU
and began to send and receive data. The power supply was then turned on. All possible
scenarios were tested by turning on and off the inverter and changing the connection of the
light bulb.

One of the essential parts of this system setup is the processing unit, which is the
Node-Red server and dashboard. All required processes were done using the Node-
Red server. Moreover, the visualization of processed data and the controlling and fault
check mechanisms were designed using Node-Red. Figure 12 depicts the Node-Red flow
developed to set up the Node-Red server. On the left side, all sensor values were received
from allocated ports. Then, the process of scaling and calculating was done for the specified
functions. In addition, while the required process was being done, the data were converted
to be stored in a CSV file using a JSON fn node. On the right side of the setup, the
visualization part was done, and the warning data and control signal were sent to the RTU.

Energies 2023, 16, 2092 15 of 21

The Node-Red flow created as a part of this research is shown in Figure 12. As seen in
Figure 12, the signals that were received from Arduino were processed using some function
nodes. The basic formula for the current values, based on the sensor characteristics, is
as below:

Iactual =

(
25

1024
Vsig − 12.5

)
(1)

which Iactual and Vsig are actual current value and the Arduino output signal value, respectively.

Energies 2023, 16, x FOR PEER REVIEW 15 of 22

Current Sensor 2 (LCS2) were implemented to measure the mentioned values and send
them to RTUs.

In order to connect to the DC bus, the power supply was set to the same voltage as
the DC bus. As part of this setup, the Arduino was first programmed with the Firmata
protocol, and the Wio terminal was then programmed with the help of computer code.
The Node-Red server is run on a Windows machine. The Arduino connected to the MTU
and began to send and receive data. The power supply was then turned on. All possible
scenarios were tested by turning on and off the inverter and changing the connection of
the light bulb.

Figure 8. Experimental setup.

Figure 9. Hardware implementation of proposed system.

Figure 8. Experimental setup.

Energies 2023, 16, x FOR PEER REVIEW 15 of 22

Current Sensor 2 (LCS2) were implemented to measure the mentioned values and send
them to RTUs.

In order to connect to the DC bus, the power supply was set to the same voltage as
the DC bus. As part of this setup, the Arduino was first programmed with the Firmata
protocol, and the Wio terminal was then programmed with the help of computer code.
The Node-Red server is run on a Windows machine. The Arduino connected to the MTU
and began to send and receive data. The power supply was then turned on. All possible
scenarios were tested by turning on and off the inverter and changing the connection of
the light bulb.

Figure 8. Experimental setup.

Figure 9. Hardware implementation of proposed system. Figure 9. Hardware implementation of proposed system.

Energies 2023, 16, 2092 16 of 21Energies 2023, 16, x FOR PEER REVIEW 16 of 22

Figure 10. Battery bank.

Figure 11. Rooftop solar panel.

One of the essential parts of this system setup is the processing unit, which is the
Node-Red server and dashboard. All required processes were done using the Node-Red
server. Moreover, the visualization of processed data and the controlling and fault check
mechanisms were designed using Node-Red. Figure 12 depicts the Node-Red flow devel-
oped to set up the Node-Red server. On the left side, all sensor values were received from
allocated ports. Then, the process of scaling and calculating was done for the specified
functions. In addition, while the required process was being done, the data were con-
verted to be stored in a CSV file using a JSON fn node. On the right side of the setup, the
visualization part was done, and the warning data and control signal were sent to the
RTU. The Node-Red flow created as a part of this research is shown in Figure 12. As seen
in Figure 12, the signals that were received from Arduino were processed using some
function nodes. The basic formula for the current values, based on the sensor characteris-
tics, is as below: 𝐼௔௖௧௨௔௟ ൌ ൬ 251024 𝑉௦௜௚ െ 12.5൰ (1)

which 𝐼௔௖௧௨௔௟ and 𝑉௦௜௚ are actual current value and the Arduino output signal value, re-
spectively.

For calculating the actual voltage value from the BVS signal value, the following for-
mula was used: 𝑉௕௔௧௧௘௥௬ ൌ 5 51024 𝑉௦௜௚ (2)

which 𝑉௕௔௧௧௘௥௬ is the actual battery voltage and 𝑉௦௜௚ is related to the Arduino output sig-
nal value. It is worth mentioning that these formulas have also been used in Wio terminal
code to calculate the real values.

After this step of calculation, at Figure 12, there were two function nodes, named
“PV_Power_fn” and “Gen_Power_fn,” to calculate the product of battery voltage and PV

Figure 10. Battery bank.

Energies 2023, 16, x FOR PEER REVIEW 16 of 22

Figure 10. Battery bank.

Figure 11. Rooftop solar panel.

One of the essential parts of this system setup is the processing unit, which is the
Node-Red server and dashboard. All required processes were done using the Node-Red
server. Moreover, the visualization of processed data and the controlling and fault check
mechanisms were designed using Node-Red. Figure 12 depicts the Node-Red flow devel-
oped to set up the Node-Red server. On the left side, all sensor values were received from
allocated ports. Then, the process of scaling and calculating was done for the specified
functions. In addition, while the required process was being done, the data were con-
verted to be stored in a CSV file using a JSON fn node. On the right side of the setup, the
visualization part was done, and the warning data and control signal were sent to the
RTU. The Node-Red flow created as a part of this research is shown in Figure 12. As seen
in Figure 12, the signals that were received from Arduino were processed using some
function nodes. The basic formula for the current values, based on the sensor characteris-
tics, is as below: 𝐼௔௖௧௨௔௟ ൌ ൬ 251024 𝑉௦௜௚ െ 12.5൰ (1)

which 𝐼௔௖௧௨௔௟ and 𝑉௦௜௚ are actual current value and the Arduino output signal value, re-
spectively.

For calculating the actual voltage value from the BVS signal value, the following for-
mula was used: 𝑉௕௔௧௧௘௥௬ ൌ 5 51024 𝑉௦௜௚ (2)

which 𝑉௕௔௧௧௘௥௬ is the actual battery voltage and 𝑉௦௜௚ is related to the Arduino output sig-
nal value. It is worth mentioning that these formulas have also been used in Wio terminal
code to calculate the real values.

After this step of calculation, at Figure 12, there were two function nodes, named
“PV_Power_fn” and “Gen_Power_fn,” to calculate the product of battery voltage and PV

Figure 11. Rooftop solar panel.

Energies 2023, 16, x FOR PEER REVIEW 17 of 22

current to achieve PV power, and to calculate the product of battery voltage and generator
current to achieve generator power. The results of all these functions were connected to
some nodes named “chart” to display. Moreover, at this step, there were some more func-
tion nodes named “Battery Fault Check”, “Generator Status”, “Generator Fault Check”,
and “Inverter Fault Check” that processed the values to generate the fault check signals
based on the procedures that were explained in Algorithm 1. Furthermore, all calculated
values were converted using a JSON node and stored in a CSV file with related titles.

Figure 13 illustrates the results of the successful testing of the system. In Figure 13,
there are four LEDs; the first three LEDs illustrate the fault, which means when any of
these LEDs turn on, the system detects the related fault specified in its description. The
last LED represents the status of the generator; when it is on/off, it turns the generator
on/off, respectively. Based on the experimental results of the system for different scenarios
such as different battery voltage values, connected/disconnected loads, and an on/off gen-
erator, the procedure of generating the LED signals, which was discussed in Algorithm 1,
is confirmed to be capable of controlling the system and generating warning signals cor-
rectly. On the other part of Figure 13, four different sections are specified, named PV,
Battery, Generator, and Load. In the PV section, two charts were allocated to display PV
current and PV power. In the second section, “Battery,” two charts are shown for the mon-
itoring of the battery voltage and battery current. In the generator section, generator cur-
rent and generator power are illustrated in two clearly defined charts. In the load section,
which is the last one, two load currents are displayed in two charts named Load_Current1
and Load_Current2. The results illustrate that the real-time monitoring, processing sec-
tion, and controlling parts work properly. Therefore, it can be concluded that the system
is a capable SCADA system that can monitor, analyze, and control the system in real-time.
The Node-Red server is accessible at http://localhost:1880/, which ensures remote moni-
toring and control of the proposed SCADA system. Additionally, all sensors were con-
nected to the Wio terminal. As a result of switching the commanding ports, the Wio ter-
minal LCD screen was prepared to display the relevant value. As shown in Figure 14, the
Wio terminal screen shows the battery voltage value. As mentioned before, the Wio ter-
minal was connected to all six sensors and three command ports and was programmed to
display all nine parameters. In Figure 14, one of the variables is illustrated, namely the
battery voltage, since the command ports were connected based on Mode 1, which is (D6,
D7, D8), which is equal to (0, 0, 0). However, all modes were tested, and their functional-
ities have been confirmed.

Figure 12. Node-Red flow. Figure 12. Node-Red flow.

For calculating the actual voltage value from the BVS signal value, the following
formula was used:

Vbattery = 5
5

1024
Vsig (2)

which Vbattery is the actual battery voltage and Vsig is related to the Arduino output signal
value. It is worth mentioning that these formulas have also been used in Wio terminal code
to calculate the real values.

Energies 2023, 16, 2092 17 of 21

After this step of calculation, at Figure 12, there were two function nodes, named
“PV_Power_fn” and “Gen_Power_fn,” to calculate the product of battery voltage and PV
current to achieve PV power, and to calculate the product of battery voltage and generator
current to achieve generator power. The results of all these functions were connected
to some nodes named “chart” to display. Moreover, at this step, there were some more
function nodes named “Battery Fault Check”, “Generator Status”, “Generator Fault Check”,
and “Inverter Fault Check” that processed the values to generate the fault check signals
based on the procedures that were explained in Algorithm 1. Furthermore, all calculated
values were converted using a JSON node and stored in a CSV file with related titles.

Figure 13 illustrates the results of the successful testing of the system. In Figure 13,
there are four LEDs; the first three LEDs illustrate the fault, which means when any of
these LEDs turn on, the system detects the related fault specified in its description. The last
LED represents the status of the generator; when it is on/off, it turns the generator on/off,
respectively. Based on the experimental results of the system for different scenarios such as
different battery voltage values, connected/disconnected loads, and an on/off generator,
the procedure of generating the LED signals, which was discussed in Algorithm 1, is
confirmed to be capable of controlling the system and generating warning signals correctly.
On the other part of Figure 13, four different sections are specified, named PV, Battery,
Generator, and Load. In the PV section, two charts were allocated to display PV current
and PV power. In the second section, “Battery,” two charts are shown for the monitoring
of the battery voltage and battery current. In the generator section, generator current and
generator power are illustrated in two clearly defined charts. In the load section, which
is the last one, two load currents are displayed in two charts named Load_Current1 and
Load_Current2. The results illustrate that the real-time monitoring, processing section,
and controlling parts work properly. Therefore, it can be concluded that the system is a
capable SCADA system that can monitor, analyze, and control the system in real-time. The
Node-Red server is accessible at http://localhost:1880/, which ensures remote monitoring
and control of the proposed SCADA system. Additionally, all sensors were connected
to the Wio terminal. As a result of switching the commanding ports, the Wio terminal
LCD screen was prepared to display the relevant value. As shown in Figure 14, the Wio
terminal screen shows the battery voltage value. As mentioned before, the Wio terminal
was connected to all six sensors and three command ports and was programmed to display
all nine parameters. In Figure 14, one of the variables is illustrated, namely the battery
voltage, since the command ports were connected based on Mode 1, which is (D6, D7, D8),
which is equal to (0, 0, 0). However, all modes were tested, and their functionalities have
been confirmed.

Energies 2023, 16, x FOR PEER REVIEW 18 of 22

Figure 13. Node-Red dashboard for visualization.

Figure 14. Wio terminal battery voltage display (Mode 1).

7. Discussion
Following successful testing, this section highlights some of the key characteristics

and advantages of the open-source, low-cost SCADA system developed for a site in Par-
adise, NL, Canada.
• System Design: The system is built in a special way where both logical programming

and data analytics are done using a web-based method.
• System security: To guarantee that the system side is safeguarded in the event of

unusual situations, all the actuators are separated via an RTU.
• Minimal and Open Source: Most of the suggested SCADA system parts are produced

and provided by many manufacturers, making them affordable and readily availa-
ble. The parts are assembled well with parts from various manufacturers and associ-
ated facilities. As a result, one of the major characteristics of an open-source system
is that the consumer is not reliant on a specific manufacturer or provider. Moreover,
only two types of sensors are used, which are easily accessible and affordable.

• Data collection and archive storage: The SCADA system archives and saves real-time
data.

• Novelty in visualization: For visualization purposes, Wio terminals are used as re-
mote terminal units (RTUs) to display real-time data.

Figure 13. Node-Red dashboard for visualization.

http://localhost:1880/

Energies 2023, 16, 2092 18 of 21

Energies 2023, 16, x FOR PEER REVIEW 18 of 22

Figure 13. Node-Red dashboard for visualization.

Figure 14. Wio terminal battery voltage display (Mode 1).

7. Discussion
Following successful testing, this section highlights some of the key characteristics

and advantages of the open-source, low-cost SCADA system developed for a site in Par-
adise, NL, Canada.
• System Design: The system is built in a special way where both logical programming

and data analytics are done using a web-based method.
• System security: To guarantee that the system side is safeguarded in the event of

unusual situations, all the actuators are separated via an RTU.
• Minimal and Open Source: Most of the suggested SCADA system parts are produced

and provided by many manufacturers, making them affordable and readily availa-
ble. The parts are assembled well with parts from various manufacturers and associ-
ated facilities. As a result, one of the major characteristics of an open-source system
is that the consumer is not reliant on a specific manufacturer or provider. Moreover,
only two types of sensors are used, which are easily accessible and affordable.

• Data collection and archive storage: The SCADA system archives and saves real-time
data.

• Novelty in visualization: For visualization purposes, Wio terminals are used as re-
mote terminal units (RTUs) to display real-time data.

Figure 14. Wio terminal battery voltage display (Mode 1).

7. Discussion

Following successful testing, this section highlights some of the key characteristics and
advantages of the open-source, low-cost SCADA system developed for a site in Paradise,
NL, Canada.

• System Design: The system is built in a special way where both logical programming
and data analytics are done using a web-based method.

• System security: To guarantee that the system side is safeguarded in the event of
unusual situations, all the actuators are separated via an RTU.

• Minimal and Open Source: Most of the suggested SCADA system parts are produced
and provided by many manufacturers, making them affordable and readily available.
The parts are assembled well with parts from various manufacturers and associated
facilities. As a result, one of the major characteristics of an open-source system is that
the consumer is not reliant on a specific manufacturer or provider. Moreover, only
two types of sensors are used, which are easily accessible and affordable.

• Data collection and archive storage: The SCADA system archives and saves real-time data.
• Novelty in visualization: For visualization purposes, Wio terminals are used as remote

terminal units (RTUs) to display real-time data.
• Remote monitoring and control: Alerting signals are also provided by this system,

which gives the user information about the system’s health status and function-
ality. Additionally, the Node-Red server enables the system to be accessed and
controlled remotely.

• Low-Cost and Open-Source: This design utilizes hardware components that are easily
available at a reasonable price and that are also low-power. The power and cost
breakdown of each component utilized in the development of the proposed design are
shown in Table 8, which provides the details of the price and power consumption of
each component. Another contributing factor to the system’s low cost and no annual
fee is free and open-source software. Moreover, a brief comparison with two similar

Energies 2023, 16, 2092 19 of 21

works [13,14] shows that the total cost of hardware setup for the proposed system is
considerably lower than the mentioned works. Based on [13,14], the hardware setup
cost is CAD 210 and CAD 760, respectively. However, the hardware setup cost of the
proposed system is only CAD 107.

• System Limitations: The design system uses a USB-to-serial device (an FTDI chip)
that is installed on the Arduino kit. The system is not compatible with the IEC 61850
communication protocol.

Table 8. Power consumption and price of hardware components.

Sr. # Components QTY Price (CAD) Power Consumption (W)

1 ACS0712 5 3.5 0.4
2 F031-06 1 3.5 0.006
3 Arduino Mega 2560 1 49 0.27
4 Wio Terminal 1 37 1.2

8. Conclusions

Research and efforts in this paper have been primarily motivated by the need for
a low-cost, open-source, and low-power SCADA system for a hybrid renewable energy
system. An essential feature of a SCADA system for a HRPS is the ability to monitor
and track system changes. This purpose was achieved by using six sensors to gather the
voltage, current, and power of vital components in the system. In addition, two different
methods have been proposed to display all the received data. The first approach is to use
an Arduino as an RTU to receive data and transmit it to a Node-Red-based MTU to monitor
and control real-time data remotely. Additionally, a low-power, low-cost option is to use a
Wio terminal to receive all sensor data and display it on a small LCD screen using three
different command interfaces. Another important element of a SCADA system is the ability
to monitor the overall health of the system by sensing, processing, and analyzing it to
identify and report all important faults. Node-Red was programmed with an algorithm
that produces three crucial check alerts, including an inverter fault check alert, a generator
fault check alert, and an alert for low batteries. In providing this feature, the system health
is being monitored in real time, and reliable available energy is being provided. Thirdly,
this system controls the charging and discharging current of the battery to maintain the
battery’s state of charge within a reasonable range and to increase its lifetime. Node-Red
was configured to produce a controlling signal that turns the diesel generator on and off
based on the analysis of the system. A CSV file is also maintained for future studies of all
received and calculated data. Additionally, all displayed data, generated fault check alerts,
and controlling signals can be viewed remotely using HMIs.

Author Contributions: System design, experimental results, and writing the manuscript have been
done by S.A.O. Review and editing have been performed by M.J.A.B. and M.T.I. In addition, M.T.I.
provided the required components and contributed research ideas throughout the research. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and the School of Graduate Studies (SGS) at Memorial University.

Data Availability Statement: Data is contained within the article and references.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

Energies 2023, 16, 2092 20 of 21

Abbreviations

The following abbreviations are used in this manuscript:

HRPSs Hybrid Renewable Power Systems
SCADA Supervisory, Control, and Data Acquisition
RTUs remote terminal units
MTU main terminal unit
HPSs hybrid power systems
FIDs field instrumentation devices
IoT Internet of Things
MOPSO Multi-Objective Practical Swarm Optimization Algorithm
GPIO General-Purpose Input/Output
RWD Responsive Web Design
AJAX Asynchronous JavaScript and XML
IDE Integrated Development Environment
HMI Human–Machine Interface
CSV common-separated value
LCD Liquid Crystal Display
LED light emitting diode
PV photovoltaic
MPPT Maximum Power Point Tracker
JSON JavaScript Object Notation
DC direct current
AC alternative current
V voltage
A Ampere
W Watt
kW Kilowatt
BVS battery voltage sensor
BCS battery current sensor
PCS PV current sensor
GCS generator current sensor
LCS load current sensor
CAD Canadian dollar
Gen generator
fn function
OS operating system
RAM random access memory
CPU central processing unit
MHz mega hertz
GB gigabyte
PWM pulse width modulation
UART universal asynchronous receiver transmitter pins
USB universal serial bus
ICSP in-circuit serial programming
BTS Base Transceiver Stations

References
1. Aghenta, L.O.; Iqbal, M.T. Design and Dynamic Modelling of a Hybrid Power System for a House in Nigeria. Int. J. Photoenergy

2019, 2019, 6501785. [CrossRef]
2. Drouilhet, S.M. Power Flow Management in a High Penetration Wind-Diesel Hybrid Power System with Short-Term Energy Storage;

National Renewable Energy Lab. (NREL): Golden, CO, USA, 1999. Available online: https://www.osti.gov/biblio/12196
(accessed on 20 December 2022).

3. Lee, J.; Lee, S.; Cho, H.; Ham, K.S.; Hong, J. Supervisory control and data acquisition for Standalone Hybrid Power Generation
Systems. Sustain. Comput. Inform. Syst. 2018, 20, 141–154. [CrossRef]

4. Guide to Industrial Control Systems (ICS) Security 2015. Available online: https://csrc.nist.gov/publications/detail/sp/800-82
/rev-2/final (accessed on 30 December 2022).

http://doi.org/10.1155/2019/6501785
https://www.osti.gov/biblio/12196
http://doi.org/10.1016/j.suscom.2017.11.003
https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final

Energies 2023, 16, 2092 21 of 21

5. Aghenta, L.O. Open-Source SCADA Systems for Small Renewable Power Generation; Memorial University of Newfoundland: St.
John’s, NL, Canada, 2020. [CrossRef]

6. Sajid, A.; Abbas, H.; Saleem, K. Cloud-Assisted IoT-Based SCADA Systems Security: A Review of the State of the Art and Future
Challenges. IEEE Access 2016, 4, 1375–1384. [CrossRef]

7. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]

8. Shammar, E.A.; Zahary, A.T. The Internet of Things (IoT): A survey of techniques, operating systems, and trends. Libr. Hi Tech
2019, 38, 5–66. [CrossRef]

9. Baig, M.J.A.; Iqbal, M.T.; Jamil, M.; Khan, J. IoT and Blockchain Based Peer to Peer Energy Trading Pilot Platform. In Proceedings
of the 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,
BC, Canada, 4–7 November 2020; pp. 402–406. [CrossRef]

10. Omidi, S.A.; Iqbal, M.T. Sizing and dynamic modeling a Hybrid Renewable Power System for Paradise River, NL, Canada. In
Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON),
New York, NY, USA, 26–29 October 2022; pp. 269–276. [CrossRef]

11. Matsui, T.; Yamamoto, K.; Sumi, S.; Triruttanapiruk, N. Detection of Lightning Damage on Wind Turbine Blades Using the
SCADA System. IEEE Trans. Power Deliv. 2020, 36, 777–784. [CrossRef]

12. Li, D.; Gebraeel, N.; Paynabar, K. Detection and Differentiation of Replay Attack and Equipment Faults in SCADA Systems. IEEE
Trans. Autom. Sci. Eng. 2020, 18, 1626–1639. [CrossRef]

13. Aghenta, L.O.; Iqbal, M.T. Design and implementation of a low-cost, open source IoT-based SCADA system using ESP32 with
OLED, ThingsBoard and MQTT protocol. AIMS Electron. Electr. Eng. 2020, 4, 57–86. [CrossRef]

14. Ahsan, L.; Baig, M.J.A.; Iqbal, M.T. Low-Cost, Open-Source, Emoncms-Based SCADA System for a Large Grid-Connected PV
System. Sensors 2022, 22, 6733. [CrossRef] [PubMed]

15. Liu, X.; Du, J.; Ye, Z.-S. A Condition Monitoring and Fault Isolation System for Wind Turbine Based on SCADA Data. IEEE Trans.
Ind. Inform. 2021, 18, 986–995. [CrossRef]

16. Cao, S.; Lin, N.; Dinavahi, V. Flexible Time-Stepping Dynamic Emulation of AC/DC Grid for Faster-Than-SCADA Applications.
In Proceedings of the 2021 IEEE Power & Energy Society General Meeting (PESGM), Washington, DC, USA, 25–29 July 2021; p. 1.
[CrossRef]

17. Kao, K.-C.; Chieng, W.-H.; Jeng, S.-L. Design and development of an IoT-based web application for an intelligent remote SCADA
system. IOP Conf. Ser. Mater. Sci. Eng. 2018, 323, 012025. [CrossRef]

18. Uddin, S.U.; Baig, M.J.A.; Iqbal, M.T. Design and Implementation of an Open-Source SCADA System for a Community Solar-
Powered Reverse Osmosis System. Sensors 2022, 22, 9631. [CrossRef] [PubMed]

19. Elgammal, A.; Ramlal, T. Optimal Model Predictive Frequency Control Management of Grid Integration PV/Wind/FC/Storage
Battery Based Smart Grid Using Multi Objective Particle Swarm Optimization MOPSO. WSEAS Trans. Electron. 2021, 12, 46–54.
[CrossRef]

20. Jin, X.; Xu, Z.; Qiao, W. Condition Monitoring of Wind Turbine Generators Using SCADA Data Analysis. IEEE Trans. Sustain.
Energy 2020, 12, 202–210. [CrossRef]

21. Qays, O.; Ahmed, M.M.; Mahmud, M.A.P.; Abu-Siada, A.; Muyeen, S.M.; Hossain, L.; Yasmin, F.; Rahman, M. Monitoring of
renewable energy systems by IoT-aided SCADA system. Energy Sci. Eng. 2022, 10, 1874–1885. [CrossRef]

22. Aghenta, L.O.; Iqbal, M.T. Low-Cost, Open Source IoT-Based SCADA System Design Using Thinger.IO and ESP32 Thing.
Electronics 2019, 8, 822. [CrossRef]

23. Oton, C.N.; Iqbal, M.T. Low-Cost Open Source IoT-Based SCADA System for a BTS Site Using ESP32 and Arduino IoT Cloud. In
Proceedings of the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON),
New York, NY, USA, 1–4 December 2021; pp. 0681–0685. [CrossRef]

24. Baig, M.J.A.; Memorial University of Newfoundland; Iqbal, M.T.; Jamil, M.; Khan, J.; Hydro, B. Peer-to-Peer Energy Trading in a
Micro-grid Using Internet of Things and Blockchain. Electron. ETF 2021, 25, 39–49. [CrossRef]

25. Baig, M.J.A.; Iqbal, M.T.; Jamil, M.; Khan, J. Blockchain-Based Peer-to-Peer Energy Trading System Using Open-Source Angular
Framework and Hypertext Transfer Protocol. Electronics 2023, 12, 287. [CrossRef]

26. Baig, M.J.A.; Iqbal, M.T.; Jamil, M.; Khan, J. A Low-Cost, Open-Source Peer-to-Peer Energy Trading System for a Remote
Community Using the Internet-of-Things, Blockchain, and Hypertext Transfer Protocol. Energies 2022, 15, 4862. [CrossRef]

27. ACS 712. Available online: https://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf (accessed on 5 December 2022).
28. Arduino Mega Pinout. Available online: https://www.electronicshub.org/arduino-mega-pinout/ (accessed on 14 December 2022).
29. Wio Terminal. Available online: https://wiki.seeedstudio.com/Wio-Terminal-Getting-Started/#specification (accessed on 14

December 2022).
30. Baig, M.J.A.; Iqbal, M.T.; Jamil, M.; Khan, J. Design and implementation of an open-Source IoT and blockchain-based peer-to-peer

energy trading platform using ESP32-S2, Node-Red and, MQTT protocol. Energy Rep. 2021, 7, 5733–5746. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.48336/jvz0-vh12
http://doi.org/10.1109/ACCESS.2016.2549047
http://doi.org/10.1109/COMST.2015.2444095
http://doi.org/10.1108/LHT-12-2018-0200
http://doi.org/10.1109/IEMCON51383.2020.9284869
http://doi.org/10.1109/UEMCON54665.2022.9965652
http://doi.org/10.1109/TPWRD.2020.2992796
http://doi.org/10.1109/TASE.2020.3013760
http://doi.org/10.3934/ElectrEng.2020.1.57
http://doi.org/10.3390/s22186733
http://www.ncbi.nlm.nih.gov/pubmed/36146086
http://doi.org/10.1109/TII.2021.3075239
http://doi.org/10.1109/PESGM46819.2021.9638159
http://doi.org/10.1088/1757-899X/323/1/012025
http://doi.org/10.3390/s22249631
http://www.ncbi.nlm.nih.gov/pubmed/36559999
http://doi.org/10.37394/232017.2021.12.7
http://doi.org/10.1109/TSTE.2020.2989220
http://doi.org/10.1002/ese3.1130
http://doi.org/10.3390/electronics8080822
http://doi.org/10.1109/UEMCON53757.2021.9666691
http://doi.org/10.53314/ELS2125039B
http://doi.org/10.3390/electronics12020287
http://doi.org/10.3390/en15134862
https://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf
https://www.electronicshub.org/arduino-mega-pinout/
https://wiki.seeedstudio.com/Wio-Terminal-Getting-Started/#specification
http://doi.org/10.1016/j.egyr.2021.08.190

	Introduction
	Literature Review
	System Description
	System Components
	Sensors
	ACS 712 Hall-Effect-Based Linear Current Sensor Module
	F 031-06 Voltage Sensor Module

	Remote Terminal Units
	Arduino Mega 2560
	Wio Terminal

	Main Terminal Unit
	Hardware
	Software

	Implementation Methodology
	Experimental Setup and Results
	Discussion
	Conclusions
	References

