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Abstract: This paper studies the distribution of emergency relief for electric vehicles (EVs), which
considers energy saving, multi-depot, and vehicle routing problems with time windows, and the
named energy saving-oriented multi-depot vehicle routing problem with time windows (ESMD-
VRPTW). Our aim is to find routes for EVs such that all the shelter demands are fulfilled during their
time windows and the total cost traveled by the fleet is minimized. To this end, we formulate the
ESMDVRPTW as a mixed-integer linear programming model. Since the post-disaster transportation
network contains a large number of vertices and arcs composed of vertices, we propose a two-stage
approach to solve the ESMDVRPTW. The first stage is to obtain the minimal travel cost between
any two vertices in real-time on a post-disaster transportation network using the proposed Floyd
algorithm combined with the neighboring list (Floyd-NL algorithm). In the second stage, we develop
the genetic algorithm (GA) incorporating large neighborhood search (GA-LNS), which determines
the delivery scheme of shelters. Simulation results of the MDVRPTW benchmark illustrate that the
performance of the GA-LNS is better than GA , simulated annealing (SA) and tabu search (TS). Finally,
case studies are constructed on two real cases acquired from the OpenStreetMap (OSM) generated by
the Quantum Geographic Information System (QGIS) in Ichihara city, Japan, and the test results of
case studies show the effectiveness of the proposed two-stage approach.

Keywords: electric vehicles; energy saving-oriented; multi-depot; Floyd-NL algorithm; GA-LNS
algorithm

1. Introduction

With the continuous development of human society and economy, the ecological
environment has been seriously damaged, causing natural disasters to occur frequently.
When a disaster occurs, emergency rescue departments occupy a crucial position, which
need to carry out a rapid and reasonable rescue. One of the most critical tasks is to dispatch
EVs to transport needed materials to the shelter, such as medical bags, tents, and food. Since
the urgency of shelter is different, it is necessary to set the time window in shelter to provide
rescue reasonably. Then, we consider the multiple depots in post-disaster transportation
networks to make emergency rescue more flexible. Furthermore, since EVs have their
energy consumption when driving on the arc, the saving energy of EVs means that EVs
can provide materials for more shelters under the same energy consumption. In summary,
the emergency logistics within our work is formulated as an energy saving-oriented multi-
depot vehicle routing problem with time windows (ESMDVRPTW).

In the field of traffic planning, the vehicle routing problem (VRP) is a popular problem.
The VRP was first proposed by the Ref. [1] in 1959, and its variants have been widely
studied in the literature. The capacitated VRP (CVRP) is also a very important consideration
in practical application. In the Ref. [2], the authors proposed a vehicle load constraint, and
in the design of the objective function, the study not only considered minimizing total
travel cost, but also considered minimizing the travel distance of each arc. Minimizing the
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travel distance of each arc can ensure that there is not much difference in the workload of
each driver, ensuring the fairness of workload and the balance of income. In general, the
capacity constraint considered by the CVRP is that the weight of the materials carried by
the vehicle cannot exceed the weight delivered to the customer. Tao et al. [3] addressed
the CVRP with three-dimensional loading. The author considered the shape constraint
of three-dimensional loaded materials, which was a complex problem combining three-
dimensional loaded materials with CVRP. In the Ref. [4], the authors presented a VRP of
simultaneous pickup and delivery, which considered how customers had both pickup and
delivery requests. The authors presented an adaptive large neighborhood search algorithm
(ALNS) to minimize the working time of EVs and the numbers of EVs.

Time window constraint is also a factor that is often considered in VRP. Sánchez et al. [5]
presented a mixed-integer linear programming model to solve the electric location routing
problem with time windows (E-LRPTW), which obtained the location of EV recharging
stations under different distribution services. In this model, the author considered the state
of charge, battery capacities and the time windows of customers and used the clustering
strategy based on the k-means algorithm to get the potential location for recharging stations.
In the Ref. [6], the authors proposed an electric vehicle routing problem with time windows
(EVRPTW) considering different EV recharging strategies. The authors used an ALNS to solve
the proposed problem and verified that the cost of a partial recharging strategy is less than
the cost of a full recharging strategy.

The multi-depot vehicle routing problem with time windows (MDVRPTW) is also an
extension of a VRP application. In the Ref. [7], the authors presented a practical logistics
problem applied to the delivery and installation of electronic products. The author divided
the delivery vehicle and the installation vehicle into two parts. However, in order to
improve the service quality, the difference between the delivery vehicle arriving and the
installation vehicle arriving at the same customer should not be too large, which is a time
constraint problem. There is more than one depot for electronic products, so the author
considered this practical logistics problem as MDVRPTW. Adelzadeh et al. [8] studied
the practical application of distribution by using different kinds of vehicles. Different
kinds of vehicles represented different capacity, speed and cost of consumption, which
made the study more complicated. The objective functions considered by the authors
were minimizing the driving distance and minimizing the waiting time. Reducing the
driving distance can reduce the operating cost of the enterprise, reduce the waiting time
can improve the quality of customer service, and also increase the enterprise’s reputation
and income.

Additionally, there is more and more research on applying VRP and some VRP vari-
ants to emergency logistics. In the Ref. [9], they took into account that in emergency
logistics, vehicle speed will be changed with different kinds of disasters and proposed a
bio-inspired algorithm, which selected the optimal paths from alternative paths considering
travel time. In the Ref. [10], a greedy-search-based multi-objective genetic algorithm was
proposed to solve the emergency rescue logistics. The objective function was to mini-
mize the unsatisfied demand for resources, total travel time, and total transportation cost
to generate distribution tasks for each distribution center. In the Ref. [11], the authors
considered a new optimization model, which is based on the actual problem of a large
number of disaster-affected sites, relatively concentrated distribution, and a small number
of emergency supplies. In the Ref. [12], they presented a double-layer ant colony optimiza-
tion algorithm. The algorithm determines the feasible solution by minimizing the cost of
emergency logistics transportation, which improves the distribution efficiency. Therefore,
the vehicle routing and scheduling problems of emergency logistics are worth studying.

In terms of vehicle energy savings, Li et al. [13] studied an advanced engine thermal
management system that reduced energy consumption by controlling problems with high
precision. In the system, there are many time-varying disturbances or time delays, which
brings challenges to the temperature tracking of the actuator. To solve this problem, an
adaptive optimal control strategy was designed by combining state, disturbance and energy
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consumption optimization models. In the experiment, the steady-state error of temperature
can be achieved within 0.3 °C by this strategy, and high-precision temperature tracking
can also be achieved under the constantly changing complex working conditions. In the
Ref. [14], the authors considered energy management on a hydrogen powered vehicle.
Compared with the traditional rule based on expert experience, the author proposed a
multiple linear regression model to learn rule parameters, which was called the fuzzy rule-
based strategy. In order to solve the path, the author firstly used the dynamic programming
(DP) algorithm to solve the energy calculation of the off-line path, and then used fuzzy
rules to select the path. Finally, the author compared the rules based on expert experience
and fuzzy rules based on a genetic algorithm. Hydrogen energy consumption decreased
by 1.5% and 10%, respectively. Hou et al. [15] proposed a multi-layered model predictive
control framework, which combined the life management and real-time speed of fuel cells.
In the upper layer, the SOC state of the battery was solved by convex optimization. In the
lower layer, a model predictive control based on the equivalent consumption minimum
strategy was designed according to the SOC state of the upper layer. Compared with the
rule-based strategy, the multi-layered model predictive control can save more than 10%
of energy. Zhu et al. [16] proposed a Bayesian-Gated Recurrent Unit model (B-GRU) that
combined the Bayesian Theory and GRU to quantify the uncertainty of the degradation
prediction results for PEMFCs.

In addition, we have some relevant research basis for VRP, where the VRP is extended
to the application of hybrid EV. In the Ref. [17], the authors studied the finite time domain
optimal control problem of discrete power systems in a continuous domain, which was
applied to the optimal control problem of hybrid EV power systems. Combined with EV
and VRP, in the Ref. [18], minimized battery energy consumption of EV was taken as the
optimization objective, and the influence of slope on battery energy consumption was
considered. In terms of solving algorithms, this paper presented a method combining 2-opt
and GA to solve this problem. However, the slope was the value set by our simulation,
which was not combined with the actual geographical data. In the Ref. [19], the actual
slope information was extracted and applied to calculate the EV energy consumption. In
another paper, we considered the energy consumption of EVs combined with the energy
consumption of shelters. Each shelter had a different initial charge and rate of consumption.
EVs needed to be able to deliver power to shelters in a timely manner. This paper is
currently under review. The application of a vehicle routing problem with timed-paths
(VRPTP) in emergency logistics was studied in the Ref. [20].

The main contributions of this paper are as follows: (1) We consider the ESMDVRPTW
on a post-disaster transportation network and design the cost function aimed at reducing
the energy consumption of EVs, which is rarely considered; (2) to solve the ESMDVRPTW,
we propose a two-stage approach. The first stage is to obtain the minimal travel cost
between any two vertices in real time by Floyd-NL. Compared with the Floyd Algorithm,
the complexity of Floyd-NL is less in solving a post-disaster transportation network; (3) the
second stage is to solve the delivery scheme by GA-LNS. Differently from GA, we use a
new destory and repair operator in GA-LNS, which can expand the neighborhood of the
current delivery scheme to get a better delivery scheme.

The remainder of the paper is organized as follows. The problem description is present
in Section 2. Section 3 introduces the first stage of our approach, which uses the Floyd-NL.
In Section 4, we introduce the second stage of our approach, which determines the delivery
scheme of shelters. Simulation results and examples are shown in Section 5. Conclusions
are summarized in Section 6.

2. Problem Formulation and Definition

The ESMDVRPTW can be defined on an incomplete and undirected graph G = (V, E),
where V = {v1, . . . , vn} represents the vertex set. A vertex set consists of three subsets:
V1, V2 and V3, where V1 = {v1, . . . , vα} is a set of the α depots, V2 is the set of shelters that
needs to be serviced, denoted by {vα+1, . . . , vα+β}, and V3 = {vα+β+1, . . . , vn} represents
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the set of vertices along the path. E ⊂ V × V denotes the set of all available arcs on the
post-disaster transportation network. Each arc (vi, vj) ∈ E, i 6= j associates with an energy
consumption cij of the EV and a travel time tij of the EV.

K denotes a fleet of homogeneous EVs, which has the identical battery capacity Q with
a constant speed v. The materials capacity of each EV is denoted by q. As for shelters, each
shelter i requires a material demand di. Furthermore, each shelter i ∈ V2 must be serviced
within a time window [li, ri]. li is the earliest service time of shelter i. When the k-th EV
arrives at shelter i before li, the EV should wait until li. ri represents the latest service time
of shelter i. Service time at shelter i is denoted by si. For the sake of convenience, the time
windows of all depots are [l0, r0]. All the EVs cannot leave depots earlier than l0 and must
return no later than r0.

We define the decision variable xijk as follows:

xijk =

{
1 if the k-th EV travels from i to j
0 otherwise.

(1)

Another decision variable yik denotes the arrival time of the k-th EV to service shelter i,
and we assume y0k = l0. Let x, y be matrices with proper dimensions holding all variables.

The mathematical model of the ESMDVRPTW can be shown as

min F(x, y) = c(x) + T(x, y) (2)

s.t. ∑
k∈K

∑
i∈V

xijk = 1, ∀j ∈ V2 (3)

∑
i∈V

xihk− ∑
j∈V

xhjk = 0, ∀h ∈ V2 ∪V3, ∀k ∈ K (4)

∑
h∈V1

∑
i∈V2∪V3

xihk = ∑
h∈V1

∑
j∈V2∪V3

xhjk ≤ 1, ∀k ∈ K (5)

∑
i∈V

∑
j∈V2

xijk · dj ≤ q, ∀k ∈ K (6)

∑
i∈V

∑
j∈V

xijk · cij ≤ Q, ∀k ∈ K (7)

yik + si + tij −Mij(1− xijk) ≤ yjk, ∀i ∈ V, ∀j ∈ V2 ∪V3, ∀k ∈ K (8)

yik + si + ti0 −Mi0(1− xi0k) ≤ r0, ∀i ∈ V2 ∪V3, ∀k ∈ K (9)

y0k = l0. (10)

In the equation, F(x, y) represents the cost function, where x = {xijk = 0, 1, i, j ∈
V, ∀k ∈ K}, y = {yik, i ∈ V, ∀k ∈ K}. The first term c(x) of F(x, y) is the total energy cost
of EVs after all the shelter demands are fulfilled and all EVs return to depots, where we
can define c(x), as described in Equation (11). cd can be thought as the cost for one unit
of energy.

c(x) = cd ∑
k∈K

∑
i,j∈V

cijxijk (11)

Furthermore, the last term T(x, y) of F(x, y) is the total cost of violating time windows.
T(x, y) is in Equation (12). ct is the cost for one unit of violating time windows.

T(x, y) = ct( ∑
k∈K

∑
i∈V

max{yik − ri, 0}+ ∑
k∈K

∑
i∈V

max{li − yik, 0}). (12)

Equation (3) requires that each shelter is served by an EV once. Equation (4) states
flow conservation constraints. Equation (5) shows that each EV starts from a depot and
stops at a depot. Equation (6) requires that the sum of material demand of each path cannot
exceed the EV capacity. Equation (7) requires that the energy consumption of each path
cannot exceed the battery capacity of EV. Equation (8) ensures that EVs access i and j in
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order, and the constant Mij is defined as large enough to eliminate subtours. Equation (9)
requires that EVs return to depots no later than r0. Equation (10) states that the EVs start
from the depot at l0.

3. The First Stage of the Approach: Floyd-NL Algorithm

Based on the mathematical model of ESMDVRPTW, the first stage of our approach is
the Floyd-NL algorithm, which obtains the minimal travel cost between any two vertices
on a post-disaster transportation network. When the disaster occurs, the transportation
network changes, and some arcs are even impassable. We need the Floyd-NL algorithm to
calculate the minimal travel cost between any two vertices in real-time again.

The Floyd algorithm [21] is an algorithm to find the shortest path in a weighted graph
with positive or negative edge weights (but no negative period), which is mainly applied
to a fully connected graph. However, the graph of a disaster situation in actual cases is
usually incomplete. The Floyd-NL algorithm is proposed to reduce the number of traverse
arcs to reduce the algorithm running time. We will explain the Floyd-NL algorithm in the
Algorithm 1.

Algorithm 1 Floyd-NL algorithm

Input: start_point, end_point, the travel cost cij
Output: optimal_path,dist

1: Define routing matrix p, neighboring list neighboring_list
2: for i in [1 : n] do
3: for j in [1 : n] do
4: p(i, j) = j;
5: dist(i, j) = cij;
6: if cij is not equal to infinity then
7: neighboring_list{i} = [neighboring_list{i}, j];
8: end if
9: end for

10: end for
11: for h in [1 : n] do
12: for i in [1 : n] do
13: for j in neighboring_list{h} do
14: if dist(i, j) > dist(i, h) + dist(h, j) then
15: dist(i, j) = dist(i, h) + dist(h, j);
16: p(i, j) = p(i, h);
17: end if
18: end for
19: end for
20: end for
21: Find the optimal route optimal_path between the start_point and end_point through

the routing matrix p;

In the Algorithm 1, we assume that if the arcs exist between any two vertices, then
we set the actual cost between them. However, the cost between non-neighboring vertices
is set to infinity. By dealing with the non-neighboring vertices in the initial neighboring
matrix of vertices, we can obtain the vertex neighboring table without infinity. First, we use
QGIS software to extract geographic information data. QGIS is a desktop GIS software and
provides data display, editing and analysis functions. Because the number of neighboring
vertices of a vertex is less than the total number of all vertices through the observation of
the datasets extracted by QGIS, through the neighboring list, we no longer need to traverse
non-neighboring vertices in the operation of the algorithm. When solving our problem,
this improvement can efficiently reduce the computational complexity compared with the
Floyd algorithm.
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Two parts can consider the computational complexity of the Floyd-NL algorithm. The
first part is from line 1 to line 10 in the pseudocode, which contains two n loops. Thus, the
computational complexity of this part is O(n2). The other part is from line 11 to line 20 in
the pseudocode, which contains three loops. The first and second are n loops. The length
of each element in neighboring_list represents the total number of neighboring vertices
for each shelter. As we mentioned in the last paragraph, we can see that the number of
neighboring vertices of a vertex is less than the total number of all vertices. Therefore, we
assume that the length of elements in neighboring_list is zi, where zi ≤ λ � n, λ is the
maximum length of zi. Thus, the third loop is at most λ, and the computational complexity
of this part is O(λn2). Based on the above discussion, the computational complexity of the
Floyd-NL algorithm is O(λn2). As we know, the computational complexity of the Floyd
algorithm is O(n3). As a result, the improvement of the Floyd algorithm in our problem
can reduce the computational complexity effectively.

In order to verify the effectiveness of the Floyd-NL algorithm, we use QGIS to extract
some real-world traffic data, which contains 445 nodes in total and 355 edges that can be
connected between vertices. We select six groups of different start vertices and end vertices
and apply the Floyd-NL algorithm and the Floyd algorithm to obtain the minimal travel
cost between them. The starting vertices and ending vertices of the six groups are [6, 122],
[7, 147], [12, 110], [16, 113], [19, 162], [21, 102], respectively. In Table 1, the first row is the
running time of the Floyd-NL algorithm (unit: second), and the second row is the running
time of the Floyd algorithm (unit: second). The results show that the running time of the
Folyd-NL algorithm is much lower than that of the Floyd algorithm, which illustrates the
effectiveness of the Floyd-NL algorithm. The third row represents the minimal energy
cost calculated by the Floyd algorithm and Floyd-NL algorithm (unit: watt). In terms of
calculating the minimal energy cost, both the Floyd algorithm and Floyd-NL algorithm
can calculate the optimal value, but the Floyd-NL algorithm can effectively reduce the
running time.

Table 1. A comparison of algorithm running time and cost with Floyd-NL, the Floyd algorithm.

Algorithm Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Floyd-NL 0.063 0.047 0.0312 0.047 0.045 0.032
Floyd 9.98 8.99 9.017 9.052 8.99 8.97
cost 1840 324 326 382 131 105

4. The Second Stage of the Approach: GA-LNS Algorithm

The GA algorithm is a highly parallel, random, and adaptive optimization algorithm.
In order to obtain a better delivery scheme, we add the LNS algorithm [22] to the genetic
algorithm. The LNS algorithm can search for a better solution in the neighborhood of a
solution. The flowchart of the GA-LNS algorithm is given in Figure 1. We will introduce
the GA-LNS algorithm in detail to find the delivery scheme of each shelter.

Figure 1. The flowchart of the GA-LNS algorithm.
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4.1. Encode

Encoding is abstraction of the problem to be solved into a series of specific symbols,
which are arranged in a certain order through a certain mechanism. We will use a simple
example to illustrate how our problem was encoded.

We assumed the number of shelters β was five, the number of depots α was two, and
the number of vehicles |K| was two. Figure 2 shows a feasible chromosome as 23,645,
where the depot is denoted by 0, 1. The chromosome sequence is segmented according to
the mathematical model constraints in Section 2. The chromosome may be divided into
two parts. Part one is 23, and part two is 645. We calculated the distance between each
depot and the first node A of each part, and added the nearest depot before A; at the same
time, we calculated the distance between the last node B of each part and the depot, and
added the nearest depot after node B. As shown in Figure 2, we generated two routes,
0→ 2→ 3→ 1,1→ 6→ 4→ 5→ 0.

Figure 2. A reasonable chromosome encoded in MDVRPTW.

4.2. Population Initialization

The size of the population depends on the properties of the problem. In general,
it contains several hundred or thousands of possible solutions. Within our work, each
solution consists of some shelters, and the EV starts from a depot and ends at a depot after
service. Therefore, the form of initial solutions equals the form of encoding, and the initial
solutions are chosen from the total population.

4.3. Fitness Function

The fitness of chromosomes refers to the measure of the dominance of chromosomes in
population survival, which is used to distinguish the quality of chromosomes. Fitness is cal-
culated using the fitness function. The fitness function is also called the evaluation function,
which mainly judges the fitness of a chromosome through chromosome characteristics.

Since the above encoding cannot consider that each delivery scheme meets the EV time
window constraints, we need to use a function with penalty terms to solve the problem.
In addition, chromosomes with large fitness values need to be selected when selecting
operations. Therefore, we set the fitness function as 1/F(x, y).

4.4. Selection

Roulette wheel selection is used in the proposed method for probabilistic selection
based on chromosome performance. The roulette wheel selection method scales the fitness
values of individuals in the population so that the sum of the rescaled fitness values equals
1. In roulette, the probability of selecting a chromosome is directly proportional to their
fitness. The process of selecting chromosomes is shown in Figure 3, where the fitness of
chromosome 1 is greater than that of other chromosomes, so chromosome 1 will be selected
as the optimal solution at present.
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Figure 3. The process of select chromosomes in the GA-LNS algorithm.

4.5. Crossover

The process of crossover generating the new offspring is shown in Figure 4. We used
the partial-mapped crossover approach to crossover the chromosomes. The crossover can
improve the solution diversity. We give two parent chromosomes, randomly select two
crossing positions a and b, such as a = 2, b = 5, and then the cross-fragment of parent
two is exchanged with the cross-fragment of parent 1. It is noticed that there exists the
repeated gene after crossover. We give the following corresponding relationship in the
lower part of Figure 4. If the repeated gene occurs, change the first repeated gene observing
the corresponding relationship.

a b

Figure 4. The crossover process in the GA-LNS algorithm.

4.6. Mutation

In the mutation operation, we use insertion mutation to mutate the chromosomes. The
mutation process is shown in Figure 5. The parent chromosome randomly selects one gene,
and inserts this gene to a random position, then the offspring chromosome is generated.

Figure 5. The mutation process in GA-LNS algorithm.

4.7. Large Neighborhood Search

If only the GA is used, there is no good search for the neighborhood of the solution,
only random, crossover and mutation. These are not enough to solve well, so we added a
LNS algorithm based on the GA. The advantages of a GA based on population and LNS
for neighborhood expansion are combined. LNS is improved step by step by using Destroy
and Repair alternately. With Algorithm 2, we can see the flow of the LNS algorithm.



Energies 2023, 16, 1992 9 of 15

Algorithm 2 LNS algorithm

Input: an initial solution S0
1: Sbest = S0;
2: repeat
3: Sr = rep(dest(S0));
4: if f itness(Sr) > f intess(S0) then
5: S0 = Sr;
6: end if;
7: if f itness(Sr) > f intess(Sbest) then;
8: Sbest = Sr;
9: end if;

10: until (stop criterion is met)
11: return Sbest

In Algorithm 2, we first initialize the initial solution as S0, which is the output after
the crossover and mutation of the genetic algorithm. Additionally, we assign the optimal
solution Sbest to our initial solution S0. Continuing, as in lines 2 through 10 of Algorithm 2,
the algorithm enters a loop until the termination condition is satisfied. When the algorithm
executes, we set the loop to execute only once, although we could change it to more times
or set a more specific stop condition, such as the algorithm stops below a certain value.
Because we combine the genetic algorithm with the large neighborhood search algorithm,
the GA-LNS algorithm will have iterative cycles, so it is not necessary to set more cycles for
the LNS algorithm separately.

In the 3 line of Algorithm 2, we generate a new solution Sr using the rep(dest(·))
operator. The rep(dest(·)) operator mainly has destroy and repair—two parts.

(1) destory operator

In the destory operator, Sremove represents the shelter to be removed, R represents the
set of shelters to be removed, N represents the number of shelters to be removed, and
Sremain represents the remaining partial solutions after N shelters are removed from S0. The
process of the destory operator is as follows:

First, randomly remove a shelter from S0 into R as the first element of the set R. Then,
one shelter M is randomly selected from the set R at a time, and all shelters in Sremain are
sorted as Slist in order of their greatest to least relevance to M. Select the shelter Sremove
from Sremain according to Equation (15), remove the Sremove from S0, and add it to R. Repeat
this process N − 1 times. The correlation equation is shown in Equation (13).

Φ(i, j) = 1/
(
cij + wij

)
. (13)

Φ(i, j) represents the correlation between i and j, cij represents the energy consumption
and wij indicates whether i and j are served by the same EV. If i and j are served by the same
EV, wij is 0, otherwise it is 1. In order to avoid over-reliance on the correlation function, a
random function is applied to the selection of Sremove, as described in Equation (14).

idx =
[
(Rand)D × |Sremain|

]
(14)

Rand is a random number between 0 and 1, and D is a constant, which we set to 8 in
our experiment. |Sremain| represents the number of remaining shelters, rounded to give the
index value idx.

Finally, Sremove can be calculated according to Equation (15).

Sremove = Slist[idx] (15)

(2) repair operator

For the repair operator, we first separately calculated the fitness of all the insertable
points of all shelters in set R into Sremain. For each shelter, we found the position pos with
the least fitness after insertion among all the insertable points. Then, we compared the
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pos of each shelter and found the largest one to insert into Sremain first. We repeated this
operation until we completely inserted the elements of set R into Sremain and obtained Sr.

We then calculate the fitness values for S0 and Sr (see Algorithm 2, line 4–6). If the
fitness of Sr is greater than that of S0 , change S0 to Sr and calculate the fitness values for Sr
and Sbest (see Algorithm 2, line 7–9). If the fitness of Sr is greater than that of Sbest , change
Sbest to Sr. After the termination condition, the output Sbest is given to the genetic algorithm
to continue the iterative solution.

Based on the above features, we will give the simulation results in the next section.

5. Simulation Results
5.1. Simulation Results of the Datasets Modified Using Cordeau Problem

To prove the practicability of the GA-LNS to obtain the delivery scheme on a post-
disaster transportation network, we considered modifying part of the Cordeau problem [23]
to get the MDVRPTW benchmark. Different from the Cordeau problem, we considered
the energy consumption of EVs between any two vertices. The details of the benchmark
are presented in Table 2. In Table 2, column 1 indicates the benchmark. Columns 2, 3
respectively represent the number of depots and shelters with different benchmarks.

Table 2. Test data parameters.

Benchmark Number of Depots Number of Shelters

C01 4 48
C02 4 96
C03 6 144
C04 4 96
C05 4 144
C06 6 144

For the GA-LNS and GA, we set the population to 100, where the probability of
crossover is 0.95, and the probability of mutation is 0.05. Each time, the result of the genetic
algorithm is followed by the large neighborhood search algorithm; for SA, we set the initial
temperature to 6000, the termination temperature to 0.001, and temperature drop step to
0.9; for TS, we set the length of the tabu list to 30. We determined through experimental
tests that we will get a better result by running 100 iterations. In the cost function, cd was
set to 1.0, and ct was set to 100.0.

Then, the comparison of travel cost with the GA-LNS, GA [24], SA [25] and TS [26]
algorithm was presented in Table 3. Column 1 shows the benchmark, the type of which is
given in Table 2. The column 2 shows the average of the 10 simulations performed by the
GA-LNS algorithm on the benchmark. Columns 3, 4, 5 show the simulation results with a
different algorithm. The data calculated by the algorithm are the minimal travel cost where
EVs can travel from the depot and return to the depot after serving all shelters. The results
indicate that the GA-LNS algorithm has better performance. In the C04, the gap between
the results of the GA-LNS algorithm and other algorithms is minimal. The results of the
GA-LNS algorithm are 41.6%, 39.3% and 36.1% of that of GA, SA and TS, respectively. In
the C02, the gap between the results of the GA-LNS algorithm and other algorithms is the
maximum. The results of the GA-LNS algorithm are 25.8%, 24.4% and 23% of those of GA,
SA and TS, respectively.

In Table 4, column 1 indicates the benchmark. Column 2 shows the GA-LNS algorithm
running time of 100 iterations on the benchmark. Columns 3, 4 and 5 show the running
time of 100 iterations with GA, SA and TS (unit: second). Although the running time
of GA-LNS is longer than that of other algorithms, the solutions of each benchmark are
completed within about one hour. The solution results of GA-LNS are better than those
of other algorithms. Moreover, as shown in Figure 6, we used four algorithms to draw an
iterative curve on the C01.
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Table 3. A comparison of travel cost with the GA-LNS, GA, SA and TS algorithm.

Benchmark GA-LNS GA SA TS

C01 1841.63 4107.48 4190.23 4536.21
C02 1827.67 7095.72 7500.97 7937.73
C03 2295.44 6178.40 7144.12 6963.35
C04 1594.87 3832.74 4059.53 4414.24
C05 2235.78 7043.94 7675.14 7675.01
C06 2215.25 6309.35 6806.60 7175.82

Table 4. A comparison of algorithm running time with the GA-LNS, GA, SA and TS algorithm.

Benchmark GA-LNS GA SA TS

C01 544.94 84.59 10.24 9.78
C02 2211.45 128.30 26.62 24.37
C03 2400.96 131.55 23.77 23.77
C04 625.64 79.49 13.89 10.29
C05 3588.77 127.30 24.80 25.40
C06 3760.03 115.63 29.37 30.62
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Figure 6. The iterative curve of four algorithms on C01.

5.2. Simulation Results for a Practical Example

In this section, we consider two different cases acquired from the OpenStreetMap
(OSM) in Ichihara city, Japan. The post-disaster transportation network in Figure 7 has
about 11,000 vertices and more than 15,000 arcs composed of vertices. In Figure 7a, there
are 4 depots and 48 shelters, which is called case 1 for short; in Figure 7b, there are 4 depots
and 60 shelters, which is called case 2 for short. The locations of depots and shelters are
shown in Figure 7. The blue squares represent the depots. The red circles represent the
shelters.

The two cases have some of the same settings. The service time of each shelter was set
to si = 90 min, and their demand was set to di = 50 units. These data can be easily modified
to adapt to the changes of different shelters. The capacity of each EV was q = 200 units,
and the velocity of each EV was v = 30 km/h. In case 1, we considered that up to 8 EVs can
be used; in case 2, we considered using up to 12 EVs. We aimed to find the optimal delivery
scheme while minimizing the total travel cost. We considered the different priorities of
shelters by changing the time windows in Table 5. Numbers 0–51 were the information
of the depots and shelters of case 1. Numbers 0–63 were the information of the depots
and shelters of case 2. In Table 5, columns 1 and 5 are the shelter and depot numbers.
Columns 2 and 6 are the coordinates of the shelter and depot (unit: miter), where the
coordinate system is the European petroleum survey group: 6677 (EPSG:6677). TW1 and
TW2 represent two different time windows (unit: minute). The parameters of GA-LNS
are the same as those in Section 5.1. The simulation results and the data of different cases
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are shown in Figures 8 and 9. The specific routes of the delivery scheme for two cases are
shown in Tables 6 and 7, respectively. It can be seen that the constraints of different time
windows affect the optimal delivery scheme of EVs.

Table 5. The time windows and coordinates of two cases.

Num. Coordinate TW1 TW2 Num. Coordinate TW1 TW2

0 (14,630, −61,892) (0, 1236) (0, 1236) 32 (12,335, −70,787) (358, 405) (10, 1126)
1 (17,465, −68,665) (0, 1236) (0, 1236) 33 (13,764, −65,592) (449, 504) (0, 1125)
2 (15,848, −61,670) (0, 1236) (0, 1236) 34 (16,515, −70,226) (0, 1112) (50, 1112)
3 (14,500, −71,735) (0, 1236) (0, 1236) 35 (15,203, −59,802) (31, 100) (0, 1114)
4 (13,504, −64,524) (0, 1127) (0, 1127) 36 (16,392, −68,179) (87, 158) (30, 1112)
5 (15,729, −66,635) (0, 1125) (0, 1125) 37 (16,380, −64,290) (0, 1113) (0, 1113)
6 (13,577, −65,948) (0, 1129) (0, 1129) 38 (16,115, −60,059) (283, 344) (60, 1107)
7 (18,471, −73,989) (727, 782) (727, 782) 39 (13,113, −72,350) (665, 716) (0, 1110)
8 (15,379, −66,590) (0, 1130) (0, 1130) 40 (14,243, −69,027) (0, 1106) (0, 1106)
9 (16,566, −60,848) (621, 702) (0, 1127) 41 (18,158, −59,226) (479, 522) (479, 522)

10 (17,355, −59,229) (0, 1130) (0, 1130) 42 (14,473, −62,002) (567, 624) (0, 1105)
11 (13,534, −61,683) (255, 324) (255, 324) 43 (16,169, −62,913) (264, 321) (20, 1125)
12 (17,868, −68,733) (534, 605) (534, 605) 44 (12,999, −69,737) (166, 235) (0, 1127)
13 (14,617, −68,528) (357, 410) (0, 1129) 45 (14,952, −61,148) (68, 149) (10, 1126)
14 (14,984, −62,273) (448, 505) (448, 505) 46 (17,833, −58,609) (16, 80) (0, 1129)
15 (18,087, −67,141) (0, 1107) (0, 1107) 47 (11,963, −63,483) (359, 412) (359, 412)
16 (14,852, −62,383) (30, 92) (30, 92) 48 (17,656, −64,307) (541, 600) (0, 1123)
17 (17,743, −64,259) (567, 620) (0, 1106) 49 (18,211, −79,941) (448, 509) (20, 1125)
18 (18,726, −57,264) (384, 429) (384, 429) 50 (17,433, −67,095) (1054, 1127) (0, 1127)
19 (11,930, −68,561) (475, 528) (0, 1105) 51 (13,154, −77,664) (0, 1122) (0, 1122)
20 (11,898, −63,952) (99, 148) (0, 1112) 52 (13,695, −59,809) (1001, 1066) (70, 1126)
21 (17,926, −58,174) (179, 254) (0, 1110) 53 (16,519, −60,722) (0, 1123) (0, 1123)
22 (17,649, −62,809) (278, 345) (0, 1106) 54 (18,369, −59,175) (725, 786) (0, 1121)
23 (13,422, −68,090) (10, 73) (0, 1136) 55 (11,975, −69,158) (0, 1124) (0, 1124)
24 (11,640, −69,272) (0, 1135) (0, 1135) 56 (14,312, −66,889) (286, 347) (286, 347)
25 (14,125, −61,943) (812, 883) (0, 1133) 57 (14,970, −62,056) (186, 257) (0, 1105)
26 (15,954, −58,929) (732, 777) (732, 777) 58 (13,788, −62,190) (95, 158) (95, 158)
27 (14,039, −79,934) (65, 144) (0, 1131) 59 (14,328, −61,783) (385, 436) (0, 1101)
28 (12,324, −77,661) (169, 224) (169, 224) 60 (15,314, −84,753) (35, 87) (0, 1111)
29 (14,876, −61,496) (0, 1130) (0, 1130) 61 (12,261, −66,333) (471, 534) (471, 534)
30 (18,507, −66,038) (261, 316) (0, 1128) 62 (17,658, −59,643) (0, 1110) (0, 1110)
31 (15,968, −60,911) (546, 593) (0, 1128) 63 (13,769, −68,755) (562, 629) (0, 1100)

Table 6. The specific routes of the delivery scheme for case 1.

Number of EV Delivery Route of TW1 Number of EV Delivery Route of TW2

EV1 0-27-30-32-24-42-39-1 EV1 0-48-4-9-44-47-14-5-7-0
EV2 0-44-43-12-29-25-5-4-2 EV2 0-25-24-22-33-8-12-32-30-2
EV3 1-11-10-49-51-8-1 EV3 1-6-51-11-41-13-1
EV4 1-16-20-22-48-9-7-0 EV4 1-37-43-49-19-10-38-36-40-0
EV5 2-35-34-18-41-1 EV5 2-17-21-20-18-50-46-1
EV6 2-23-28-13-19-17-1 EV6 2-23-15-28-29-3
EV7 3-36-40-38-47-14-37-15-6-50-1 EV7 3-16-42-45-39-35-27-34-26-31-2
EV8 3-46-45-21-33-31-26-2

Table 7. The specific routes of the delivery scheme for case 2.

Number of EV Delivery Route of TW1 Number of EV Delivery Route of TW2

EV1 0-22-12-2 EV1 0-54-13-53-45-39-41-26-5-1
EV2 0-15-45-56-19-17-51-3 EV2 0-28-31-6-17-46-51-23-27-41-3
EV3 0-16-28-47-48-54-52-50-3 EV3 0-36-40-38-9-14-48-49-1
EV4 1-58-57-32-41-25-1 EV4 1-63-60-55-15-44-61-49-1
EV5 1-36-44-43-55-49-10-39-37-3 EV5 1-47-43-10-19-29-50-3
EV6 1-27-21-13-31-3 EV6 1-4-62-57-35-21-0
EV7 2-8-11-6-9-1 EV7 2-22-33-32-2
EV8 2-23-24-18-42-3 EV8 2-59-25-1
EV9 2-35-30-59-61-26-40-1 EV9 2-34-18-30-20-37-3

EV10 3-60-29-33-62-5-1 EV10 3-58-56-52-7-1
EV11 3-46-34-38-14-4-1 EV11 3-16-11-24-8-12-2
EV12 3-20-63-7-53-3
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(a) (b)

Figure 7. Map of depots and shelters situation. (a) The depots and shelters situation of case 1. (b) The
depots and shelters situation of case 2.
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Figure 8. Optimal delivery scheme of different time windows for case 1. (a) The delivery scheme of
TW1 for case 1. (b) The delivery scheme of TW2 for case 1.
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Figure 9. Optimal delivery scheme of different time windows for case 2. (a) The delivery scheme of
TW1 for case 2. (b) The delivery scheme of TW2 for case 2.

6. Conclusions

In this paper, we studied an energy saving-oriented multi-depot vehicle routing
problem with time windows (ESMDVRPTW) which was solved by an effective method
consisting of the Floyd-NL algorithm and GA-LNS algorithm. Since the post-disaster
transportation network is complicated, we first used the Floyd-NL algorithm to obtain the
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minimal travel cost between any two vertices in real-time. The complexity of the Floyd-
NL algorithm is less than the Floyd algorithm in solving the post-disaster transportation
network. In the second stage, we used the GA-LNS algorithm to solve the delivery scheme.
Simulation results of the benchmark showed the performance of the GA-LNS outperforms
GA, SA, TS. Finally, we used a test on two real cases acquired from the OpenStreetMap
(OSM) in Ichihara city, Japan, to verify the effectiveness of the proposed two-stage approach.
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