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Abstract: With the increasing demand of the power industry for load forecasting, improving the
accuracy of power load forecasting has become increasingly important. In this paper, we propose
an ultra short-term power load forecasting method based on similar day clustering and EEMD
(Ensemble Empirical Mode Decomposition). In detail, the K-means clustering algorithm was utilized
to divide the historical data into different clusters. Through EEMD, the load data of each cluster
were decomposed into several sub-sequences with different time scales. The LSTNet (Long- and
Short-term Time-series Network) was adopted as the load forecasting model for these sub-sequences.
The forecast results for different sub-sequences were combined as the expected result. The proposed
method predicts the load in the next 4 h with an interval of 15 min. The experimental results show that
the proposed method obtains higher prediction accuracy than other comparable forecasting models.

Keywords: cluster analysis; mode decomposition; LSTNet; ultra short-term load forecasting; non-
stationary time series

1. Introduction

In recent years, with the rapid economic growth, the development of the power indus-
try has been growing. Power load forecasting plays a key role in the operation of the power
industry, and is the basis of economic dispatching, energy storage management, future en-
ergy contracts and plant maintenance plans [1]. The accuracy of power load forecasting has
an extremely important impact on the operation of power systems, because the operation
and control of power systems are very sensitive to prediction errors [2]. Overestimation of
load will lead to excessive power production which results in energy waste. On the other
hand, underestimation of load will lead to poor power production which does not satisfy
the needs of living and industry.

Nowadays, there are many studies on power load forecasting. According to the
prediction time horizon, it is mainly divided into ultra short-term power load forecasting
(USTLF), short-term power load forecasting (STLF), medium-term power load forecasting
(MTLF) and long-term power load forecasting (LTLF) [3,4]. USTLF refers to the load
forecasting for one day or a shorter time; it is used for real-time dispatching and daytime
dispatching of electric power [5]. STLF forecasts from one hour to one week for the
daily operation of power systems, such as energy trading, load flow analysis and power
system security research [6]. MTLF, used for fuel supply scheduling, includes forecasting
from several weeks to one year, and LTLF is usually more than one year’s forecasting for
long-term power system planning [7,8].

Here, we focus on USTLF. Until now, there have been many studies on it. Traditional
power load forecasting methods directly establish the correlation between the predicted
values and the historical values, mainly including the regression analysis method [9], the
time series method [10], and the exponential smoothing method [11]. The regression analy-
sis method predicts the future load value by establishing a mathematical model reflecting
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the causal relationship. The time series method establishes a mathematical model by curve
fitting and parameter estimation of historical load data. The exponential smoothing method
does this through the exponential weighted combination. These methods can express the
significant relationship between the independent variable and the dependent variable.
However, they are limited in dealing with complex nonlinear systems and the performance
of prediction is poor on power load, which is a non-stationary time series.

With the development of artificial intelligence, more modern load forecasting methods
have been proposed, which mainly include SVM (Support Vector Machine) [12], FL (Fuzzy
Logic) [13,14] and neural network methods [15,16]. Niu D et al. [17] proposed an SVM
daily load forecasting model based on case-based reasoning. They showed that SVM has
the advantages of high precision and high speed in power load forecasting. SVM has strong
generalization ability, but lacks the ability to deal with uncertainty [18]. FL can deal with
the uncertainty of load change well, but it is seriously dependent on expert experience.

In recent years, the neural network method has been widely used in load forecasting,
such as CNN models (Convolutional Neural Network) [19], RNN models (Recurrent
Neural Network) [20], LSTM model(Long Short-Term Memory) [21], etc. Dong et al. [22]
used a joint CNN and K-means algorithm to predict hourly power load which can
largely improve the prediction performance. Traditional neural networks have a strong
nonlinear mapping ability, but are not good at processing time series data. Since power
load data are a time series, power load forecasting should be considered a time series
modeling problem [23]. RNN is an improved ANN that can solve the problem of
processing time series. However, RNN is prone to gradient explosion and gradient
vanishing. In order to solve this problem, the LSTM model [24] was proposed, and has
been used for power load forecasting. It can deal with the time series property and
nonlinearity of load data simultaneously and better learn the long-term dependence of
time series [25] in virtue of its special memory ability and gate structure. In an LSTM,
information is not lost with time. Hence, LSTM has higher accuracy when predicting the
future load demand [26]. Zhao et al. [27] proposed an LSTM forecasting method, which
proved that LSTM is better than Elman, BP and LSSVM. Zhang et al. [28] proposed a
regional level ultra short-term load forecasting method based on deep LSTM to forecast
the load in the next hour. However, as the sequence length increases, the gradient
disappears and the prediction effect of LSTM decreases.

The above single model research has been relatively mature and the prediction
effect is good. However, the single model also has some shortcomings, which hin-
der the improvement of prediction accuracy. Composite models are widely used and
can effectively combine the advantages of multiple models, such as the CNN-LSTM
model [29], the GRU-CNN model [30], etc. Some researchers use CNN to extract the
power characteristic information of users, which shows unique advantages in extracting
the nonlinearity of power load data [31]. S. H. Rafi et al. [32] proposed a short-term
power load forecasting method based on the CNN-LSTM model. They showed that the
proposed method had higher precision and accuracy compared with LSTM, RBFN and
XGboost models. Wu, K. et al. [33] proposed an attention-based CNN combined with
LSTM and BiLSTM (Bidirectional Long Short-Term Memory) model for short-term load
forecasting, which had a better performance.

However, the above methods do not consider the long-term periodic characteristics of
load and the long-term correlation between many other variables, such as weather condi-
tions, temperature and so on [34,35]. Hence, LSTNet (Long- and Short-term Time-series
Network) [36] was proposed, which can better learn the long-term correlation between
multi-variables and extract the highly nonlinear long-term and short-term features and
linear features in the data. Until now, LSTNet is the state-of-the-art model and achieves
an excellent performance in multivariate time series. Liu, R. et al. [37] proposed a load
forecasting model based on LSTNet, and proved that the accuracy and robustness are both
better than those of other models. The comparison of different power load forecasting
models is shown in Table 1.
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Table 1. Comparison of different power load forecasting models.

Model Advantage Disadvantage

SVM high precision, high speed, strong
generalization ability lacks the ability to deal with uncertainty

LSTM deal with the time series property and
nonlinearity of load data simultaneously

as the sequence length increases, the
gradient disappears and the prediction

effect decreases.

CNN-LSTM, CNN-BiLSTM extract the power characteristic information
do not consider the long-term periodic

characteristics of load and the long-term
correlation between many other variables

LSTNet

better learn the long-term correlation
between multi-variables and extract the

highly nonlinear long-term and short-term
features and linear features in the data

affected by nonstationarity of power load

Although LSTNet achieves a good performance in multivariate time series, the power
load is a nonstationary time series [38], which obviously degrades the prediction perfor-
mance. In order to reduce the effect of nonstationarity, we adopted similar day clustering
and EEMD (Ensemble Empirical Mode Decomposition).

The main contributions of this paper are the following: (1) we adopted the K-means
clustering algorithm to divide the historical multivariate data into several different clusters
based on the similarity of days, so as to improve the similarity and consistency of training
data; (2) we used EEMD [39] to further decompose the historical load data sequence into
different sub-sequences with different time scales for each cluster, so as to reduce the
effect of nonstationarity; (3) LSTNet was used as the load forecasting model for these
sub-sequences, which is much more stationary than the original power load time series. We
combined these prediction results of these sub-sequences to obtain the final load forecasting
value through superposition and reconstruction. Compared with other models, including
LSTM, CNN-LSTM, CNN-BiLSTM and LSTNet, the experimental results show that the
accuracy of the proposed method rises significantly.

The remainder of this paper is organized as follows. Section 2 introduces the research
methods. In Section 3, experiments are undertaken to evaluate the performance of the
proposed method. Finally, we conclude the paper in Section 4.

2. Research Methods

It is verified that the power load during work days is very different from that in the
holidays. We also know that temperature, humidity, season, light intensity, precipitation,
ground wind speed and relative air pressure affect the power load. Hence, we chose the
historical data of the power load, holiday, temperature, humidity, season, light intensity,
precipitation, ground wind speed and relative air pressure as the input variables.

2.1. Similar Day Clustering

We know the power load changes for different days. Here, we wanted to divide
the historical power load data into several clusters so that each cluster of data is more
similar. We did this based on the similarity of the eight characteristic factors (holiday,
temperature, humidity, season, light intensity, precipitation, ground wind speed and
relative air pressure) for each day. In this paper, the K-means clustering algorithm was
used to cluster the historical data.

We chose the data of the eight characteristic factors for each day as a sample. The sam-
ples of historical data were denoted as

X = {x1, x2, ..., xn}.
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Note that each sample xi is a matrix including eight characteristic vectors which are
holiday, temperature, humidity, season, light intensity, precipitation, ground wind speed
and relative air pressure.

Initially, we needed to determine the optimal K for the K-means clustering algorithm.
In this paper, the CH (calinski_harabasz) index was used to evaluate the clustering score.
The higher the score, the better the clustering result. The CH index is the ratio of the
separation degree and the compactness of the data set X. The separation degree of the data
set X is measured by the sum of the squares of the distances between the center points of
various clusters and the center points of the data set X. The compactness is measured by
the sum of the squares of the distances between the points in each cluster and the center
point of the same cluster.

We determined the input and output of the algorithm. These samples and cluster
number K were inputs. The output was the expected K clusters.

We divided the historical samples in X into K clusters through K-means. The process
is as follows [40]:

Step 1. Select initial clustering center. Randomly select K samples in X as initial
clustering centers. We denote the set of these centers as

C = {c1, c2, ..., cK};

Step 2. Cluster division. Calculate the Euclidean distance between a sample in X and
each of K cluster centers according to the following formula. The sample is then put in the
cluster of which the center is nearest to the sample.

Lij =

√√√√ 8

∑
t=1

(xit − cjt)2, 1 ≤ i ≤ n, 1 ≤ j ≤ K, 1 ≤ t ≤ 8,

where xit is the tth element of sample xi and cjt is the tth element of center cj. In this way,
we place every sample into one cluster;

Step 3. Update the cluster center. Calculate the mean value of samples in each cluster
according to the following formula as the updated cluster center as

cj =
∑xj

s∈Cj
xj

s

|Cj|
, 1 ≤ s ≤ |Cj|, 1 ≤ j ≤ K,

where Cj is the set of samples in the jth cluster;
Step 4. Repeat step 2 and step 3 until all cluster centers do not change any longer.

The square error function E calculated according to the following formula will converge to
a fixed value (minimum value).

E =
K

∑
j=1

∑
xj

s∈Cj

L2
sj,

where xj
s is the sth sample in the jth cluster; Cj is the set of samples in the jth cluster; Lsj is

the distance between the sth sample in the jth cluster and the jth cluster center; K is the
number of clusters.

In this way, we divided all the historical data of the eight characteristic factors into
K different clusters. In each cluster, we could arrange the samples in the order of time to
form a time series. For the load data with respect to samples in each cluster, we could also
arrange them with the order of time to form a time series as shown in Figure 1.
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Figure 1. Construct time series of historical load data for each cluster.

Instead of considering the time series consisting of all the load data with respect to
samples in X, we investigated each load time series with respect to these samples in each
cluster, which is much more regular and easier to deal with.

2.2. EEMD Decomposition

For every load time series of each cluster, it is still non-stationary. Hence, we used
EEMD to further decompose it into multiple hierarchically stable IMF (Intrinsic Mode
Function) sub-sequences. The specific process of EEMD decomposition is as follows [21].

Step 1. Set the number of original signal processing as N;
Step 2. Denote the load time series signal for the ith cluster as

Yi(t) = [yi,1, yi,2, yi,3, · · · , yi,Mi ].

Add a noise signal ω(t) with standard normal distribution to Yi(t) to obtain a new
signal Y′i (t) as

Y′i (t) = Yi(t) + ω(t);

Step 3. Through EMD (Empirical Mode Decomposition), decompose the signal Y′i (t) to
obtain all IMF components c1(t), c2(t), · · · , cJ(t) and the residual component r(t) such that

Y′i (t) =
J

∑
j=1

cj(t) + r(t).

Note that J represents the number of IMF components decomposed after adding
white noise.

Step 4. Repeat steps (2) and (3) N times. Note that white noise is added with the same
intensity and different sequences each time. Then obtain N sets of IMF components and
the resident components as

c1
1(t), c1

2(t), · · · , c1
j (t), · · · c1

J (t), r1(t)

c2
1(t), c2

2(t), · · · , c2
j (t), · · · c2

J (t), r2(t)

· · ·

cn
1 (t), cn

2 (t), · · · , cn
j (t), · · · cn

J (t), rn(t)
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· · ·

cN
1 (t), cN

2 (t), · · · , cN
j (t), · · · cN

J (t), rN(t),

where cn
j (t) is the jth IMF component obtained by the nth time and rn(t) is the residual

component obtained by the nth time.
Step 5. Because the mean value of the white noise spectrum is zero, the final IMF

component is the average of the N corresponding IMF components as

cj(t) =
1
N

N

∑
n=1

cn
j (t) j = 1, 2, 3, · · · , J,

and the final resident component is the average of the N residual components as

r(t) =
1
N

N

∑
n=1

rn(t);

Step 6. Existing results show that some IMF components are weakly related to the orig-
inal signal and should be eliminated in order to reduce the adverse effect on the prediction
results. Here, compare the correlation coefficient between the decomposed IMF component
and the original signal with a preset threshold to determine which IMF components should
be eliminated. In order to avoid the small amplitude and real signal being eliminated,
all IMF components are normalized with the original signal. The normalized correlation
coefficient between the jth IMF component and the original signal is calculated as

NCCj =
∑Mi

k=1(yi,k − ȳ)(cj,k − c̄)√
∑Mi

k=1 (yi,k − ȳ)2 ∑Mi
k=1 (cj,k − c̄)2

,

where
cj,k is the value of the kth point in the time series cj;

ȳ = 1
Mi

∑Mi
k=1(yi,k) is the mean value of all yi,k;

c̄ = 1
Mi

∑Mi
k=1(cj,k) is the mean value of all cj,k;

M is the number of points of the original signal and all IMF components for the
ith cluster.

The threshold TH is obtained from the standard deviation of the correlation coefficient as

TH = (
1

J − 1

J

∑
j=1

(NCCj − NCC)2
)1/2,

where NCC = 1
J ∑J

j=1(NCCj) is the mean value of all NCCj;
Step 7. If NCCj > TH, the j-th IMF component is kept. Otherwise, eliminate it. In this

way, we get the final IMF components as

ck1(t), ck2(t), · · · , ckl
(t).

Similarly, we can decompose the load time series signals for other clusters. Note that
each IMF component is a stationary time series signal.

2.3. LSTNet Network

For each IMF component and residual component, we wanted to establish an LSTNet
model for prediction. Note that in each cluster, we have eight characteristic factor time
series. They are also the inputs of these LSTNet models.

LSTNet consists of a nonlinear part and a linear part [19]. The nonlinear part consists
of a CNN layer, an RNN layer and a recurrent-skip layer. The linear part consists of an
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autoregressive linear layer. The model makes use of the advantages of CNN and RNN
at the same time. CNN can extract the short-term local dependency patterns among the
power load data. RNN and the recurrent-skip layer can capture the long-term patterns
and simplify the optimization process based on the periodicity of the power load. Finally,
the traditional autoregressive linear model was added to make the nonlinear deep learning
model more robust to the power load time series. The final LSTNet forecast result was
obtained by superimposing the results of the nonlinear part and the linear part. The LSTNet
model is shown in Figure 2.

Multivariate 

Time Series

Convolutional 

Layer

Fully connected and

 Element-wise Sum Output

Recurrent and 

Recurrent-skip Layer

Linear 

Bypass Autoregressive

Time

Prediction

Figure 2. LSTNet model.

2.4. Load Forecasting

In this paper, the mentioned three methods were combined for ultra short-term power
load forecasting. The ultra short-term power load forecasting method proposed in this
paper takes 15 min as a unit, 16 h (64 data points) of similar day historical data as input,
and outputs the load forecasting results in the next 4 h (16 data points).

As in Figure 3, we adopted the K-means clustering algorithm to divide the historical
days into K clusters based on the historical data of eight characteristic factors. We then
obtained the historical data of the load and the eight characteristic factors for these days
in each cluster. For the time series signal formed with the historical data of load in the
given cluster Ci, we adopted EEMD to decompose it into Ji IMF components. For each IMF
component cp(t), we constructed an LSTNet model for it by training. The IMF component
cp(t) and the time series signal of eight characteristic factors formed with their historical
data in the same cluster Ci were the input data for training. Finally, for each component in
each cluster, we obtained a trained LSTNet model.

The load prediction was then implemented as follows. We first determined which
cluster the forecast day belonged to. We adopted the prediction data of eight characteristic
factors for the forecast day which could be purchased from commercial companies. We
calculated the distance between the prediction data of the eight characteristic factors and
the historical data in each cluster. It belongs to the cluster with the shortest distance. We
then choose the the historical data of the latest 16 h in the same cluster for load prediction.
We decomposed the historical load data of the latest 16 h into a series of IMF components.
Each component and the historical data of the eight characteristic factors in the latest 16 h
were then sent to the corresponding LSTNet model to output the 16 data points for the next
4 h. We then added all the outputs of all the LSTNet models. The sum is the expected load
forecasting results for the next 4 h with an interval of 15 min.
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Figure 3. The process of the proposed load forecasting method.

3. Experimental Verification

The proposed method was verified by a photovoltaic energy storage system, which
is located in the chemical laboratory building of Tsinghua University in Beijing. The real
power load data of the laboratory from 1 August 2021 to 17 March 2022 were used as a
training set (60%), a verification set (20%) and a test set (20%) to construct the forecast
model. The model was applied to the system on 18 March 2022 for load prediction.
The prediction results were used to compare with the real power load data of the
day. This paper shows results of the similar day clustering, EEMD decomposition and
LSTNet model prediction. A comparison experiment was also implemented between
the proposed method and LSTM, CNN-LSTM, CNN-BiLSTM and LSTNet to verify the
effectiveness of the proposed method.

The experiment used MAE and RMSE as error evaluation indexes. MAE represents
the average value of the predicted value deviating from the actual value. MSE represents
the mean value of the square of the error of the predicted value from the actual value. Since
the square leads to dimensional changes, when the deviation becomes large, MSE will be
amplified. In order to eliminate the dimensional influence, the square root of MSE is taken
as RMSE. MAE and RMSE are calculated as follows:

MAE =
1
n

n

∑
i=1
|ŷi − ŷ′i|
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RMSE =

√
1
n

n

∑
i=1

(ŷi − ŷ′i)
2,

where n represents the prediction data points; ŷi represents the normalized actual load
value for the ith prediction point and ŷ′i represents the normalized model predicted load
value for the ith prediction point.

3.1. Model Training

We collected the historical data of power load, holiday, temperature, humidity, sea-
son, light intensity, precipitation, ground wind speed and relative air pressure from
1 August 2021 to 17 March 2022.

Based on the CH index, K-means clustering was performed on the collected daily
characteristic factor data. For different numbers of clusters, the values of the CH index are
shown in Figure 4. We can see that the optimal number of clusters should be five.

Figure 4. The CH values for different numbers of clusters.

We divided the days to be considered into five clusters. After down sampling, five
clusters of similar day historical data with an interval of 15 min were obtained. We denoted
them as K1, K2, K3, K4 and K5.

For each cluster Ki, its load data were decomposed to load sub-sequences with EEMD.
We calculated the correlation coefficient NCCi and the standard deviation TH. We then
eliminated the sub-sequences whose correlation coefficients NCCi were less than the stan-
dard deviation TH.

For example, after EEMD decomposition for K3, eight stationary sub-sequences and
one residual sub-sequence were obtained as shown in Figure 5.
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EEMD_2

EEMD_5

EEMD_6

EEMD_7

EEMD_8

EEMD_9(Residual)

EEMD_3

EEMD_4

EEMD_1

Time

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000

Figure 5. EEMD decomposition for K3.

The correlation coefficients NCCi for each subsequence and TH are shown in Table 2.
Since the correlation coefficients of the 1, 2, and 3 sub-sequences were less than the standard
deviation TH, they were eliminated.

Table 2. The correlation coefficient NCC3 and the standard deviation TH for sub-sequences of K3.

K3 Sub-Sequences 1 2 3 4 5 6 7 8 9

NCC3 0.087 0.141 0.143 0.204 0.270 0.548 0.544 0.318 0.594

TH 0.186

Each similar day historical sub-sequence was put into a different LSTNet network for
training. For example, the remaining six load sub-sequences of K3 were combined with the
characteristic factor sequence of the corresponding time to form six similar day historical
sub-sequences. Six different LSTNet load forecasting sub-models were obtained by training,
respectively. These sub-models forecast the power load for the next 4 h (16 points) with an
interval of 15 min together. The results of the model training are shown in Figure 6.

The evaluation indexes of six LSTNet load forecasting sub-models and the load fore-
casting performance are shown in the following Table 3.

3.2. Load Forecasting

The proposed method was applied to the photovoltaic energy storage system in
Tsinghua University on 18 March 2022. The data of eight characteristic factors for one point
on 18 March 2022 are shown in the following Table 4.

We first calculated the mean distance of the data of the eight characteristic factors on
18 March 2022 with the data of the eight characteristic factors in each cluster and put them
in the cluster with the shortest distance. This belongs to K3. The latest 30 days of data in K3
were used for EEMD decomposition. After EEMD decomposition, the data of the last 16 h
were selected as the input to the six trained LSTNet sub-models to obtain six forecasting
sub-outputs. They were added to form a load forecasting output with 16 points for the next
4 h.
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Load/kW

Time
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000

0

20

40
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Figure 6. Results of model training. Blue is the original data, yellow is the training set, green is the
verification set and red is the test set.

Table 3. The evaluation indexes of model training for load forecasting.

K2 Sub-Sequences Error Index Training Set Verification Set Test Set

EEMD_4 MAE 0.009 0.006 0.007
RMSE 0.015 0.012 0.011

EEMD_5 MAE 0.008 0.005 0.007
RMSE 0.014 0.009 0.012

EEMD_6 MAE 0.008 0.004 0.004
RMSE 0.014 0.007 0.007

EEMD_7 MAE 0.006 0.005 0.004
RMSE 0.010 0.009 0.006

EEMD_8 MAE 0.001 0.002 0.002
RMSE 0.002 0.004 0.003

EEMD_9 MAE 0.005 0.005 0.004
RMSE 0.008 0.006 0.006

K-means_EEMD_LSTNet MAE 0.024 0.016 0.015
RMSE 0.038 0.028 0.026

Table 4. The data of 8 characteristic factors for one point on 18 March 2022, where 0 represents
working days and 1 represents holidays for the factor of holiday; 0, 1, 2 and 3 represent spring,
summer, autumn and winter for the factor of season, respectively.

Time Holiday Temperature
(°C)

Humidity
(%) Season Light Intensity

(W/m2)
Precipitation

(mm/h)
Ground Wind

Speed (m/s)
Relative Air

Pressure (hPa)

2022-03-18
00:00:00 0 −1.226 87.7 0 95.916 0.184 1.607 1014.044

The proposed method outputs the load forecasting results for the next 4 h each time
and updates it every 4 h. Each update needs to add the load and characteristic factor data
of the latest 4 h to the historical data.
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Comparing the load forecasting results with the actual load on 18 March 2022, as shown
in Figure 7, the results show that the load prediction value is very close to the actual load
value at each point.

Load/kW

Time

Figure 7. Comparison between the load forecasting results and the actual load on 18 March 2022.

3.3. Comparison Experiment

In order to verify the effectiveness of our method, we compared it with other
models including LSTM, CNN-LSTM, CNN-BiLSTM and LSTNet. The historical data
from 1 August 2021 to 15 March 2022 were directly put into these models for training.
After training, we obtained corresponding load forecasting models which could be
directly used for load prediction.

The comparison of the prediction indexes is shown in Table 5. It shows that the
performance of the proposed method in this paper is significantly better.

Compared with LSTNet, MAE of K-means-EEMD-LSTNet descends to 0.015 from
0.045 and RMSE descends to 0.026 from 0.070, respectively. Therefore, similar day clustering
and EEMD are helpful for improving the accuracy of load forecasting.

The load prediction results on 18 March 2022 of these models are shown in Figures 8 and 9.
The results show that the load forecasting method combining K-means, EEMD and LSTNet
can effectively improve the accuracy of power load forecasting.

Table 5. The prediction index comparison of LSTM, CNN-LSTM, CNN-BiLSTM, LSTNet and K-
means-EEMD-LSTNet load forecasting models.

Model MAE RMSE

K-means_EEMD_LSTNet 0.015 0.028

LSTNet 0.045 0.070

CNN-BiLSTM 0.087 0.132

CNN-LSTM 0.073 0.117

LSTM 0.091 0.139
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Load/kW

Time

Figure 8. Comparison of predicted results for LSTNet and K-means-EEMD-LSTNet load forecast-
ing models.

Load/kW

Time

Figure 9. Comparison of predicted results for LSTM, CNN-LSTM, CNN-BiLSTM, LSTNet and
K-means-EEMD-LSTNet load forecasting models.

4. Summary and Prospect

In this paper, similar day clustering and EEMD decomposition were proposed to
combine with LSTNet for ultra short-term power load forecasting. Since the similar day and
EEMD decomposition can decompose the original non-stationary historical data sequence
into stationary sub-sequences, which is very suitable for LSTNet, the performance of load
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prediction has been improved significantly. As shown in the comparison experiment,
the proposed method improves the accuracy of power load forecasting effectively.

In the proposed method, the data of the eight characteristic factors for the day to be
predicted are needed. However, they cannot be directly obtained and what we can acquire
is their prediction values. One possible work in the future is to determine the type of the
next day using the data of the past days.
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