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Abstract: Many repeated manual feature adjustments and much heuristic parameter tuning are
required during the debugging of machine learning (ML)-based transient stability assessment (TSA)
of power systems. Furthermore, the results produced by ML-based TSA are often not explainable.
This paper handles both the automation and interpretability issues of ML-based TSA. An auto-
mated machine learning (AutoML) scheme is proposed which consists of auto-feature selection,
CatBoost, Bayesian optimization, and performance evaluation. CatBoost, as a new ensemble ML
method, is implemented to achieve fast, scalable, and high performance for online TSA. To enable
faster deployment and reduce the heavy dependence on human expertise, auto-feature selection
and Bayesian optimization, respectively, are introduced to automatically determine the best input
features and optimal hyperparameters. Furthermore, to help operators understand the prediction of
stable/unstable TSA, an interpretability analysis based on the Shapley additive explanation (SHAP),
is embedded into both offline and online phases of the AutoML framework. Test results on IEEE
39-bus system, IEEE 118-bus system, and a practical large-scale power system, demonstrate that the
proposed approach achieves more accurate and certain appropriate trust solutions while saving a
substantial amount of time in comparison to other methods.

Keywords: transient stability; automated machine learning; interpretability; Bayesian optimization;
SHAP; CatBoost; PMU

1. Introduction

With the ever-increasing penetration of uncertain renewable generation and bulk
HVDC infeed into power systems, a considerable number of coal-fired synchronous gener-
ation units are being displaced [1]. The dynamic characteristics of modern hybrid AC/DC
power systems become increasingly complicated, which have imposed unprecedented
challenges on transient stability assessment (TSA) in power system planning and operation.
A reduction in system inertia and insufficient dynamic grid support are the main factors
that could negatively affect the transient response of power systems [2]. The transient
stability of power systems is deteriorated by the integration of large amounts of uncertain
and intermittent renewable generation [3].

Currently, commonly used TSA tools rely on analytical model-based methods, such as
time-domain simulation (TDS) and direct methods [4]. TDS describes the transient response
of a power system with a set of high-dimensional nonlinear differential-algebraic equations,
and uses numerical integration methods to solve them. TDS is often considered the most
accurate method available for TSA. However, the intensively computational burden for
massive operation scenarios and credible contingencies make it intractable for online
applications. From the energy point of view, direct methods evaluate transient stability via
transient energy function (TEF) [5], extended equal area criterion (EEAC) [6,7], trajectory
analysis [8,9], etc. However, due to the model simplifications required, direct methods
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have major drawbacks of poor adaptability and conservative results when employed on
practical large-scale power systems.

Nowadays, with widespread deployed phasor measurement units (PMU) in power
systems, wide area measurement system (WAMS) and synchronous system measurement
data are available. Because the traditional TSA methods cannot meet the needs of real-time
TSA, it is urgent to develop a new data-driven scheme to support online TSA, i.e., making
fast and accurate evaluation decisions based on the real-time power system operating status
accessed from PMU measurements.

Owing to the rapid advancement of artificial intelligence (AI) techniques, it has been
identified that machine learning (ML) can be used to implement online TSA. Over the past
few years, the use of ML-based methods for TSA has been extensively explored, such as
long short-term memory (LSTM) [10], extreme learning machine (ELM) [11], convolutional
neural network (CNN) [12,13], decision tree (DT) [14], and hybrid ensemble learning [15].
A support vector machine (SVM)-based imbalanced correction method is proposed to
address the problem that unstable samples rarely appear in practical systems giving rise to
imbalanced samples [16]. To assess the transient stability of power systems by improving
classification accuracy, an artificial intelligence method based on sparse dictionary learning
is applied to transient stability assessment [17]. Because of the problem that differentiating
between short-term voltage instability and transient rotor angle instability is not an easy
task, a method based on graph attention networks (GATs) is proposed to solve it [18].
In [19], effective transient stability prediction in a data-driven manner is achieved by a
transient stability assessment method which is based on high expressibility and low-depth
quantum circuit.

Compared with conventional methods, ML-based methods do not need to model the
power system. Instead, they use predetermined transient stability datasets to derive the
relationship between system dynamic response and the corresponding stability conditions.
New unlearnt cases can be assessed with a minimum of computational effort with the
relationship established [10]. Therefore, ML-based methods are advantageous for real-time
fast TSA, lower data requirement, and the enhanced capability of knowledge discovery.

Despite ML-based TSA approaches having achieved certain developments, it is still
difficult to directly apply them in operational planning and dispatch of practical power
systems. The main reasons are two-fold:

(i) To realize successful application, human experts are heavily involved in the four steps
of ML, i.e., feature engineering, model selection, hyperparameter optimization, and
performance evaluation, especially hyperparameter optimization [20]. Existing work
on ML-based TSA assumes that the predefined input features and parameters of the
trained model are always optimal for application. However, this assumption may
not be true for power systems due to many practical issues, such as model updating,
topology change, and variation of operating conditions. Since human experts are usu-
ally limited, to improve the accuracy and adaptability, many repeated manual feature
adjustments and much heuristic parameter tuning are required during the debugging
of ML-based TSA. This is highly tedious, inefficient, and time-consuming [21].

(ii) On the other hand, the state-of-the-art ML-based TSA approaches have relatively poor
transparency, because their models establish the mapping capability through black-
box structures, such as deep learning and ensemble learning algorithms [12,13,15].
It is difficult for power system operators to interpret the behaviors of complex ML
models and understand how particular decisions are made by these models. Hence,
the uninterpretable results produced by ML-based TSA are often not actionable. This
lack of interpretability has thus limited the use of ML-based TSA approaches in
power industries.

In order to reduce the human effort needed for applying ML, this paper proposes an
automated machine learning (AutoML)-based TSA approach. AutoML is naturally the
intersection of automation and machine learning, aiming to achieve accurate decisions in a
data-driven, automated, and objective manner [22]. In AutoML, feature engineering, model
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learning, hyperparameter optimization, and performance evaluation can all be realized by
computer programs, which makes ML much more accessible for online TSA. Furthermore,
to make the AutoML-based method produce interpretable TSA predictions, we introduce
Shapley additive explanation (SHAP) [23] into AutoML to explain why a certain prediction
is made for a given case. Therefore, the proposed approach can be both automated and
explainable for online use.

This work handles both the automation and interpretability issues of ML-based TSA.
The main contributions of this paper are summarized as follows:

(i) An AutoML scheme is designed for online TSA, which consists of auto-feature selec-
tion, CatBoost, Bayesian optimization, and performance evaluation. To ensure the
best performance of the CatBoost-based ensemble learning, auto-feature selection
and Bayesian optimization are introduced to automatically determine the best input
features and optimal hyperparameters, respectively. By leveraging the adopted tech-
niques, performance improvement is achieved while saving a substantial amount of
time for manual feature adjustments and heuristic parameter tuning.

(ii) To address the interpretability issue, this paper introduces SHAP to interpret the
outputs of the proposed AutoML-based TSA. The impact of each input feature on
AutoML’s prediction is represented using SHAP values. The distribution of the SHAP
values about the feature with a significant impact on the obtained prediction can
provide additional insights into the decision interpretation.

The proposed interpretable AutoML-based TSA is tested on a provincial power system
in China, in addition to two IEEE systems. Simulation results compared to other methods
demonstrate the effectiveness and superiority of the proposed approach.

2. Automated Machine Learning

To enable faster deployment of ML-based TSA and reduce the heavy dependence
on human experts, an AutoML scheme is proposed to achieve real-time evaluation. The
proposed AutoML (shown in Figure 1) consists of auto-feature selection, CatBoost, Bayesian
optimization, and performance evaluation. Firstly, by combining the feature importance
and the corresponding threshold, input features with a high impact on the output are
automatically selected from raw input characteristics. Then, to mine the mapping rela-
tionship between the input characteristics and the postfault transient stability statuses,
CatBoost is introduced as a TSA classifier, which avoids the modeling of complex power
systems. Meanwhile, Bayesian optimization is applied to determine the hyperparameters
of the CatBoost-based learning model automatically. Finally, evaluation indices are built to
evaluate the effectiveness of the AutoML model.
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Figure 1. The scheme of AutoML in TSA.

2.1. Auto-Feature Selection

The dimensionality of the original input dataset increases dramatically with the system
scale expansion, which could result in the dimension explosion issue. On the other hand,
the use of input features that are effective can enable the ML model to learn faster and
perform better in classification. Thus, we utilize an auto-feature selection technique to
strengthen the mapping relationship between input features and transient stability statuses.
To estimate the importance of each input feature, the split information during the offline
training of CatBoost is fully made use of via calculation (1) [24]. To automatically filter
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useless features, a threshold value p is defined. Only features with impact factor f IF larger
than p are selected as input data [25].

fIF = ∑
(

v1 −
v1 · c1 + v2 · c2

c1 + c2

)2
· c1 +

(
v2 −

v1 · c1 + v2 · c2

c1 + c2

)2
· c2 (1)

where c1 and c2 represent the total weight of objects in the left and right leaves, respectively;
v1 and v2 represent the formula value in the left and right leaves, respectively.

2.2. CatBoost

CatBoost is a new ensemble ML method based on gradient boosting over decision
trees [26]. With advantages of improved accuracy, categorical features support, multi-GPU
support for training, and reduced overfitting, CatBoost has shown fast, scalable, and high
performance for classification, regression, and other machine learning tasks [27].

Given a dataset D = {(xi, yi)}m
i=1, where xi is the input vector of sample i, yi denotes

the TSA result of credible contingency i, m denotes the number of samples. A series of
decision tree models are built up based on D, written as [26]:

h(x) = ∑J
j=1bj I{x∈Rj} (2)

where I( · ) is an indicator function; Rj is disjoint regions corresponding to leaves of the tree;
J is the number of disjoint regions; bj is the predicted value of Rj.

In the gradient boosting procedure, a sequence of approximations (Ft) is built itera-
tively in a greedy manner [26]:

Ft = Ft−1 + αht (3)

where ht is a tree in the t-th iteration process; α is the step size.
The loss function of CatBoost is given by [26]:

ht = argminh∈HE
(
−τt(x, y)− h(x)

)2 (4)

where τ is the gradient value; The objective of a learning task is to train a series of functions
Ft to minimize the loss function. After T iterations, the final model can be obtained:

F(x) = ∑T
t=1ht (5)

To overcome the residual shift caused by the target leakage issue, ordered boosting [26]
is implemented in CatBoost. The principle of the ordered boosting has been described
in [28].

2.3. Bayesian Optimization

The most fundamental objective in AutoML is to set hyperparameters to optimize the
overall performance automatically. This paper introduces Bayesian optimization to realize
automatic hyperparameter tuning of the CatBoost-based learning model.

Bayesian optimization is an emerging optimization framework for the global optimiza-
tion of expensive black-box functions [29]. Acquisition function and probabilistic surrogate
model are its two key components [30].

Bayesian optimization is used to obtain the global maximum value X* of function
f (λ) in candidate hyperparameter set χ, and the corresponding optimal combination of
CatBoost’s hyperparameters is determined subsequently [31]:

λ∗ = argλ∈χmax f (λ) (6)
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Gaussian process (GP) is employed as the prior function to model the target function
due to its closed-form computability and well-calibrated uncertainty estimates [30]. In GP,
the combination of finite samples can be represented by [32]:

f (λ) ∼ GP
(
m(λ), k

(
λ, λ′

))
(7)

k
(
λ, λ′

)
= exp

(
− 1

2θ
‖λ− λ′‖2

)
(8)

where m(λ) is the mean function of λ; k(λ, λ’) is the covariance function of λ; θ is the
length-scale parameter.

Having observed data {λ1:t, f 1:t}, the joint distribution of observed data f 1:t and
prediction f t+1 = f (λt+1) agrees with the multivariate Gaussian distribution as shown in
Equation (9): [

f1:t
ft+1

]
∼ N

(
0,
[

K k
kT k(λt+1, λt+1)

])
(9)

where k = [k(λt+1, λ1) k(λt+1, λ2) . . . k(λt+1, λt)]; K is a covariance matrix; N( · ) denotes the
joint Gaussian distribution.

The predictive distribution P( · ) at a new sampling point λt+1 can be expressed by:

P( ft+1|λt+1, λ1:t, f1:t ) = N
(

µt(λt+1), σt
2(λt+1)

)
(10)

where µt(λt+1) and σt
2(λt+1) denote the predictive mean and variance, respectively.

The acquisition function of Bayesian optimization is the probability of improvement
(POI):

PI(λ) = φ

(
u(λ)− f (λ+)− ε

δ(λ)

)
(11)

where φ( · ) is the normal cumulative distribution function; ε is a trade-off parameter;
function δ(λ) is the standard deviation. By maximizing the acquisition function, the most
prospective sampling points for the next search are computed.

2.4. Evaluation Indices

To reasonably evaluate the effectiveness of the proposed AutoML, Accuracy and Recall
are used as evaluation indices. Accuracy and Recall represent the ability of AutoML to
accurately identify all and unstable samples, respectively [33].

Accuracy =
f11 + f00

f11 + f00 + f01 + f10
(12)

Recall =
f00

f00 + f01
(13)

where f 11 and f 00 are the number of stable instances and unstable instances correctly
classified, respectively; f 10 and f 01 are the number of stable instances and unstable instances
falsely classified, respectively.

AUC, an important metric for measuring the classification performance under imbal-
anced conditions [34], is also used for the performance evaluation of the AutoML:

AUC =
1

n+n−∑n+

i=1∑n−
j=1 I

(
f
(

x+i
)
> f

(
x−j

))
(14)

where n+ and n− are the number of instances predicted as stable and unstable, respectively;
xi

+ and xj
− are, respectively, the instance predicted as stable and unstable; f (x) is the

AutoML classifier; I(·) is the indicator function.
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3. Proposed AutoML-Based TSA with Interpretability Analysis

This paper establishes a nonlinear relationship between the system dynamic response
and the transient stability using the proposed AutoML as the assessment model. The
offline training stage and the online application stage form the entire framework of the
proposed method. To help operators understand why a stable/unstable status prediction is
made, interpretability analysis is embedded into both the offline and online stages of the
AutoML framework, which helps to engender appropriate trust in the AutoML-based TSA
predictions. Figure 2 provides an illustration of the flowchart of the proposed interpretable
AutoML-based TSA method.
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3.1. Offline Training

The following are the main steps of the offline training stage:

(1) Historical PMU data and fault recordings are used as the dataset for offline training.
When historical data is insufficient, simulation can be conducted to obtain a certain
amount of dataset. The postfault system stability can be determined by the transient
stability index (TSI) [16]:

η = (360◦ − |∆δ|max)/(360◦ + |∆δ|max) (15)

where |∆δ|max denotes the absolute value of the maximum angle deviation of any two
generators. The system is considered stable only when η > 0. Combining historical
and offline simulation data, a sample dataset with diversity can be obtained.

(2) The comprehensive dataset is divided into a training set and a validation set to test
the performance of the AutoML-based TSA.

(3) During the offline training process of CatBoost, the individual impact factor f IF of
each original input feature (i.e., active and reactive power of transmission lines, phase
angle, voltage amplitude [11]) is calculated by Equation (1). Then, critical features
are automatically selected as input features based on impact factor f IF and threshold
value p.

(4) Bayesian optimization is used to automatically search the optimal hyperparameters of
the CatBoost learning model. Because TSA is a non-equilibrium classification problem,
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i.e., unstable samples rarely appear in practice, the AutoML’s capability to recognize
transient instability may be greatly affected if only one single indicator (i.e., accuracy)
is used as the objective. To obtain better performance of the CatBoost learning model,
we introduce multiple indices (i.e., Accuracy, Recall, AUC) into the objective function:

Maximize w1 · Accuracy + w2 · Recall + w3 · AUC (16)

pimin ≤ pi ≤ pimax (17)

where wj is the weight of the j-th evaluation index; p1, p2, p3, and p4 represent the
parameters of CatBoost, i.e., learning rate, l2 leaf regularization (l2_leaf_reg), the maxi-
mum depth of trees (max_depth), and the number of estimators (n_estimators). As the
unstable status judged to be stable will cause cascading failure or even widespread
blackout, the capability to accurately identify unstable samples (Recall) needs more
attention in the hyperparameter optimization. Hence, the weight of Recall in the objec-
tive function (16) should be set larger than those of Accuracy and AUC. Through the
GP and POI mechanism, Bayesian optimization iteratively validates hyperparameter
combinations to maximize the objective function with multiple indices.

3.2. Online Application

When the AutoML-based TSA is well trained, it can be implemented online to predict
system transient stability. Once a fault is detected, the critical features acquired from
real-time PMU measurements are fed into the learned AutoML to perform TSA. If the
system is insecure, operators will receive an early warning, and then they can quickly
take emergency control actions to maintain the stability of the system. To improve the
adaptability of AutoML, evaluated instances with accurate TSA assessment can be fed back
to the offline stage to enrich the training database.

3.3. Interpretability Analysis

The increasing tension between the accuracy and interpretability of ML-based pre-
dictions has motivated the development of approaches that help users understand the
predictions. SHAP [18] is a recently proposed novel unified framework for interpreting
model predictions. Leveraging SHAP, the proposed AutoML’s prediction can be explained
as a sum of SHAP values corresponding to each feature. As shown in Figure 2, the original
AutoML-based TSA model is approximated using an explanation model g, which is defined
as a linear function of binary variables [23]:

g
(
z′
)
= φ0 + ∑M

i=1φizi
′ (18)

where zi
′ represents a feature being observed (zi

′ = 1) or unobserved (zi
′ = 0); M is the num-

ber of input features; SHAP values φi (feature attribution values), explaining a prediction f,
can be computed by [23]:

φi = ∑
s⊆N\{i}

|S|!(M− |S| − 1)!
M!

∆i(S) (19)

∆i(S) = fx(S ∪ {i})− fx(S) (20)

As shown in Equation (19), SHAP values are evaluated by combining the conditional
expectation E[f (x)|xS] with the classic Shapley values, where fx(x) = E[f (x)|xS] corresponds
to the desired outcome of the function conditioned on a subset S; S is a subset of N with
non-zero indices in z′; N is the set of all input features; ∆i(S) denotes the contribution of
feature i to S.
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Specifically, the attribution values of the explanation model g match the AutoML-based
TSA model for a specific input, which can be represented as [23]:

f (x) = φ0 + ∑M
i=1φi (21)

where φ0(f,x) = E[f (x)] is the desired value of the AutoML-based TSA model over the
transient stability dataset.

Aided by the explanation model g and SHAP values, the impacts of each input feature
on the transient stability prediction are evaluated. Then, the AutoML-based TSA prediction
can be explained based on the summation of SHAP values. Therefore, features with
significant impact on the stability prediction can be easily identified by comparing their
SHAP values. The process of the interpretability analysis of the AutoML-based TSA is
illustrated in Algorithm 1.

Algorithm 1. The process of interpretability analysis

Input: f (x)—Trained AutoML model; X_train—Trained data; X_e—A stable or unstable instance
that needs to be explained.
Output: SHAP values for each input system features
1: Train an explainer through (f (x), X_train)
2: for each i ∈ input features(X_train) do
3: Use EXPVALUE method to estimate E[f (x)|xS]
4: procedure EXPVALUE(x, S, tree)
5: procedure G(j, w)
6: if vj 6= internal then
7: return w · vj
8: else
9: if dj ε S then
10: return G(aj, w) if xdj ≤ tj else G(bj, w)
11: else
12: return G(aj, wraj/rj) + G(bj, wrbj/rj)
13: return G(1,1)
14: end procedure
15: end procedure
14: Calculating attribute values φ i by (19)
15: Establishing an explanation model g by (18)
16: return g
17: Interpretability for X_e
18: for each i ∈ input system features(X_e) do
19: SHAP values [i]← explainer.shapvalues(X_e, i)
20: return SHAP values [i]
21: A certain predicted status of the power system can be interpreted based on the sum of SHAP
values [i].

4. Case Study

To demonstrate the effectiveness of the proposed approach, two IEEE test systems
(IEEE 39-bus and 118-bus systems) and a large-scale provincial power system (PPG) in
China were utilized for simulation. The IEEE 39-bus system has 39 buses, 10 genera-
tors, 19 loads, and 46 branches. The IEEE 118-bus system has 118 buses, 54 thermal units,
91 loads, and 186 branches. The practical grid has 1154 buses, 208 generators, and 451 loads
in 2020. Furthermore, ten HVDC links are fed out to deliver electric power to other provin-
cial systems. PSD-BPA software is used for data generation. The proposed interpretable
AutoML-based TSA was deployed on the Python 3.7 platform. The SHAP values of AutoML
models were calculated and visualized with the help of a python-based SHAP library [35].
All testing was performed on a personal computer with Intel Core i5-10400F 2.9 GHz CPU,
16.0 GB RAM.
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4.1. Database Generation

TDS was implemented on the PSD-BPA software to generate input dataset. As for the
IEEE 39-bus and IEEE 118-bus systems, ten load levels (75, 80, 85, 90, 95, 100, 105, 110, 115,
120%) were considered. All three-phase to ground faults at any bus were considered in
the contingency set, and the faults were assumed occurring on each transmission line at
four locations (at 0, 25, 50, and 70% of the length); Each fault was set to start at 1.0 s and
being cleared at two cases: 1.1 s and 1.2 s. The duration of each simulation was 20 s. For
the practical grid, four operation modes were considered, all three-phase to ground faults
and HVDC blockings were analyzed. The numbers of stable and unstable instances in each
dataset of the three test systems are listed in Table 1. For each test system, the dataset was
split into a training sample set and a testing sample set in a ratio of 8:2.

Table 1. Database of the three test systems.

System No. of
Instances

Unstable
Instances

Stable
Instances

Raw
Features

Selected
Features

39-bus 3668 973 2695 170 36
118-bus 6781 1394 5387 586 37

PPG 9495 2705 7920 828 45

4.2. The Selection of Important Features

Necessary features were automatically selected by the AutoML using Equation (1),
in which the threshold p is set at 0.7. The fifth and sixth columns of Table 1 show the
dimensions of raw features and selected important features. One can observe that for
the IEEE 39-bus system, the dimensions of raw features were 170, but most of them
were useless, which posed great computational burden. By leveraging the auto-feature
selection mechanism, only 36-dimensional features were retained. Similarly, dimensions of
selected important input features for the IEEE 118-bus system and the practical grid were 37
(6.3% of the raw features) and 45 (5.4% of the raw features), respectively. Consequently, the
dimension explosion issue when applying AutoML to large-scale systems could be avoided.

4.3. Bayesian Optimization

The effectiveness of utilizing Bayesian optimization (BO) in the AutoML to find
optimal hyperparameters was compared with the other two traditional methods, which
were grid search (GS) and randomized search (RS). All tests were carried out using the
same training and testing dataset. The weights of Accuracy, Recall, and AUC in the objective
function of BO were set at 0.25, 0.5 and 0.25, respectively.

The hyperparameter tuning process of RS and BO on the IEEE 39-bus system is
shown in Figure 3. To visualize the process of the sequential selection of hyperparameters,
the impact of the combination of any two hyperparameters (learning rate, l2_leaf_reg,
and n_estimators) on the evaluation indices (Accuracy, Recall, AUC) was analyzed. The
background of Figure 3a–d are colored based on the values of Accuracy, Recall, and AUC,
respectively. It can be seen that hyperparameters determined by RS were irregularly dis-
tributed in Figure 3a–d, which results in the optimal hyperparameters being easily skipped.
BO determines hyperparameters through GP and POI, hence it is more persuasive. Com-
pared with RS, there were more hyperparameters determined by BO located in the optimal
space. According to Figure 3, the appropriate search space of learning rate, l2_leaf_reg, and
n_estimators could be set at [0.01, 0.3], [1, 10], and [40, 120], respectively.

The CPU time and evaluation indices produced by BO, GS, and RS optimized CatBoost
are compared and shown in Table 2. For the IEEE 39-bus system, the Bayesian optimized
CatBoost had an Accuracy of 98.77%, Recall of 98.44%, and AUC of 98.67%, which was
0.41, 1.57 and 1.04% higher than the RS optimized CatBoost, respectively. GS traverses all
parameter combinations to find the best hyperparameters, which makes it easy to encounter
the combination explosion issue. Although evaluation indices obtained by GS are closer to
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those obtained by BO, it is extremely time-consuming to run GS (the total time required is
25 h). The CPU time (93.1 s) of performing BO was only 0.1% of the GS. By mining the rules
on transient data, BO can efficiently find optimal hyperparameters, which saves substantial
amounts of time and avoids the inefficiency of heuristic parameter tuning.
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Table 2. Performance comparison of different parameter tuning methods.

Method System Tuning Time Accuracy/% Recall/% AUC/%

BO 39-bus 93.1 s 98.77 98.44 98.67
GS 39-bus 25 h 98.36 97.39 97.86
RS 39-bus 214.7 s 98.36 96.87 97.63
BO 118-bus 102.3 s 97.19 96.80 97.08
GS 118-bus 25 h 97.13 96.09 96.74
RS 118-bus 220.3 s 96.46 96.08 96.32
BO PPG 114.1 s 97.85 96.22 97.23
GS PPG 26 h 97.51 95.41 96.84
RS PPG 256.8 s 97.18 94.71 96.39

Tests concerning the effectiveness of BO were also performed on the IEEE 118-bus
system and the practical grid, and the results are provided in Figure 4 and Table 2 (rows 4–9).
As shown in Table 2, the CPU time of performing BO was significantly lower than that of
GS and BS, while the CatBoost can achieve the best performance based on hyperparameters
found by BO. Figure 4 shows that the highest range of the AUC index achieved by BO
optimized CatBoost was [96%, 97.5%] for both the 118-bus system and the practical grid.
The space of this range produced by BO (drawn with light color) is quite large in Figure 4a,b,
revealing that BO-optimized CatBoost can accurately classify TSA statuses when applied
to large-scale power systems.
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4.4. Comparison of the Classifiers’ Performance

The proposed AutoML-based TSA has been compared with some other ML methods,
such as LSTM, XGBoost, RF, and DT. Table 3 shows the evaluation indices obtained by the
five methods in all test systems. For all three test systems, the proposed AutoML-based
TSA had the highest Accuracy, Recall, and AUC in comparison with the other four ML-
based TSA methods. For example, for the practical power system (Yunan power grid),
AutoML achieved an Accuracy of 97.77%, Recall of 96.22%, and AUC of 97.23%. Note
that, for the three systems, the Recall of the proposed AutoML-based TSA were all over
96%, demonstrating that AutoML can accurately identify the unstable operating status
immediately following a fault. Because of the simple structure, the DT-based TSA method
learns restrictedly and had the lowest level of Accuracy, Recall, and AUC for the three
systems. XGBoost and LSTM-based TSA approaches have better performance than DT, but
evaluation indices obtained by them are all lower than the proposed AutoML-based TSA.
As the scale of the system expanded, the Recall index produced by LSTM, XGBoost, RF, and
DT-based TSA decreased significantly. Taking the practical grid as an example, the Recall
index produced by LSTM and XGBoost were around 93%, while RF and DT both had a
Recall lower than 90%. Hence, the ability of these methods to identify unstable samples was
not satisfactory when applied to large-scale systems. The proposed AutoML-based TSA
still maintained good performance. The averages of the three evaluation indices produced
by AutoML on the two large systems exceeded 97%.

Table 3. Results obtained by different methods on the three power systems.

Method System Accuracy/% Recall/% AUC/%

AutoML 39-bus 98.77 98.44 98.67
LSTM 39-bus 97.57 95.92 97.04

XGBoost 39-bus 97.68 95.83 98.09
RF 39-bus 96.19 94.55 95.71
DT 39-bus 95.43 91.51 94.39

AutoML 118-bus 97.20 96.80 97.05
LSTM 118-bus 95.58 93.23 94.71

XGBoost 118-bus 95.51 95.30 95.45
RF 118-bus 94.85 94.67 94.78
DT 118-bus 93.37 90.75 92.40

AutoML PPG 97.85 96.22 97.23
LSTM PPG 96.57 92.94 95.42

XGBoost PPG 97.37 93.47 96.13
RF PPG 95.54 89.06 93.47
DT PPG 94.23 89.94 92.87

Figure 5 shows the 2D visualization of the predicted results obtained by AutoML,
XGBoost, and RF-based TSA methods on the IEEE 39-bus system. The background of
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Figure 5 is colored based on the probabilistic prediction of these methods. In the evaluation
results of CatBoost-based AutoML, the pink background of isolated unstable samples is
more obvious, indicating that compared with XGBoost and RF, the proposed approach
can better distinguish isolated unstable samples, which is helpful to avoid misjudging the
unstable operation state of the system after a disturbance accident.
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Figure 5. Visualization of prediction results. Red square in the figure represents the isolated unsta-
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In real-time, the training time and testing time of ML-based TSA tools are of great 
concern. Table 4 compares the CPU time of AutoML and TDS on the three test systems. 
The proposed AutoML-based TSA is computationally efficient for both offline training 
and online testing. Furthermore, the effect of system scale on the model training is not 
significant, because redundant features are eliminated by using the AutoML. As for TDS, 
the excessive computational time required prevents its online use. Specifically, the CPU 
time of TDS is 17.7 h on the practical grid. However, the proposed AutoML-based TSA 
only needs 2.27 s, which is only 0.003% of that required by TDS. Thus, AutoML is more 
suitable for online TSA for large-scale power systems, which can help to save more time 
for subsequent control actions.  

Figure 5. Visualization of prediction results. Red square in the figure represents the isolated unstable
samples.

In real-time, the training time and testing time of ML-based TSA tools are of great
concern. Table 4 compares the CPU time of AutoML and TDS on the three test systems.
The proposed AutoML-based TSA is computationally efficient for both offline training
and online testing. Furthermore, the effect of system scale on the model training is not
significant, because redundant features are eliminated by using the AutoML. As for TDS,
the excessive computational time required prevents its online use. Specifically, the CPU
time of TDS is 17.7 h on the practical grid. However, the proposed AutoML-based TSA
only needs 2.27 s, which is only 0.003% of that required by TDS. Thus, AutoML is more
suitable for online TSA for large-scale power systems, which can help to save more time for
subsequent control actions.

Table 4. Solution time on the three power systems.

Systems Training Time of AutoML Testing Time of AutoML Time of TDS

39-bus system 1.18 s 0.02 s 0.69 h
118-bus system 2.16 s 0.02 s 1.13 h

PPG 2.27 s 0.01 s 17.71 h

4.5. Interpretability Analysis

SHAP was embedded into AutoML to interpret the behaviors of the AutoML-based
TSA method and understand how a particular decision (the system will be transient
stable/unstable) for a given case is made.

For clarity, transient stability prediction following a three-phase short-circuit fault
occurring at line 2-30 in the IEEE-39 bus system was taken as an example for interpretability
analysis. The fault lasted 0.1 s, and the system became unstable after clearing the fault.
Figure 6 explains why the system is classified as instability by the AutoML-based TSA
method based on SHAP values. The red-colored features in Figure 6 pushed the risk of
transient instability lower, while the blue-colored features pushed the risk higher. Because
the influence of the blue-colored features on the output prediction of the contingency was
higher, AutoML predicted that the system would lose transient stability after the fault. As
shown in Figure 6, input features θ3, θ2, P2-30, and Q2-25 had larger SHAP values, hence
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they had much more impact on the obtained prediction. These features were all directed to
bus 2, which was consistent with the fault.
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To further interpret the effect of these features on the prediction, the SHAP dependence
plots were used. Figure 7a–d show how SHAP values varied as a function of features θ3,
θ2, P2-30, and Q2-25, respectively. The color corresponds to the values of the feature from
low (blue) to high (red). The lower the SHAP values were, the higher risk of transient
instability. Coloring each dot by θ3 and θ2 revealed that transient instability was more
alarming when their values were low. When the value of P2-30 belonged to the normal
range ([−220, −110]) affected by the active power of generator G32, the risk of transient
instability was low. Furthermore, the system will lose stability when the value of Q2-30 is
higher than 70. Consequently, the values of θ3, θ2, P2-30, and Q2-25 were all in the range
where the risk of transient instability was high. Therefore, the unstable result obtained by
the AutoML-based TSA was reasonable and credible.
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Figure 8 explains why the practical grid was considered unstable after a specific fault,
i.e., lines 37 and 38 were disconnected following the three-phase short-circuit fault (N-2).
Since lines 37 and 38 were disconnected after the fault, the power flow values of P37 and
P38 became 0. Figure 8 reveals that P37 and P38 significantly pushed the risk of instability
higher, which reflected the credibility of the explanation model. Prior to the fault, the
values of P39 and P40 were −278.56 and −282.91, respectively, whereas, the values after the
fault for P39 and P40 were −774.1 (277% of the raw value) and −802.4 (283% of the raw
value), respectively. The values of P39 and P40 changed significantly after the fault was
removed. It can be inferred that this fault caused an enormous impact on the surrounding
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lines. Due to the seriousness of the fault, AutoML predicted that the practical grid was
unstable after the fault.
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Figure 9 shows the distribution of SHAP values about P37 and P38. As we can see from
Figure 9, the risk of transient instability is high when the value of P37 or P38 is 0, reflecting
the vulnerability of the corresponding lines.
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5. Conclusions

An automated ML scheme (AutoML) was proposed to realize power system online
TSA. Under this framework, auto-feature selection and Bayesian optimization were re-
spectively introduced to automatically determine the crucial input features and optimal
hyperparameters of the CatBoost-based TSA learning model. Multiple evaluation indices
were considered to improve the performance of Bayesian optimization. By leveraging these
techniques, faster deployment of the ML-based TSA could be achieved, and the dependence
on human expertise is significantly reduced.

To help operators understand why a stable/unstable status prediction is made, in-
terpretability analysis was embedded into both offline and online stages of the AutoML
framework. By leveraging the SHAP technique, the proposed AutoML’s TSA prediction can
be explained as a sum of SHAP values corresponding to each input feature. Furthermore,
additional insight into the independent effects of important features can be gained by
analyzing the distribution of SHAP values.

Test results showed that the evaluation indices obtained by the proposed AutoML-
based TSA in all test systems were the best over the other methods, and appropriate trust in
the AutoML-based TSA predictions can be achieved. Furthermore, the proposed AutoML-
based TSA saves a great deal of solution time and is applicable to large-scale power systems.
In future work, an in-depth analysis of the impact of RES penetration on the transient
stability of the power system may be conducted.
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