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Abstract: The use of digital twins in smart power systems at the stages of the life cycle is promising.
The dynamics of such systems (smart energy renewable sources, smart energy hydrogen systems, etc.),
are determined mainly by the physical and chemical processes occurring inside the systems. The
basis for developing digital twins is reliable mathematical models of the systems. In the present
paper, the authors present a method of energy processes mathematical prototyping—an overall
approach to modeling processes of various physical and chemical natures based on modern non-
equilibrium thermodynamics, mechanics, and electrodynamics. Controlled parameters are connected
with measured ones by developing a theoretically correct system of process dynamics equations
with accuracy up to the experimentally studied properties of substances and processes. Subsequent
transformation into particular mathematical models of a specific class of systems makes this approach
widely applicable. The properties of substances and processes are given in the form of functional
dependencies on the state of the system up to experimentally determined constant coefficients. The
authors consider algorithms for identifying the constant coefficients of the functions of substances
and processes properties, which complement the proposed unified approach of designing models of
various physical and chemical nature systems.

Keywords: mathematical prototyping method; energy processes; systems identification; symbolic
regression; digital twins

1. Introduction

Utilization of renewable energy sources is primarily associated with the requirements
of controlling a distributed system with unstable parameters and implies the need to
automate the management of such systems. The complexity of the system’s management
appears from the flow of nonlinear physical and chemical processes in the system, which
significantly depend not only on operating modes but also on external conditions (such
as ambient temperature, wind, and solar insolation). Nowadays, promising solutions
are smart control systems based on the creation and implementation of digital twins, in
which the parameters of the objects are monitored, and their mathematical models are
reconstructed. The basis for digital twin development is reliable mathematical models of
the systems.

For the functioning of digital twins, it is necessary to use mathematical models in the
form of dependencies of the controlled parameters on the measured ones. The measured
parameters are input to the model, and the controlled parameters are returned at the
output, according to which practical decisions are made [1–9]. In particular, probabilistic
characteristics can be obtained at the output, for example, in problems related to the
reliability and safety of technical systems [2,3,9].

Methods of identification theory [10,11], methods of machine learning [12–20], includ-
ing deep learning based on neural networks [14], and symbolic regression [15–21] are often
used to obtain mathematical models of renewable energy systems (RES). However, all
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these modeling methods belong to the class of simulation models that do not consider
actual physical and chemical processes and therefore do not guarantee their correctness in
the entire range of operating conditions. To obtain correct (not contradicting the general
physical laws) models of systems, it is necessary to set some restrictions arising from the
general physical laws and the system functioning mechanism [10–23].

Correct mathematical models are formed based on physical laws and the study of
the characteristics of the object of study: the structure of the object and the physical and
chemical processes occurring in it. That is why the approach based on modeling the
dynamics of physical and chemical processes in the system has found wide practical
application, in contrast to the simulation approach, which considers the system as a “black
box” [4,8–10,22,23]. Another aspect of resorting to this mathematical model approach is
interpretability and explainability for subsequent decision-making.

In the general case, the physical laws, based on which the system model is built, are
conservation laws or the connection between the causes of processes (internal disturbances,
internal forces) and the rates of these processes (flows) [10,24–39]. This makes it possible
to set a class of models for any RES in the form of a connection between internal forces
and flows, as well as a connection between flows and the rates of change in its state
coordinates based on conservation laws [10,24–39]. These models are generally built up to
the experimentally determined properties of substances and processes, which generally
depend on the state of the system [24–39]. Thus, the model of the particular RES instance
should be a system of equations: differential equations for the dynamics of physical and
chemical processes, as well as equations for measured and controlled parameters.

The features of building a system model described above make it possible to de-
velop a unified approach to build models of systems of various physical and chemical
nature [39,40], based on mechanics [29,30], including continuum mechanics [28,31], elec-
trodynamics [28,32], the theory of electric and magnetic circuits [32], on modern non-
equilibrium thermodynamics [33–38] and incorporating methods of identification theory,
machine learning methods, including deep learning based on neural networks, and on
symbolic regression [15–21]. Such models take measured parameters as input and return
controlled parameters that have practical value as output [1–9]. This work is devoted to
the development of this approach.

2. Description of the Energy Processes Mathematical Prototyping Method

As noted above, the general fundamental laws are conservation laws and the link
between system internal disturbances and the speed of physical and chemical processes
inside the system [10,24–39]. The main conservation law in mechanical systems is the
momentum conservation law [28,30,31]; in the theory of electric and magnetic circuits, as
well as in electrodynamics—the electric charge and magnetic flux [28,32] conservation law;
in modern non-equilibrium thermodynamics—the energy conservation law (the first law of
thermodynamics), the mass and stoichiometric ratios conservation law [28,31,33–38]. The
energy conservation law is a general physical conservation law [28,30–38].

From the point of view of modern non-equilibrium thermodynamics, the cause and
necessary condition for the occurrence of physicochemical processes in an arbitrary system
are thermodynamic forces [33,35–37], which are internal disturbances [10,24–29,33,35–37].
Examples of thermodynamic forces are [33,35–37]: normalized temperature difference
(reciprocal temperature difference), chemical potential difference, and chemical affinity. In
mechanics, internal disturbances are the difference in velocities, which causes the friction
force (momentum flux due to friction), as well as potential forces [10,28–31]. In electro-
dynamics, the theory of electrical and magnetic circuits, such internal disturbances are
the difference in electrical potentials that carry an electric charge, and currents through
inductive elements that create magnetic fluxes [10,28,29,32].

Flows in physical and chemical systems are the rates of physical and chemi-
cal processes [33,35–37]: in mechanics—mechanical forces (due to Newton's second
law—momentum flows) and speeds [10,28–31]; in electrodynamics, theories of elec-
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tric and magnetic circuits—electric currents that carry an electric charge and EMF of
electromagnetic induction [10,28,29,32]. Examples of flows in modern nonequilibrium
thermodynamics are [33,35–37]: heat flow, substance flow (diffusion flow, phase transition
rate), and chemical reaction rate. These internal perturbations do not unambiguously
determine the flows, the flows are also determined by the properties of the systems that do
not depend on the perturbations. [10,24–39].

In the general case of processes of different physical and chemical nature, the authors
proposed a unified approach to their description within the framework of mechanics [29,30],
including continuum mechanics [28,31], electrodynamics [28,32], the theory of electrical and
magnetic circuits [32], modern nonequilibrium thermodynamics [33–38]—it is a method of
mathematical prototyping that does not contradict the conservation laws and the second
law of thermodynamics [39]. The equations of this method can be written as [39]:

dx(t)
dt

= B(x(t), U(t))
δ∆x(t)

dt
+

dx∗(t)
dt

,
δ∆x(t)

dt
= A(x(t), U(t)) · ∆F(x(t), U(t)), (1)

∆F(x, U) = BT(x, U) · F(x, U), F(x, U) = −∇xW(x, U), (2)

y(t) = gy(x(t), U(t)), z(t) = gz(x(t), U(t)), (3)

where x—the coordinates of the system state; ∆x—coordinates of processes in the system;
δ∆x(t)/dt—speed of physical and chemical processes in the system; B(x, U)—system topol-
ogy matrix; dx∗(t)/dt is the component of the change rate of the system state parameters,
due to its interaction with external systems (it also additively includes a random component
of these external flows [36–38]); ∆F(x, U)—dynamic forces (internal disturbances), which
are the cause and necessary condition for the flow of physical and chemical processes in the
system; F(x, U)—partial derivatives of the free energy W(x, U) by the coordinates of the
state x, taken with the sign “-”; A(x, U)—positively defined (in particular cases, if there is in-
ertia in the system, non-degenerated, non-negative defined) dissipative matrix; U—system
parameters that do not change as a result of the processes in the system, but change as a
result of external influences; y—measured parameters of the system; z—controlled parame-
ters of the system. The measured and controlled parameters of the system (y and z) can be
both a function of the system state and functionals of the system dynamics (dynamics x(t)
and U(t)). To implement the system of Equations (1)–(3) in numerical form, it is necessary
to have [39]:

• Topology matrix B(x, U);
• The expression for the free energy W(x, U), expressed in terms of x, or its partial

derivatives by the state coordinates x, taken with the “-” sign F(x, U), satisfying the
total differential condition;

• Positively defined dissipative matrix A(x, U);
• Functions gy(x, U) and gz(x, U), obtained from the definition of the measured y and

controlled z parameters of the system, respectively.

If we denote a part of the parameters y and z as
¯
y and

¯
z , which are functions of the

state x:
¯
y =

¯
gy(x, U),

¯
z =

¯
gz(x, U), (4)

then if the right-hand sides of (1) and (2) directly depend on
¯
y and

¯
z , we represent the

quantities included in (1) and (2) as compositions of functions [38]:

B(x, U) ≡ B(
¯
y,

¯
z , U) ≡ B(

¯
gy(x, U),

¯
gz(x, U), U) (5)

W(x, U) ≡W(
¯
y,

¯
z , U) ≡W(

¯
gy(x, U),

¯
gz(x, U), U) (6)

F(x, U) ≡ F(
¯
y,

¯
z , U) ≡ F(

¯
gy(x, U),

¯
gz(x, U), U) (7)
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A(x, U) ≡ A(
¯
y,

¯
z , U) ≡ A(

¯
gy(x, U),

¯
gz(x, U), U) (8)

~
y(t) =

~
gy(x(t), U(t)) ≡ ~

gy(
¯
y(t),

¯
z(t), U(t)) ≡ ~

gy(
¯
gy(x(t), U(t)),

¯
gz(x(t), U(t)), U(t)) (9)

~
z(t) =

~
gz(x(t), U(t)) ≡ ~

gz(
¯
y(t),

¯
z(t), U(t)) ≡ ~

gz(
¯
gy(x(t), U(t)),

¯
gz(x(t), U(t)), U(t)) (10)

where
~
y and

~
z are another part of the parameters y and z, respectively:

y =
(

¯
y

T ~
y

T
)T

, z =
(

¯
z

T ~
z

T
)T

. (11)

In the vast majority of cases, the absolute values of the coordinates of the state x are
not determined (for example, the internal energy [38,41]), so, as can be seen from (4), it is

advisable to set the quantities
¯
y and

¯
z in differential form [38]:

d
¯
y = Cy,x(

¯
y,

¯
z , U)dx + Cy,U(

¯
y,

¯
z , U)dU, d

¯
z = Cz,x(

¯
y,

¯
z , U)dx + Cz,U(

¯
y,

¯
z , U)dU, (12)

where Cy,x(
¯
y,

¯
z , U),Cy,U(

¯
y,

¯
z , U),Cz,x(

¯
y,

¯
z , U), Cz,U(

¯
y,

¯
z , U) are the Jacobians of the right-

hand sides of (4) with respect to x and U. Hence, based on (1) and (12) we obtain the
following expressions [38]:

d
¯
y(t)
dt

=
~
By(

¯
y(t),

¯
z(t), U(t))

δ∆x(t)
dt

+
d
¯
y
∗
(t)

dt
,

d
¯
z(t)
dt

=
~
Bz(

¯
y(t),

¯
z(t), U(t))

δ∆x(t)
dt

+
d
¯
z
∗
(t)

dt
, (13)

where [38]:

d
¯
y
∗
(t)

dt
= Cy,x(

¯
y(t),

¯
z(t), U(t))

dx∗(t)
dt

+ Cy,U(
¯
y(t),

¯
z(t), U(t))

dU(t)
dt

, (14)

d
¯
z
∗
(t)

dt
= Cz,x(

¯
y(t),

¯
z(t), U(t))

dx∗(t)
dt

+ Cz,U(
¯
y(t),

¯
z(t), U(t))

dU(t)
dt

, (15)

~
By(

¯
y,

¯
z , U) = Cy,x(

¯
y,

¯
z , U) · B(¯y,

¯
z , U),

~
Bz(

¯
y,

¯
z , U) = Cz,x(

¯
y,

¯
z , U) · B(¯y,

¯
z , U). (16)

By virtue of (5)–(10), system (1)–(3) takes the form [38]:

δ∆x(t)
dt

= A(
¯
y(t),

¯
z(t), U(t)) · ∆F(

¯
y(t),

¯
z(t), U(t)), ∆F(

¯
y,

¯
z , U) = BT(

¯
y,

¯
z , U) · F(¯y,

¯
z , U), (17)

~
y(t) =

~
gy(

¯
y(t),

¯
z(t), U(t)),

~
z(t) =

~
gz(

¯
y(t),

¯
z(t), U(t)). (18)

The system of Equations (13)–(18) is more convenient for practical applications [38].
Thus, in order to obtain the transformed equations of the mathematical prototyping

method (13)–(18), it is necessary to obtain functional dependences of the system state from
the experimental data for substances and processes properties and system topology [38,39]:

• Topology matrix B(
¯
y,

¯
z , U);

• Positively defined dissipative matrix A(
¯
y,

¯
z , U);

• Jacobi matrices Cy,x(
¯
y,

¯
z , U), Cy,U(

¯
y,

¯
z , U) and Cz,x(

¯
y,

¯
z , U), Cz,U(

¯
y,

¯
z , U) of mea-

sured
¯
y and controlled

¯
z parameters of the system respectively, satisfying the condi-

tions of the total differential [38]:
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n
ȳ

∑
k=1

∂Cy,x,i(
¯
y ,

¯
z ,U)

∂yk
Cy,x,k,j(

¯
y,

¯
z , U) +

n
z̄

∑
k=1

∂Cz,x,i(
¯
y ,

¯
z ,U)

∂zk
Cz,x,k,j(

¯
y,

¯
z , U) ≡

≡
n

ȳ

∑
k=1

∂Cy,x,j(
¯
y ,

¯
z ,U)

∂yk
Cy,x,k,i(

¯
y,

¯
z , U) +

n
z̄

∑
k=1

∂Cz,x,j(
¯
y ,

¯
z ,U)

∂zk
Cz,x,k,i(

¯
y,

¯
z , U),

j = 1, i− 1, i = 2, nx, nx = dim(x), n¯
y
= dim(

¯
y), n¯

z
= dim(

¯
z), nx = n¯

y
+ n¯

z
,

(19)

n
ȳ

∑
k=1

∂Cy,x,i(
¯
y ,

¯
z ,U)

∂yk
Cy,U,k,j(

¯
y,

¯
z , U) +

n
z̄

∑
k=1

∂Cz,x,i(
¯
y ,

¯
z ,U)

∂zk
Cz,U,k,j(

¯
y,

¯
z , U) +

∂Cy,x,i(
¯
y ,

¯
z ,U)

∂Uj
≡

≡
n

ȳ

∑
k=1

∂Cy,U,j(
¯
y ,

¯
z ,U)

∂yk
Cy,x,k,i(

¯
y,

¯
z , U) +

n
z̄

∑
k=1

∂Cz,U,j(
¯
y ,

¯
z ,U)

∂zk
Cz,x,k,i(

¯
y,

¯
z , U), j = 1, nU, i = 1, nx,

nU = dim(U),

(20)

n
ȳ

∑
k=1

∂Cy,U,i(
¯
y ,

¯
z ,U)

∂yk
Cy,U,k,j(

¯
y,

¯
z , U) +

n
z̄

∑
k=1

∂Cz,U,i(
¯
y ,

¯
z ,U)

∂zk
Cz,U,k,j(

¯
y,

¯
z , U) +

∂Cy,U,i(
¯
y ,

¯
z ,U)

∂Uj
≡

≡
n

ȳ

∑
k=1

∂Cy,U,j(
¯
y ,

¯
z ,U)

∂yk
Cy,U,k,i(

¯
y,

¯
z , U) +

n
z̄

∑
k=1

∂Cz,U,j(
¯
y ,

¯
z ,U)

∂zk
Cz,U,k,i(

¯
y,

¯
z , U) +

∂Cz,U,j(
¯
y ,

¯
z ,U)

∂Ui
,

j = 1, i− 1, i = 2, nU,

(21)

where:
Cy,x(

¯
y,

¯
z , U) =

(
Cy,x,1(

¯
y,

¯
z , U) · · · Cy,x,nx(

¯
y,

¯
z , U)

)
,

Cz,x(
¯
y,

¯
z , U) =

(
Cz,x,1(

¯
y,

¯
z , U) · · · Cz,x,nx(

¯
y,

¯
z , U)

)
,

Cy,U(
¯
y,

¯
z , U) =

(
Cy,U,1(

¯
y,

¯
z , U) · · · Cy,U,nx(

¯
y,

¯
z , U)

)
,

Cz,U(
¯
y,

¯
z , U) =

(
Cz,U,1(

¯
y,

¯
z , U) · · · Cz,U,nx(

¯
y,

¯
z , U)

)
,

Cy,x(
¯
y,

¯
z , U) =


Cy,x,1,1(

¯
y,

¯
z , U) · · · Cy,x,1,nx(

¯
y,

¯
z , U)

... · · ·
...

Cy,x,n
ȳ

,1(
¯
y,

¯
z , U) · · · Cy,x,n

ȳ
,nx(

¯
y,

¯
z , U)

,

Cz,x(
¯
y,

¯
z , U) =


Cz,x,1,1(

¯
y,

¯
z , U) · · · Cz,x,1,nx(

¯
y,

¯
z , U)

... · · ·
...

Cz,x,n
ȳ

,1(
¯
y,

¯
z , U) · · · Cz,x,n

ȳ
,nx(

¯
y,

¯
z , U)

,

Cy,U(
¯
y,

¯
z , U) =


Cy,U,1,1(

¯
y,

¯
z , U) · · · Cy,U,1,nx(

¯
y,

¯
z , U)

... · · ·
...

Cy,U,n
ȳ

,1(
¯
y,

¯
z , U) · · · Cy,U,n

ȳ
,nx(

¯
y,

¯
z , U)

,

Cz,U(
¯
y,

¯
z , U) =


Cz,U,1,1(

¯
y,

¯
z , U) · · · Cz,U,1,nx(

¯
y,

¯
z , U)

... · · ·
...

Cz,U,n
ȳ

,1(
¯
y,

¯
z , U) · · · Cz,U,n

ȳ
,nx(

¯
y,

¯
z , U)

;
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• Partial derivatives F(
¯
y,

¯
z , U) by the coordinates of the state x of free energy W(x, U),

satisfying the conditions of the total differential [38]:

n
ȳ

∑
k=1

∂Fi(
¯
y ,

¯
z ,U)

∂yk
Cy,x,k,j(

¯
y,

¯
z , U) +

n
z̄

∑
k=1

∂Fi(
¯
y ,

¯
z ,U)

∂zk
Cz,x,k,j(

¯
y,

¯
z , U) ≡

≡
n

ȳ

∑
k=1

∂Fj(
¯
y ,

¯
z ,U)

∂yk
Cy,x,k,i(

¯
y,

¯
z , U) +

n
z̄

∑
k=1

∂Fj(
¯
y ,

¯
z ,U)

∂zk
Cz,x,k,i(

¯
y,

¯
z , U),

j = 1, i− 1, i = 2, nx;

(22)

• Functions of measured
~
gy(

¯
y,

¯
z , U) and controlled

~
gz(

¯
y,

¯
z , U) parameters (which can

be functionals of
¯
y(t),

¯
z(t), and U(t) dynamics).

Further, for the dissipative matrix, partial derivatives of the free energy, the Jacobi
matrices of the measured and controlled parameters specified in differential form, the
topology matrix, and functions for the remaining measured and controlled parameters,
it is necessary to specify a class of analytical expressions up to constant coefficients. In
this class, for any desired function, there must necessarily be an analytic expression that
approximates the desired function with any given accuracy. Such classes, for example, are:

• Power polynomials, whose convergence is guaranteed by the Weierstrass theorem on
the uniform approximation of functions by polynomials [21];

• Classes of inductively generating functions [15] obtained by symbolic regression
methods; convergence, in this case, is confirmed by the universal approximation
theorem (Cybenko’s theorem) [42,43];

• Classes of interpolation expressions (linear, cubic splines, Lagrange interpolation
polynomials, etc.) [44].

The values of constant coefficients, in the general case, are determined in such a way
that the measured parameters y determined from (1)–(3) or from (13)–(18) coincide with the
corresponding values of these parameters y(E), obtained by direct measurement [10,11,37]:

y
(
tj
)
= y(E)(tj

)
, j = 1, Nt, (23)

where tj, j = 1, Nt—discrete moments of time; Nt—number of discrete moments of time.
The coefficients of approximating analytical expressions for the properties of substances
and processes that satisfy the relevant restrictions can be determined from experimental
data using (13)–(18), (23), by minimizing the objective function Q[y(t)] [10,11,37]:

Q[y(t)] =
1
2

n

∑
i=1

Nt,i

∑
j=1

(yi(tj)− y(E)
i (tj))

T ~
Li(yi(tj)− y(E)

i (tj)), (24)

where
~
Li, i = 1, n is a positively defined symmetric matrix; Nt,i, i = 1, n—the number of

discrete moments of time in each i-th operation mode; n is the number of modes in which
experimental data are taken y(E)

i
(
tj
)
, j = 1, Nt,i, i = 1, n [10,11,37]. Minimization of the

objective function Q, defined by virtue of (13)–(18), (23), (24) can be carried out in different
ways [45], for example, in parts [45]. Hence, the analytical expressions for the state function
of the dissipative matrix should be given in the form [37]:

A(
¯
y,

¯
z , U) = A◦(

`
ha(

¯
y,

¯
z , U, pa)) +

ma
∑

j=0

`
Aj

(
nx
∏
i=1

(
`
ha,i(

¯
y ,

¯
z ,U,pa))

ni,j

ni,j!

)
,

`
ha(

¯
y,

¯
z , U, p) = (

`
ha,1(

¯
y,

¯
z , U, pa) · · ·

`
ha,nx(

¯
y,

¯
z , U, pa)

)T ,

(25)
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where A◦(
`
ha) is the positively defined (non-negative-defined in the case of inertia in the

system) basic dissipative matrix;
`
ha,i =

`
ha,i(

¯
y,

¯
z , U, pa) > 0, j = 0, ma are some variables

determined by the state of the system; ma is the number of basic additive functions;
`
Aj,

j = 0, ma are constant non-negative defined matrices; pa are the parameters by which,

along with
`
Aj, j = 0, ma the objective function is optimized Q. For independent compo-

nents of other properties of substances and processes (partial derivatives of free energy

F(
¯
y,

¯
z , U), Jacobi matrices Cy,x(

¯
y,

¯
z , U), Cy,U(

¯
y,

¯
z , U) and Cz,x(

¯
y,

¯
z , U), Cz,U(

¯
y,

¯
z , U) ob-

served
¯
y and controlled

¯
z parameters, respectively, which are taken in differential form,

topology matrices B(
¯
y,

¯
z , U)), analytical expressions are given in the form [37]:

H(
¯
y,

¯
z , U) = H◦(

`
h(

¯
y,

¯
z , U, p)) +

m
∑

j=0
cj

(
nx
∏
i=1

(
`
h i(

¯
y ,

¯
z ,U,p))ni,j

ni,j!

)
,

`
h(

¯
y,

¯
z , U, p) = (

`
h1(

¯
y,

¯
z , U, p) · · ·

`
hnx(

¯
y,

¯
z , U, p) )T ,

(26)

where H◦(
`
h) is the basic component; cj are constant coefficients, j = 0, m;

`
hi =

`
hi(

¯
y,

¯
z , U, p),

i = 1, m-some variables determined by the state of the system; p are the parameters by
which, along with cj the objective function is optimized Q.

A positively defined dissipative matrix A(
¯
y,

¯
z , U), in the case of physical and chemical

processes, is a kinetic matrix constructed through its reversible and positive irreversible
components [36,37], which are given in the form (26) [37]. The positivity of the irreversible
components guarantees the positive definiteness of the kinetic matrix [36,37]. In the case of
mechanics, system (1)–(3) transforms into the Hamiltonian equations [30,39], in this case, the
dissipative matrix is constructed based on the friction coefficients and transfer functions [39].
The positivity of the friction coefficients, also given in the form (26), guarantees the non-
negative definiteness of the dissipative matrix of mechanical systems (included in the
Hamilton equations) [30,39]. In the case of electrodynamics, in terms of the transfer of
electric charge through an anisotropic crystal, in terms of the Hall effect, it is also expedient
to build a dissipative matrix through reversible and irreversible components [35,36]. In the
case of electric and magnetic circuits, the dissipative matrix is built based on the resistances
in the electric circuit and the way they are connected [39]. For physical and chemical
processes, the existing model of the specific nature process can be converted to the form
(1)–(3) or to the form (13)–(18), in this case the analytical expression of the kinetic matrix is
constructed in accordance with (25) [36].

Thus, building a model of physical and chemical processes in the system is reduced to
optimizing the objective function Q[y(τ)] given in the form (13)–(18), (23)–(26), according
to the constant parameters included in (25) and (26). Such a procedure, as it is easy to see
from (13)–(18), (23)–(26), is reduced to solving a system of ordinary differential equations.
Currently, in order to solve a system of ordinary differential equations, the following
methods [46] can be used:

• Step methods based on calculating the values of a dynamic variable at subsequent
time points from the previous values of this variable;

• Special methods based on the approximation of solutions to a system of differential
equations by analytical expressions.

The main advantage of step methods is their universality for any system of ordi-
nary differential equations because as the integration step tends to zero, the approximate
solution uniformly converges to the exact one [46]. However, these methods have a
disadvantage—the complexity of calculations [46]. Special methods based on specifying
the solution by an analytic expression followed by the search for the constant parameters
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of this expression are free from this shortcoming [46]. This approach is less labor intensive
than step methods. However, to apply this approach, it is necessary to take into account
the qualitative nature of the solutions to the system of ordinary differential equations [46].
As an approximate solution, one can take a biunique function of the general analytical
solution of a simplified system of differential equations [46]. Moreover, in the case of an
autonomous system of differential equations, such a solution will have the property of a
group and be a solution of an autonomous system of differential equations [47]. Such an
approximate solution can be composed with analytical solutions of local simplifications
of the system of ordinary differential equations being solved [46] by taking a biunique
function from this solution composed of pieces [46].

It should be noted that in the absence of external flows, the system tends to an equilibrium
state, and from any initial state (due to the zeroth law of thermodynamics) [34,36,37]. In
the case of the presence of external flows, the system can evolve either into a stable
stationary state or into an oscillatory regime (self-oscillations, forced oscillations, dynamic
chaos, etc.) [48,49]. Oscillations in the system and their occurrence in the considered case are
explained by the tendency of the system to a stationary state, which can change as a result
of feedback [49]. Local simplifications of the equation’s parameters of the mathematical
prototyping method can be piecewise constant or piecewise polynomial [50]. Moreover,
these simplifications can be chosen by taking the piecewise constant dissipative matrix,
balance matrix, quantities U, and external flows [48,49]. In such local areas, the system
tends to a stationary state, which can also change as a result of a change in the balance
parameters (for example, the total mass of the system, the total energy of the system,
the total momentum of the system, etc.) [49]. Yet upon transition to another region, the
stationary state can also change as a result of changes in the properties of the system [49].
Thus, an oscillatory motion of the system arises [49]. The general analytical solution of
the system of equations of the mathematical prototyping method is obtained by stitching
(without the refinement of the stitching method) simplified analytical solutions in local
areas [46], which, in the limit, as the size of the areas tends to zero, converges to the
analytical solution of the main system of Equations (1) and (2) [46].

The simplified analytic solutions
~
x(t) =

~
xt(

~
x0, t) have the group property [47]:

~
x0 =

~
xt(

~
x0, 0),

~
xt(

~
xt(

~
x0, τ), t) =

~
xt(

~
x0, t + τ). (27)

Approximate general solution of Equations (1) and (2)
¯
x(t) =

¯
x t(

¯
x0, t0, t), where

¯
x0 =

¯
x t(

¯
x0, t0, t0), considering (27) is represented as:

¯
x t(

¯
x0, t0, t) ≡ ~

xt(
~
x
(0)
i−1, t)⇔ t ∈ [ti−1 − t0, ti − t0] ,

~
x
(0)
i =

~
xt(

~
x
(0)
i−1, ti),

~
x
(0)
0 =

¯
x0, i = 1, ∞, (28)

where
~
x
(0)
i , i = 1, ∞ additively includes a random component.

If, in the space of system state coordinates, we find such a basis under which the
expressions for the parameters of the mathematical prototyping method equations system
(functions of the dissipative matrix, topology matrix, the scalar function of free energy or
its partial derivatives) are simplified. In the new space of system state coordinates, the
number of local areas into which the entire space should be divided decreases.

To transform the state coordinates, we introduce a reversible (if possible) by
¯
x function

rx(
¯
x , w,γ):

x = rx(
¯
x , w,γ), w(t) = W

(
U(t),

dx∗(t)
dt

)
, (29)

where W
(

U(t), dx∗(t)
dt

)
—is a functional that satisfies the condition:

∀U(t) ≡ const ∀ ∂

∂t

(
dx∗

dt

)
≡ 0⇒ w(t) = W

(
U(t),

dx∗

dt

)
≡ const (30)
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In this case, the expressions for the approximate solution of Equations (1) and (2) up
to the coefficients γ found from these Equations (1) and (2) are represented as:

x(t) = rx(
¯
x t(

¯
x0, t0, t), w(t),γ), w(t) = W

(
U(t),

dx∗(t)
dt

)
. (31)

Let us show that the analytical solution defined by (27)–(31) is the solution of

Equations (1) and (2). Indeed, since
¯
x(t) =

¯
x t(

¯
x0, t0, t) is a solution to Equations (1) and (2)

written for the topology matrix
¯
B(

¯
x ,

¯
U), dissipative matrix

¯
A(

¯
x ,

¯
U), and energy W(

¯
x ,

¯
U),

as well as piecewise constant external flows d
¯
x
∗
(t)/dt, i.e.:

d
¯
x (t)
dt =

¯
B(

¯
x(t),

¯
U(t)) δ∆

¯
x (t)
dt + d

¯
x
∗
(t)

dt , δ∆
¯
x (t)
dt =

¯
A(

¯
x(t),

¯
U(t)) · ∆

¯
F(

¯
x(t),

¯
U(t)),

∆
¯
F(

¯
x ,

¯
U) =

¯
B

T

(
¯
x ,

¯
U) ·

¯
F(

¯
x ,

¯
U),

¯
F(

¯
x ,

¯
U) = −∇¯

x
W(

¯
x ,

¯
U),

and taking into account that:

∇xW(
¯
x ,

¯
U) = ∇xW(r−1

x (x, w,γ),
¯
U) = (JT

r,
¯
x
(
¯
x , w,γ))−1∇¯

x
W(

¯
x ,

¯
U)

where J
r,
¯
x
(
¯
x , w,γ) is the Jacobian of matrix functions rx(

¯
x , w,γ) with respect to

¯
x , by

virtue of (29) and (31) we have:

dx(t)
dt = J

r,
¯
x
(
¯
x(t), w(t),γ)

¯
B(

¯
x(t),

¯
U(t)) δ∆

¯
x (t)
dt + J

r,
¯
x
(
¯
x(t), w(t),γ) d

¯
x
∗
(t)

dt + Jr,w(
¯
x(t), w(t),γ) dw(t)

dt

δ∆
¯
x (t)
dt =

¯
A(

¯
x(t),

¯
U(t)) · ∆

¯
F(

¯
x(t),

¯
U(t))

∆
¯
F(

¯
x ,

¯
U) =

¯
B

T

(
¯
x ,

¯
U) ·

¯
F(

¯
x ,

¯
U),

¯
F(

¯
x ,

¯
U) = −JT

r,
¯
x
(
¯
x , w,γ)∇xW(r−1

x (x, w,γ),
¯
U),

where Jr,w(
¯
x , w,γ) is the Jacobian matrix of the function rx(

¯
x , w,γ) with respect to w;

hence, taking into account that the parameters
¯
U(t) are piecewise constant U(t), and hence

¯
U is a function U, having introduced the topology matrix B(x, w, U):

B(x, w, U) = Jr(r
−1
x (x, w,γ), w,γ)

¯
B(r−1

x (x, w,γ), U), (32)

external flows dx∗(t)/dt:

dx∗(t)
dt

= J
r,
¯
x
(
¯
x(t), w(t),γ)

d
¯
x
∗
(t)

dt
+ Jr,w(

¯
x(t), w(t),γ)

dw(t)
dt

, (33)

the free energy W(x, w, U) = W(r−1
x (x, w,γ),

¯
U) and its partial derivatives F(x, w, U) by

state coordinates x:

F(x, w, U) = −∇xW(r−1
x (x, w,γ),

¯
U) = −∇xW(x, w, U),

as well as the dissipation matrix A(x, w, U):

A(x, w, U) =
¯
A(r−1

x (x, w,γ),
¯
U),
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we have:

dx(t)
dt = B(x(t), w(t), U(t)) δ∆

¯
x (t)
dt + dx∗(t)

dt , δ∆
¯
x (t)
dt = A(x(t), w(t), U(t)) · ∆F(x(t), w(t), U(t)),

∆F(x, w, U) = ∆
¯
F(r−1

x (x, w,γ),
¯
U) = BT(x, w, U) · F(x, w, U), F(x, w, U) = −∇xW(x, w, U).

This directly implies that the analytical solution given by (27)–(31) is the solution
of Equations (1) and (2) of the mathematical prototyping method (because from (30) it
can be seen that w can also be attributed to the parameters of U). Thus it is possible to
set such a positively defined (in the case of inertia—non-degenerate and non-negatively
defined) dissipative matrix A(x, w, U) and such partial derivatives F(x, w, U) of the free
energy W(x, w, U) (satisfying the condition of the total differential), as well as the topology
matrix B(x, w, U), that this general solution given by (27)–(31) will be the general solution
of Equations (1) and (2) obtained for the mentioned quantities.

External energy flows in the system, in the general case, can either change the system
balance parameters (for example, the internal energy and mass of the entire system), or not.

If conditions (30) are met:

• The replacement of the state coordinates does not affect the fact that the balance parame-
ters of the system are changed by external flows, it follows from Equations (32) and (33);

• If the analytical solution in the old coordinate system tends to the stationary state
from any initial state, then the solution in the new coordinate system also tends to the
stationary state from any initial state, it follows from Equation (31);

• If the analytical solution in the old coordinate system satisfies the group condition,
then in the new coordinate system the solution also satisfies the group condition [47].

This implies the correctness of the general analytical solution (27)–(31) of the equations
of the mathematical prototyping method.

Let us replace the state coordinates
¯
y and

¯
z by ξ in (13)–(17) in the same way as the

replacement of the state coordinates in Equations (1) and (2) was carried out:

¯
y
◦
(ξ0, t0, t,γ) = r¯

y
(ξ(ξ0, t0, t),γ),

¯
z
◦
(ξ0, t0, t,γ) = r¯

z
(ξ(ξ0, t0, t),γ), (34)

where the system of functions r¯
y
(ξ,γ) and r¯

z
(ξ,γ) is also resolvable with respect to

ξ; ξ(ξ0, t0, t), being a general analytical solution of a piecewise simplified system of
Equations (13)–(17), is defined similarly to (27) and (28):

ξ(ξ0, t0, t) ≡
~
ξ(

~
ξ
(0)

i−1, t)⇔ t ∈ [ti−1 − t0, ti − t0] ,
~
ξ
(0)

i =
~
ξ(

~
ξ
(0)

i−1, ti),
~
ξ
(0)

0 = ξ0, i = 1, ∞, (35)

where in
~
x
(0)
i , i = 1, ∞ the random component is additively included, and

~
ξ(

~
ξ0, t) satisfies

the property of the group [47]:

~
ξ0 =

~
ξ(

~
ξ0, 0),

~
ξ(

~
ξ(

~
ξ0, τ), t) =

~
ξ(

~
ξ0, t + τ). (36)

Hence, similarly as described above, the analytical approximation of the general
solution of the equations system (13)–(17) given in the form (34)–(36) is correct (follows
from [47]).

Thus, the solution of the transformed Equations (13)–(17) of the mathematical proto-
typing method of energy processes consists in such a selection of constant parameters γ,
that residuals e¯

y
(γ,ξ0, t0, t) and e¯

z
(γ,ξ0, t0, t), having the meaning of fluctuations [51,52],

determined based on (13)–(17) [51,52]:

e¯
y
(γ,ξ0, t0, t) =

∂
¯
y
◦
(ξ0, t0, t,γ)

∂t
−

~
By(

¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t))

δ∆x(t)
dt

− d
¯
y
∗
(t)

dt
, (37)
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e¯
z
(γ,ξ0, t0, t) =

∂
¯
z
◦
(ξ0, t0, t,γ)

∂t
−

~
Bz(

¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t))

δ∆x(t)
dt

− d
¯
z
∗
(t)

dt
. (38)

should not exceed in modulus a certain fraction of the mean maximum of fluctuations [51,52].
The quantities included in (37) and (38) are determined in accordance with the expressions:

d
¯
y
∗
(t)

dt
= Cy,x(

¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t))

dx∗(t)
dt

+ Cy,U(
¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t))

dU(t)
dt

(39)

d
¯
z
∗
(t)

dt
= Cz,x(

¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t))

dx∗(t)
dt

+ Cz,U(
¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t))

dU(t)
dt

(40)

δ∆x(t)
dt

= A(
¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t)) · ∆F(

¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t)) (41)

Because by selecting parameters, it is necessary to achieve values of residuals e¯
y
(γ,ξ0, t0, t)

and e¯
z
(γ,ξ0, t0, t), not exceeding in modulus a certain fraction of the average maximum

of fluctuations [51,52], and also to simultaneously minimize the objective function Q,
determined by (24) for y(t), determined on the basis of (11) and (18), due to:

y◦(ξ0, t0, t,γ) =
(

¯
y
◦T
(ξ0, t0, t,γ)

~
y
◦T
(ξ0, t0, t,γ)

)T
,

~
y
◦
(ξ0, t0, t,γ) =

~
gy(

¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t)), (42)

then it is advisable in terms of parameters γ and constant coefficients included in (25) and
(26) to minimize the objective function Q̃ [10,51,52]:

Q̃ = Q[y(t)] +
1
2

n

∑
i=1

Nt,i

∑
l=1

(eT
¯
y

(
γi,ξ0,i, t0,i, tl,i

)
L¯

y

(
tl,i
)
e¯

y

(
γi,ξ0,i, t0,i, tl,i

)
) + eT

¯
z

(
γi,ξ0,i, t0,i, tl,i

)
L¯

z

(
tl,i
)
e¯

z

(
γi,ξ0,i, t0,i, tl,i

)
, (43)

where L¯
y
(t), L¯

z
(t) are positively defined symmetric matrices, because in this case, the

residuals e¯
y
(γ,ξ0, t0, t) and e¯

z
(γ,ξ0, t0, t), and also y(t)− y(
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Thus, the construction of a model of physical and chemical processes in RES is carried 
out by minimizing the objective function Q~ , determined by virtue of (16), (17), (25), (26), 
(34)–(42), (44) in constant parameters i,0ξ , iγ , ni ,1=  (at fixed initial times it ,0 , ni ,1=

) and constant parameters included in (25) and (26) [40]. The number of modes can in-
clude both control and operational modes of operation. After optimizing the objective 
function, Q~we determine the controlled parameters z  in the form: 

( ) ( ) ( )( )TTT tttttt γξzγξzγξz ,,,~,,,,,, 000000
 = , ( ) ( ) ( ) ( )( )ttttttt Uγξzγξygγξz z ,,,,,,,,~,,,~

000000
 = . (45)

The target function Q~  includes complex expressions (25) and (26), so it is proposed 
to convert them to a piecewise simplified form (for example, piecewise constant). Simi-
larly, to simplify the objective function Q~  it is advisable to simplify the analytical expres-
sions (34) of the general solution of the system of Equations (13)–(17) [40,45,54]. 

Thus, a generalized method of mathematical prototyping of energy processes is pro-
posed to use as a unified approach to designing models of physical and chemical systems, 
in the application of which the following methods are used: 
• Transformations of the coordinate system of the state space to simplify the expres-

sions of the state functions of the properties of substances and processes; 
• Transformations of the equations of the mathematical prototyping method with re-

spect to the measured and controlled parameters; 

)(t) determine both the prox-

imity of the exact solution of the system (13)–(17) to the approximate one, and the proximity
of the calculated values of the characteristics of the measured parameters y(t) to the corre-
sponding measured values y(
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where ( )tyL , ( )tzL  are positively defined symmetric matrices, because in this case, the 

residuals ( )tt ,,, 00ξγey  and ( )tt ,,, 00ξγez , and also ( ) ( ) ( )tt Эyy −  determine both the 
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Thus, the construction of a model of physical and chemical processes in RES is carried 
out by minimizing the objective function Q~ , determined by virtue of (16), (17), (25), (26), 
(34)–(42), (44) in constant parameters i,0ξ , iγ , ni ,1=  (at fixed initial times it ,0 , ni ,1=

) and constant parameters included in (25) and (26) [40]. The number of modes can in-
clude both control and operational modes of operation. After optimizing the objective 
function, Q~we determine the controlled parameters z  in the form: 
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The target function Q~  includes complex expressions (25) and (26), so it is proposed 
to convert them to a piecewise simplified form (for example, piecewise constant). Simi-
larly, to simplify the objective function Q~  it is advisable to simplify the analytical expres-
sions (34) of the general solution of the system of Equations (13)–(17) [40,45,54]. 

Thus, a generalized method of mathematical prototyping of energy processes is pro-
posed to use as a unified approach to designing models of physical and chemical systems, 
in the application of which the following methods are used: 
• Transformations of the coordinate system of the state space to simplify the expres-

sions of the state functions of the properties of substances and processes; 
• Transformations of the equations of the mathematical prototyping method with re-

spect to the measured and controlled parameters; 

)(t) of these parameters y(t) [10,51,53]. According to (24),
Equation (43) will take the form:

Q̃ = 1
2

n
∑

i=1

Nt,i

∑
j=1

(
yi
(
tj
)
− y(E)

i
(
tj
))T ~

Li

(
yi
(
tj
)
− y(E)

i
(
tj
))

+

+ 1
2

n
∑

i=1

Nt,i

∑
l=1

(
eT

¯
y
(γi,ξ0,i, t0,i, tl,i)L¯

y
(tl,i)e¯

y
(γi,ξ0,i, t0,i, tl,i)

)
+ eT

¯
z
(γi,ξ0,i, t0,i, tl,i)L¯

z
(tl,i)e¯

z
(γi,ξ0,i, t0,i, tl,i).

(44)

Thus, the construction of a model of physical and chemical processes in RES is carried
out by minimizing the objective function Q̃, determined by virtue of (16), (17), (25), (26),
(34)–(42), (44) in constant parameters ξ0,i, γi, i = 1, n (at fixed initial times t0,i, i = 1, n) and
constant parameters included in (25) and (26) [40]. The number i of modes can include both
control and operational modes of operation. After optimizing the objective function, Q̃ we
determine the controlled parameters z in the form:

z◦(ξ0, t0, t,γ) =
(

¯
z
◦T
(ξ0, t0, t,γ)

~
z
◦T
(ξ0, t0, t,γ)

)T
,

~
z
◦
(ξ0, t0, t,γ) =

~
gz

(
¯
y
◦
(ξ0, t0, t,γ),

¯
z
◦
(ξ0, t0, t,γ), U(t)

)
. (45)

The target function Q̃ includes complex expressions (25) and (26), so it is proposed to
convert them to a piecewise simplified form (for example, piecewise constant). Similarly, to
simplify the objective function Q̃ it is advisable to simplify the analytical expressions (34)
of the general solution of the system of Equations (13)–(17) [40,45,54].

Thus, a generalized method of mathematical prototyping of energy processes is pro-
posed to use as a unified approach to designing models of physical and chemical systems,
in the application of which the following methods are used:
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• Transformations of the coordinate system of the state space to simplify the expressions
of the state functions of the properties of substances and processes;

• Transformations of the equations of the mathematical prototyping method with respect
to the measured and controlled parameters;

• Splitting the space of the system state coordinate into regions in order to obtain
piecewise simplified state functions for the properties of substances and processes;

• Reduction of the procedure for obtaining analytical solutions to the equations of the
mathematical prototyping method for state coordinates to the problem of finding a
global minimum.

3. Algorithm of Obtaining the Model from Experimental Data
3.1. The Sequence of Obtaining Controlled Parameters

So, the determination of the controlled parameters of the system by its measured
parameters consists of the following sequence of actions:

For the experimentally measured parameters y of the RES, we perform the minimization
of the objective function Q̃, determined by virtue of (16), (17), (25), (26), (34)–(42), (44), with
respect to the parameters ξ0,i, γi, i = 1, n, and the parameters included in (25) and (26).

For the optimized parameters ξ0,i, γi, and the parameters included in (25) and (26),
we compare the values of residuals e¯

y
(γi,ξ0,i, t0,i, t) and e¯

z
(γi,ξ0,i, t0,i, t) with the value

of the average maximum of fluctuations; if they are higher than the average maximum of
fluctuations we should conduct the correction of r¯

y
(ξ,γ) and r¯

z
(ξ,γ) then return to point

1; otherwise, go to the next item.
Substituting the optimal parameters ξ0,i and γi into (42) and (45) we obtain the dy-

namics of the measured y(t) = y◦(ξ0, t0, t,γ) and control z(t) = z◦(ξ0, t0, t,γ) parameters
of the system.

Equations (13)–(18), and hence the proposed method for determining the controlled
parameters of the system from the measured ones, can be implemented based on model-
based design [55] using a block diagram [37].

3.2. Implementation of the Algorithm for Obtaining Controlled Parameters

The practical implementation of the approach proposed in the article to building
models of physical and chemical processes in RES (the method of mathematical prototyping
of energy processes) involves the following sequence of actions:

Formation of a list of physical and chemical processes in the object of study.
Determination of a set of assumptions, including considered modes of operation and

external disturbances.
Writing a complete system of equations for the dynamics of physical and chemical pro-

cesses in accordance with the proposed method—the method of mathematical prototyping.
Determining the required set of experimental data based on analyzing the system state

dependence of the properties of substances and processes.
Setting analytical expressions (25) and (26) for the properties of the substances and the

processes up to constant coefficients.
Piecewise simplification of analytical expressions (25) and (26).
Identification of the coefficients of analytical expressions.
Checking the correctness of piecewise simplification procedures.
Validation of the obtained models according to the control experimental data.

4. Results

In the current chapter, two examples of the application described methods are pre-
sented. The first of them is the calculation of physical and chemical processes model
parameters in a nickel–cadmium battery from a 20NKBN-25-U3 series of three cells. The
second one is a mathematical model for the voltage and temperature of lithium-ion batteries
of the US18650VTC6 series.
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4.1. An Example of a Nickel–Cadmium Battery
4.1.1. Physical and Chemical Processes in a Nickel–Cadmium Accumulator

The electrochemical system of a nickel–cadmium accumulator is a positive nickel oxide
electrode NiOOH and a negative cadmium electrode immersed in an electrolyte solution
KOH. The substance KOH does not enter the reaction, it is only a carrier of hydroxide ions
OH− [56].

The main current-generating process taking place on the positive nickel oxide elec-
trode [56]:

NiOOH + H2O + e− ↔ Ni(OH)2 + OH− (46)

Hydroxide ions OH− diffuse through the electrolyte and react on the negative cad-
mium electrode in accordance with the reaction [56]:

Cd + 2OH− ↔ Cd(OH)2 + 2e− (47)

When a nickel–cadmium accumulator is recharged, the process of oxygen evolution
proceeds at the positive electrode [56]:

2OH− ↔ 1
2

O2 + H2O + 2e− (48)

Oxygen O2 diffuses through the porous separator to the negative electrode and is
reduced on it [56]:

1
2

O2 + Cd + H2O↔ Cd(OH)2 (49)

Reaction (49) of oxygen reduction is exothermic, it leads to heating of the accumulator,
which can cause its thermal runaway [56].

4.1.2. Assumptions Imposed on the Mathematical Model of Physicochemical Processes in
the Nickel–Cadmium Accumulators

The modeling of physicochemical processes in the nickel–cadmium accumulators is
carried out taking into account the following assumptions [57]:

• Aging processes in the accumulators are not modeled (due to the fact that they proceed
much more slowly than main processes);

• Hydrogen release is not simulated (the nickel–cadmium accumulators are fairly
new) [56];

• Distribution of water in the volume of the separator is even;
• The volume of the separator is divided into near-anode and near-cathode regions, and

the state of each region is characterized by averaged values of the distributed quantities;
• Physical and chemical processes between each pair of electrodes are identical, therefore,

the accumulators are represented with one pair of electrodes, on which the above
processes occur;

• The temperature of the accumulators is uniform;
• Cross-diffusion of hydroxide ions OH− and oxygen molecules is absent;
• The oxygen above the separator is in equilibrium with the oxygen in the separator;
• The contact of the base of the positive and negative electrodes with their spattering is ideal;
• The “memory effect” [56] of a nickel–cadmium accumulators is not taken into account;
• Capacities of double layers of positive and negative electrodes are not taken into account.

Within the framework of these assumptions, the model of a nickel–cadmium battery
is built using the mathematical prototyping methods of energy processes [57].

4.1.3. Mathematical Model of Physical and Chemical Processes in a Nickel–Cadmium
Accumulator

The mathematical model of a nickel–cadmium accumulator includes the following
quantities [57–59]:
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• Charge transferred through an external circuit, ∆q, A·h;
• Current in the external circuit, I = δ∆q/dt, A;
• Current through the membrane δ∆qm/dt, A
• Component of the current in the external circuit, due to the main current-generating

processes, δ(∆q)base/dt, A;
• Charge accumulated in the membrane qacc, A·h;
• Component of the current in the external circuit, due to the release of oxygen,

δ(∆q)O2
/dt, A;

• Membrane resistance Rm, Ohm;
• Membrane capacity Cm, F;
• Internal resistance due to the main current-generating processes rin.base, Ohm;
• Internal resistance due to the release of oxygen rin.O2 , Ohm;
• EMF of the main current-generating processes Ebase, V;
• EMF due to the release of oxygen EO2 , V;
• Cross EMF for the main current, due to the release of oxygen Ebase

O2
, V;

• The coefficient of cross-EMF for the main current, due to the release of oxygen εbase
O2

, V;
• Cross EMF for the current associated with the release of oxygen, due to the main

current, EO2
base, V;

• Cross-EMF coefficient for the current associated with the release of oxygen, due to the
main current, εO2

base, V;
• Electrical potentials of the positive φ+ and negative φ− electrodes, respectively, V;
• The number of moles of accumulated oxygen in the electrode regions of the positive

∆ν+O2
and negative ∆ν−O2

electrodes, respectively;

• The number of moles of oxygen released at the positive electrode δ
(

∆ν+O2

)
c

and

utilized at the negative electrode δ
(

∆ν−O2

)
c
;

• The number of moles of oxygen diffused through the membrane δ∆νO2 ;
• Chemical potentials of oxygen in the anode region µ+

O2
and cathode region µ−O2

, J/mol;
• Equilibrium chemical potential of oxygen µ∗O2

, J/mol;
• Thermal coefficient for the main current q̃base;
• Thermal coefficient for the main current associated with the release of oxygen at the

positive electrode q̃O2+;
• Thermal coefficients of oxygen diffusion through the electrolyte membrane q̃O2d and

oxygen utilization at the negative electrode q̃O2u;
• Heat capacity of the accumulator, Cp, J/K;
• Heat release power in the accumulator, QV , W;
• Heat transfer coefficient of the accumulator, K, W/(m2·K);
• Heat transfer area, S, m2;
• Accumulator temperature, T, ambient temperature, T0, K.

The mentioned mathematical model of the physical and chemical processes dynamics
in a nickel–cadmium accumulator, obtained by mathematical prototyping, has the following
form [57–59]:

• Stoichiometric ratios:

δ∆νNi(OH)2
= Fδ(∆q)base, δ

(
∆ν+O2

)
c
= − 1

4F δ(∆q)O2
,

δ∆νCd(OH)2
= 1

2 F
(

δ(∆q)base + δ(∆q)O2

)
+ 2δ

(
∆ν−O2

)
c
,

• Equations of the conservation law of oxygen mass:

δ∆ν+O2
= δ

(
∆ν+O2

)
c
− δ∆νO2 , δ∆ν−O2

= δ∆νO2 − δ
(

∆ν−O2

)
c
;

• Equivalent circuit equations for electrochemical processes (Figure 1):
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rin.base
δ(∆q)base

dt + Rm
δ∆qm

dt + (φ+ − φ−) = Ebase − Ebase
O2

,

rbase.O2

δ(∆q)O2
dt + Rm

δ∆qm
dt + (φ+ − φ−) = EO2 − EO2

base, EO2 =
µ+

O2
−µ∗O2
4F ,

Ebase
O2

= εbase
O2

δ(∆q)O2
dt , EO2

base = εO2
base

δ(∆q)base
dt , εbase

O2
= εO2

base,

I = δ∆q
dt = δ∆qm

dt + δ∆qacc
dt =

δ(∆q)base
dt +

δ(∆q)O2
dt , Rm

δ∆qm
dt = qacc

Cm
;

• Oxygen diffusion equations and oxygen utilization equations:

δ∆νO2
dt = DO2

(
µ+

O2
− µ−O2

)
,

d
(

∆ν−O2

)
c

dt = RO2

(
µ−O2
− µ∗O2

)
;

• Heat release power:

QV = q̃baserin.base

(
d(∆q)base

dt

)2
+ q̃O2+rin.O2

(
d(∆q)O2

dt

)2
+ Rm

(
d∆qm

dt

)2
+ q̃O2d

1
DO2

( d∆νO2
dt

)2
+

+
(

q̃baseεbase
O2

+ q̃O2+εO2
base

) d(∆q)O2
dt

d(∆q)base
dt + q̃O2uRO2

(
d
(

∆ν−O2

)
c

dt

)2

;

• Equations of thermal coefficients:

q̃base = 1− T ∂Ebase
∂T

Ebase−
qacc
Cm −(φ

+−φ−)
, q̃O2+ = 1− T

∂EO2
∂T

EO2−
qacc
Cm −(φ

+−φ−)
,

q̃O2d = 1− T
∂

(
µ+O2
−µ−O2

)
∂T(

µ+
O2
−µ−O2

) , q̃O2u = 1− T
∂

(
µ−O2
−µ∗O2

)
∂T(

µ−O2
−µ∗O2

) ;

• Heat balance equation:

QV = Cp
dT
dt

+ KS(T − T0)
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Figure 1. Equivalent circuit for electrochemical processes in a nickel–cadmium accumulator.

The resulting system of equations is closed, and we will be able to predict the phys-
ical and chemical processes in a nickel–cadmium accumulator [57–59] by knowing the
following parameters:

• The parameters of the equivalent circuit (Figure 1);
• The function of the oxygen chemical potential;
• The oxygen chemical potential at equilibrium;
• Coefficients of diffusion and utilization of oxygen.
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4.1.4. Identification of the Substances and Processes Properties in a
Nickel–Cadmium Battery

The identification of the normalized variables is completed based on the following
assumptions (and simplifications) [57,59]:

• The oxygen cycle is assumed to be stationary—how much oxygen was released on the
nickel oxide electrode, the same amount diffused to the cadmium electrode, the same
amount was utilized on the electrode;

• The diffusion coefficient of oxygen through the membrane is constant;
• The main current-forming reactions (46) and (47) in the forward direction proceed

on the regions of the corresponding electrodes free from the hydroxide film, in the
reverse direction, on the regions covered with the hydroxide film (Figure 2);

• The reaction of release (48) and utilization (49) of oxygen on the corresponding elec-
trodes proceeds only on the areas of these electrodes free from the hydroxide film
(Figure 2);

• The area of the hydroxide film covering the electrodes is directly proportional to the
number of moles of the corresponding hydroxides (Figure 2);

• The reactivity coefficients of the main current-forming reactions do not depend on the
number of moles of oxygen in the near-electrode region;

• The capacity and resistance of the membrane do not depend on the current δ∆qm/dt
and the redistributed charge qacc;

• The dependences of the reactivity coefficients of electrochemical reactions on the
redistribution of the electrolyte in the active sites are similar to each other;

• The parameters of a nickel–cadmium accumulator at temperatures below the critical
temperature at which the development of thermal acceleration begins do not depend
on temperature;

• The heat capacity and heat transfer coefficient of the battery are constant throughout
the charge/discharge process.
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Figure 2. Active sites of nickel oxide (a) and cadmium (b) electrodes.

The assumptions formulated above related to the coating of the electrodes with a
hydroxide film are taken into account when obtaining analytical dependences of the
resistances rin.base, rin.O2 and the coefficient of transfer EMF εO2

base = εbase
O2

on the battery
discharge level [57]. The coefficients of the transfer EMF do not depend on the degree of
coating of the electrodes, and the resistances are rin.base, rin.O2 inversely proportional to the
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active areas of the electrodes, which means they are inversely proportional to the numbers
of moles of hydroxide films covering the electrodes [57]. Hence, the analytical functions of
the properties of the main current-forming reactions (46) and (47), as well as the oxygen
cycle reactions (48) and (49), it is advisable to set in the form (depending on the charge or
discharge of a nickel–cadmium battery) [57]:

rin.base =



r◦din.base+∆r◦din.base

2

1−
C+0 +∆q+4F

(
∆ν+O2

)
c

C+


+

r◦din.base−∆r◦din.base

2

1−
C−0 +∆q+4F

(
∆ν−O2

)
c

C−


,

{ d(∆q)base
dt ≥ 0

d(∆q)base
dt +

d(∆q)O2
dt ≥ 0

r◦din.base+∆r◦din.base

2

1−
C+0 +∆q+4F

(
∆ν+O2

)
c

C+


+

r◦cin.base−∆r◦cin.base

2
C−0 +∆q+4F

(
∆ν−O2

)
c

C−

,

{ d(∆q)base
dt ≥ 0

d(∆q)base
dt +

d(∆q)O2
dt < 0

r◦cin.base+∆r◦cin.base

2
C+0 +∆q+4F

(
∆ν+O2

)
c

C+

+
r◦din.base−∆r◦din.base

2

1−
C−0 +∆q+4F

(
∆ν−O2

)
c

C−


,

{ d(∆q)base
dt < 0

d(∆q)base
dt +

d(∆q)O2
dt ≥ 0

r◦cin.base+∆r◦cin.base

2
C+0 +∆q+4F

(
∆ν+O2

)
c

C+

+
r◦cin.base−∆r◦cin.base

2
C−0 +∆q+4F

(
∆ν−O2

)
c

C−

,

{ d(∆q)base
dt < 0

d(∆q)base
dt +

d(∆q)O2
dt < 0

(50)

rin.O2 =



2r◦din.O2
−r◦din.base+∆r◦din.base

2

1−
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(
∆ν+O2

)
c

C+


+

r◦din.base−∆r◦din.base

2

1−
C−0 +∆q+4F

(
∆ν−O2

)
c

C−


,


d(∆q)O2

dt ≥ 0
d(∆q)base

dt +
d(∆q)O2

dt ≥ 0

2r◦din.O2
−r◦din.base+∆r◦din.base

2

1−
C+0 +∆q+4F

(
∆ν+O2

)
c

C+


+

r◦cin.base−∆r◦cin.base

2
C−0 +∆q+4F

(
∆ν−O2

)
c

C−

,


d(∆q)O2

dt ≥ 0
d(∆q)base

dt +
d(∆q)O2

dt < 0

2r◦cin.O2
−r◦cin.base+∆r◦cin.base

2

1−
C+0 +∆q+4F

(
∆ν+O2

)
c

C+


+

r◦din.base−∆r◦din.base

2

1−
C−0 +∆q+4F

(
∆ν−O2

)
c

C−


,


d(∆q)O2

dt < 0
d(∆q)base

dt +
d(∆q)O2

dt ≥ 0

2r◦cin.O2
−r◦cin.base+∆r◦cin.base

2

1−
C+0 +∆q+4F

(
∆ν+O2

)
c

C+


+

r◦cin.base−∆r◦cin.base

2
C−0 +∆q+4F

(
∆ν−O2

)
c

C−

,


d(∆q)O2

dt < 0
d(∆q)base

dt +
d(∆q)O2

dt < 0

(51)

εbase
O2

= εO2
base =



r◦din.base−∆r◦din.base

2

1−
C−0 +∆q+4F

(
∆ν−O2

)
c

C−


, d(∆q)base

dt +
d(∆q)O2

dt ≥ 0

r◦cin.base−∆r◦cin.base

2
C;−0 +∆q+4F

(
∆ν−O2

)
c

C−

, d(∆q)base
dt +

d(∆q)O2
dt < 0

(52)

RO2 = R◦O2

1−
C−0 + ∆q + 4F

(
∆ν−O2

)
c

C−

 (53)

The parameters included in the above dependencies are taken only for pure nickel
oxide and cadmium electrodes [57].



Energies 2023, 16, 1933 18 of 24

When identifying the parameters included in (50)–(53), the discharge curve (the space
of state coordinates) of a nickel–cadmium accumulator is represented as three sections
(Figure 3) [57]:

• Section I (Figure 3b) corresponds to a decrease in the discharge voltage associated
with the polarization (redistribution) of the electrolyte;

• In sections II and III (Figure 3b), the battery is discharged solely by filling the electrodes
with products of the corresponding electrochemical reactions (hydroxide films).

• Section II differs from section III of the discharge curve in Figure 3b. In section II, an
electrode with a smaller capacity is slightly coated with a hydroxide film, while in
section III, the electrode is already significantly coated with a hydroxide film [57]. In
section III, each fraction of the remaining small free area is already more significant
than in section II, therefore, the voltage decreases much faster, and the rate of decrease
increase [57].
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Identification of the properties of substances and processes in a nickel–cadmium
battery is carried out from the equations of physical and chemical processes by performing
the following actions [57,59]:

1. The resistances of the free sections of the electrodes and the EMF of the electrode reac-
tions are determined from the condition of coincidence of the calculated voltage curve
with the experimental one for the considered discharge current and ambient tempera-
ture in sections II and III (Figure 3) corresponding to the steady-state concentrations
of the electrolyte.

2. The capacity of the membrane is determined from the condition of coincidence of
the calculated voltage curve with the experimental one for the discharge current and
ambient temperature in section I (Figure 3).

3. The distribution of electrolyte concentrations over near-electrode regions, currents
through the membrane during polarization, and the heat release power in a nickel–
cadmium battery are determined for the specified discharge current of a nickel–
cadmium battery and ambient temperature.

4. The heat capacity and heat transfer coefficient of a nickel–cadmium battery are de-
termined from the condition of coincidence of the calculated temperature dynamics
with the experimental one.

5. The following dependences are constructed:

a. The membrane capacity on the current through the membrane and the tempera-
ture of the battery;

b. The resistances of the active sections of the electrode on the charge or
discharge currents;

c. The EMF of the double layers on the redistribution of electrolyte concentrations.

6. Analytical expressions of the properties of substances and processes in a nickel–
cadmium battery are constructed by adding additional components in (50)–(53).
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7. The additional coefficients are determined from the discharge voltage and temperature
dynamics for different discharge modes of a nickel–cadmium battery.

Thus, the identification of the parameters of the nickel–cadmium battery model is
carried out using a piecewise analytical solution of the equations of dynamics of physical
and chemical processes in the battery [57].

As an example, let us consider the calculation of physical and chemical processes
model parameters in a nickel–cadmium battery from a 20NKBN-25-U3 series 3 battery.
The discharge curves (Figure 4) show the calculated curves for the identified values for
sections II and III of internal resistances and EMF without taking into account polarization.
In addition, the graphs (Figure 5) show the calculated curves, which additionally take into
account the membrane capacity identified in section I. The coincidence of the calculated
and experimental data, as can be seen in Figure 5, confirms the sufficiently high accuracy
of the calculation of the proposed method of mathematical prototyping [57].
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For different discharge currents, the dependence of the resistances of pure electrodes is
shown in Figure 6 [57]. As it is easy to see from Figure 6, such resistances fall with increas-
ing discharge current, which corresponds to the theoretical provisions of electrochemistry.
Additionally, with an increase in the discharge current, the capacity of the membrane
decreases (Figure 7) [57]. Such dependencies can be considered as dependencies on the cor-
responding currents since these currents in the steady state are equal to discharge currents.
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Taking into account the dependencies shown in Figures 6 and 7 in (50)–(53), as well as
adding and identifying additional components in (50)–(53) (similarly to (25) and (26)), we will
obtain a more complete model of physicochemical processes in a nickel–cadmium battery.

Such a model makes it possible, for example, to predict the temperature of a nickel–
cadmium battery, thereby predicting and taking measures to prevent the thermal runaway
of the battery [57,59].

4.2. Lithium-Ion Accumulator Simulation

The principle of operation of lithium-ion batteries is the intercalation/deintercalation
of lithium ions into the electrodes (Figure 8) [22,60]. Similarly, to a nickel–cadmium battery,
as the cells in the electrode are filled with lithium ions, the active area of the electrodes
decreases. Based on this, in [61], a mathematical model for the voltage of a lithium-ion
battery of the QL079KM series was obtained from the discharge voltage curves.
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A mathematical model for the voltage and temperature of lithium-ion batteries of the
US18650VTC6 series was obtained in [61,62] from test results similar to a nickel–cadmium
battery. The largest relative error of this model did not exceed 12% [62]. Analytical
expressions (25) and (26) in [62] were given by further modification of the Balter–Vollmer
model [22,63].

5. Discussion

In this paper, a unified approach to designing models of physical and chemical pro-
cesses is proposed—a generalized method of mathematical prototyping of energy processes.

The model obtained by mathematical prototyping incorporates the laws of thermo-
dynamics, conservation laws, as well as some physical features of the processes in a RES.
This guarantees the correctness of the desired model, i.e., its consistency with its general
physical laws.

Obtaining a model of an arbitrary system is reduced to specifying classes of analyt-
ical expressions of properties of substances and processes satisfying the corresponding
constraints with accuracy up to experimentally determined constant coefficients. The speci-
fied classes of analytical expressions cover the entire space of functions of the properties
of substances and processes of the system, taking into account restrictions. The deter-
mination of the controlled system’s parameters by the measured parameters is reduced
to the identification of constant coefficients of the specified analytical expressions from
experimental data.

To simplify the integration of equations of the mathematical prototyping method in
order to reduce computational costs, an analytical task for solving differential equations of
the mathematical prototyping method with an accuracy of constant coefficients is proposed.

The proposed approach to piecewise simplification of analytical expressions also
reduces computational costs. Additionally, the possibility of parallelization of calculations
that appears as a result of piecewise analytical simplification significantly speeds up the
execution of calculations.

The correctness of the models obtained by the proposed method of mathematical
prototyping for specific instances of objects allows using this approach for:

• Formation and refinement of real-time digital twins of objects and systems;
• Synthesis of objects and systems governing laws;
• Diagnostics and forecasting of the technical condition of systems, as well as

medical diagnostics;
• To form and optimize technological processes (in operation and maintenance, biochem-

istry and bioengineering, geoengineering and meteorology, aerospace technologies, etc.);
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• Designing new facilities and systems.

The physicality of the proposed method of mathematical prototyping allows using
artificial intelligence methods to obtain models that do not contradict physics, unlike
classical methods of constructing simulation models. The proposed piecewise analytical
approach allows the processing of experimental data, and hence the training of models,
in parts.
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