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Abstract: Distribution network operators face technical and operational challenges in integrating
the increasing number of distributed energy resources (DER) with the distribution network. The
hosting capacity analysis quantifies the level of power quality violation on the network due to the
high penetration of the DER, such as over voltage, under voltage, transformer and feeder overloading,
and protection failures. Real-time monitoring of the power quality factors such as the voltage,
current, angle, frequency, harmonics and overloading that would help the distribution network
operators overcome the challenges created by the high penetration of the DER. In this paper, different
conventional hosting capacity analysis methods have been discussed. These methods have been
compared based on the network constraints, impact factors, required input data, computational
efficiency, and output accuracy. The artificial intelligence approaches of the hosting capacity analysis
for the real-time monitoring of distribution network parameters have also been covered in this
paper. Different artificial intelligence techniques have been analysed for sustainable integration,
power system optimisation, and overcoming real-time monitoring challenges of conventional hosting
capacity analysis methods. An overview of the conventional hosting capacity analysis methods,
artificial intelligence techniques for overcoming the challenges of distributed energy resources
integration, and different impact factors affecting the real-time hosting capacity analysis has been
summarised. The distribution system operators and researchers will find the review paper as an easy
reference for planning and further research. Finally, it is evident that artificial intelligence techniques
could be a better alternative solution for real-time estimation and forecasting of the distribution
network hosting capacity considering the intermittent nature of the DER, consumer loads, and
network constraints.

Keywords: artificial intelligence; machine learning; deep learning; hosting capacity; impact factors;
optimisation; distributed energy resources

1. Introduction

Greenhouse gas and climate change have become global concerns. The ever-increasing
global energy demand is creating pressure on climate change. The United Nations (UN)
has declared 2019 as the second warmest year and 2010–2019 as the warmest decade
in history [1]. According to the UN environment programme (2022), about 80% of the
global energy supply comes from fossil fuels, and the global share of electricity generated
using fossil fuels is about 66%, which emits about 60% of greenhouse gas (GHG) to the
environment [2]. Integrating renewable energy resources with the electricity grid could
minimise the adverse effect of climate change. The share of solar and wind power increased
about 10% in 2021 [3]. The contribution of renewable electricity to the global power supply
reached from 12% in 2011 to 28.3% in 2021. This study shows that the renewable energy
supply may increase to about 30% by 2024 [4]. To meet the zero carbon target, the electricity
supply from renewable energy resources needs to increase to about 60% and 90% by 2030
and 2050, respectively [5].
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Renewable energy resources have become significant contributors to energy supply in
electricity distribution networks [6,7]. The high penetration of distributed energy resources
with the distribution network poses technical and operational challenges for the distribu-
tion system operators (DSO) [6,8,9]. Sustainable transmission and distribution network
operation maintaining the statutory power quality limits has become a significant technical
and operational concern for DSO. The electricity distribution system operators should
supply electric power to the consumers without violating statutory limits of the power qual-
ity [10]. Traditionally, the electric power flow maintains the unidirectional nature from the
generating station to the consumers through the transmission and distribution networks [8].
The unidirectional power flow concept has changed due to the integration of distributed
energy resources with the network. The variable nature of the power generation from the
DER and customer load uncertainties requires real-time monitoring and data visibility
for the distribution network stability. Other factors such as over voltage, under voltage,
voltage unbalanced, transformer and feeder overloading, reverse power flow, network
control scheme, and thermal limits of network components have emerged as significant
issues for the violation of statutory limits of the power supply [10–14]. The capability to
intake power from the maximum number of DER without violating the power quality
limits, known as the hosting capacity, should be determined on a real-time basis for the
sustainability and reliability of the network.

The hosting capacity provides policy support and network information to the DSO.
The dynamic characteristics of the distribution network integrate additional power gener-
ated by the DER, maintaining the power quality within limits. Based on the network and
DER characteristics, the distribution network’s hosting capacity estimates the network’s
capability to accommodate DER while maintaining the power quality limits and with-
out re-enforcing the network equipment. It also emphasises network reliability without
further auguring the existing control configuration and infrastructure [15]. The National
Renewable Energy Laboratory (NREL) has defined the hosting capacity of the distribution
network as the capability to accommodate additional DER without further enhancing the
control mechanism, upgrading the system components, and maintaining the safety and
reliability of power supply to the consumers [16]. The Energy and Power Research Institute
(EPRI) considers the hosting capacity as the output of a systematic study of the distribution
network and renewable energy resources’ input data based on carefully selecting a series
of analytical parameters. EPRI has identified the hosting capacity as the estimation of
additional DER to connect to any place on the existing network within power quality and
control configurations [15]. It has emphasised the quality and granularity of data, careful
selection of methods, tools, and parameters for analysis and appropriate application of the
hosting capacity results. Researchers have illustrated the hosting capacity of the network
as the capability to sustainably integrate the maximum amount of power from the DER
within the distribution network without further augmentation of the existing resources and
control systems [7,9,17,18]. The study of the hosting capacity is concerned with integrating
distributed energy resources into the electric distribution networks in a technically feasible,
operationally sustainable, and economically profitable manner. The analysis of the host-
ing capacity enables the network operators to integrate the distributed renewable energy
resources [17]. It also helps to maintain network stability and DER integration reliability
without further investment for upgrading network components [8,14,18,19]. The hosting
capacity of the distribution network is not any static value. It depends on inputs collected
from the network analysis, assumptions for the hosting capacity estimation, grid models,
and impact factors [20].

The impact factors are the DER and Grid characteristics that influence the capability of
the distribution network to integrate additional DER, maintaining the power quality limit
and reliability of the network operation [20]. Impact factors are sometimes opposing each
other. Sometimes they complement each other to enhance the DER integration capability of
the network. The impact factors such as over voltage, under voltage, power loss, thermal
limits, power factor, location of the renewable energy resources, harmonic distortion,
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real power, reactive power, control mechanism, technology, and frequency impact the
capability of the network to accommodate DER in different ways. All these factors impact
the approximate estimation of the distribution network capability for DER penetration [21].
Different hosting capacity analysis approaches consider the impact factors differently. Such
consideration may affect the hosting capacity simulation result.

The selection of the hosting capacity analysis methods depends on present and future
needs [20]. The simulation result depends upon the characteristics of the electricity network,
DER, control mechanisms, transformers, conductors, and inverter technologies. The ef-
fect relies on harmonic injection, real and reactive power flow, power losses, consumer
demand, and energy usage patterns. Electric Vehicles (EV) have added new dimensions
for the hosting capacity analysis [22]. The complexity of the distribution grid and DER
uncertainties have made the analysis more challenging. The high volume of network data,
power quality indicators, and variability of DER output made the conventional hosting
capacity estimation approaches insufficient to tackle operational and reliability issues of
DER integration [23]. The artificial intelligence approach for the hosting capacity analysis
could encompass the real-time monitoring and estimation of network variables and impact
factors for calculating the hosting capacity of the network.

Both conventional and artificial intelligence approaches for the hosting capacity analysis
depend on power flow analysis tools for the network input. The power flow analysis tools
also assist the planning, design, and operation of the network [24]. Some power flow analysis
tools are commercially available, such as PowerFactory, PSS/Sincal, PSCAD, and PSS/E.
On the other hand, PandaPower, OpenDSS, PowerModelsDistribution, and OpenDSOPF are
open-sourced power flow analysis tools. Different tools have their strong points and focused
areas. The selection of power flow analysis tools depends on the purpose and need of the
network analysis. Standard, efficient, and industry-proven tools could help to overcome
network analysis challenges. Although several literature reviews on the hosting capacity
analysis methods have summarised various aspects, the utilisation and impacts of artificial
intelligence on hosting capacity analyses still need to be explored. They need further studies
to capture its usage for system stability and network sustainability.

The information for the literature review has been gathered from different databases,
including Google Scholar, ScienceDirect, and IEEE Explore. Website of other organisations
such as the UN, the United Nations Environment Programme (UNEP), the International En-
ergy Agency (IEA), the International Renewable Energy Agency (IREA), the NREL, and the
EPRI has been consulted to gather the required information for this review paper. Only
English-language publications have been considered for this literature review. Keywords
such as artificial intelligence techniques, deep learning, DER, hosting capacity analysis,
and low voltage distribution network have been considered for searching resources from
databases. The most relevant research articles, review papers, conference papers, and re-
ports have been considered for this review paper. The statistics of the article’s search results
could be summarised as shown in Table 1 and Figure 1.

Table 1. Publications on the Hosting Capacity Analysis of distribution network with DER.

Online Database Period Results

ScienceDirect 2005–2022 624

Scopus 2005–2022 504

Google Scholar 2005–2022 265

IEEE Xplore 2013–2022 42
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Figure 1. Graphical Representation of the Article search result.

• Contributions of the Paper
The contributions of the literature review are as follows: (1) It has analysed the
impact of Grid-based and DER impact factors on the hosting capacity estimation.
The mapping of impact factors with feeder matrices has been summarised for better
visibility on the relative importance of impact factors for the hosting capacity analysis;
(2) The conventional hosting capacity analysis approaches were compared based on
different features so that the network planners and researchers could easily select the
appropriate method for the hosting capacity estimation; (3) The artificial intelligence
approaches for the hosting capacity analysis have been summarised for the future
direction of network planners and researchers;

• Organisation of the paper
In this paper, the literature review and research gap has been discussed in the intro-
duction. The impact factors have been highlighted in Section II. Section III presents
the conventional and artificial intelligence technique-based hosting capacity analysis
approaches. In section IV, future research directions have been discussed. Finally,
the paper presents concluding remarks with guidelines for future research.

1.1. Literature Review

The hosting capacity analysis has gained much importance due to the high penetration
of DER and the growing demand for renewable energy. Researchers have proposed dif-
ferent hosting capacity analysis methods using DER penetration scenarios based on other
unknown network and DER inputs. The authors in [25] studied the impact of Volt-var and
Volt-Watt settings on the hosting capacity. They investigated the PV-riched distribution
network to enhance the hosting capacity using the Volt-var and Volt-Watt settings. The au-
thors did not evaluate voltage unbalanced and DER uncertainties in the study. In [18],
the researchers analysed the hosting capacity using hourly load data obtained from the
rooftop PV panel output. They used MATLAB to simulate the variable output of the PV
panel and load variance. The authors did not assess other renewable energy resources
and network variables. Moreover, the proposed method requires millions of power flow
simulations to reflect the voltage and power limits. The authors in [22] investigated the
impact of EV on the distribution network. They proposed the hosting capacity optimisation
model using Mixed Integer Linear Programming (MILP). The authors highlighted wind
energy resources for maximising DG capacity in the study. The study did not consider the
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voltage unbalance of the network, real-time monitoring mechanism, and uncertainties of
the power output of the renewable energy resources. In [26], authors proposed the Bayesian
Optimisation (BayesOpt) to investigate the distribution network’s probabilistic hosting
capacity. They considered the historical data of the residential loads and DER with their
uncertainties for the study. The authors in [11] considered the nodal voltage and loading
of the distribution network equipment for the hosting capacity analysis using the Quasi-
Static Time Series Analysis (QSTS). They analysed the grid impacts and power quality
requirements through dynamic hosting capacity analysis matrices. The researchers tested
the spatial Monte Carlo DPV Scenarios to obtain the impact of control schemes and results
of distributed photovoltaic (DPV) power curtailment. The study only considered voltage
and thermal violations as impact factors. In [17], the authors discussed the advantages,
disadvantages, and impacts on the voltage and current of deterministic, stochastic, and time
series hosting capacity analysis methods. They compared the output accuracy, execution
time, data requirement, and uncertainties consideration of each hosting capacity analysis
technique. In [27], the authors studied an integrated parallel computing algorithm-based
mathematical model for the optimal solution that could provide computation effectiveness
in complex scenarios. However, the proposed model is complex. It has no neutral voltage
representation for unbalanced load conditions. The authors in [9] studied the optimal host-
ing capacity for distributed small-scale rooftop photovoltaic systems. They proposed the
Monte Carlo method using a stochastic analysis approach to estimate the hosting capacity.
The authors in [11] studied the impact of voltage violation at the customer end and thermal
violation at network components on the dynamic distributed photovoltaic hosting capacity
using QSTS simulation. The authors investigated the severity of the parameters’ violation
period on hosting capacity by employing the dynamic DPV hosting capacity matrices.
The proposed study did not cover a real-time hosting capacity analysis of the distribution
network. The authors in [10] proposed the stochastic-based photovoltaic hosting capacity
analysis method for the hosting capacity analysis. The probabilistic hosting capacity of
the distribution network was studied in [28] using multi-parametric programming (MPP).
The study used the optimal grid model and considered the feasible and infeasible optimal
power flow (OPF) instances. The proposed method reduced the computational burden of
many OPF instances. However, it could not measure the real-time scenarios of the DER
and distribution network parameters.

In [29], the authors proposed various tariff schemes such as time-of-use (TOU), net
metering, and distribution locational marginal pricing (DLMP) for EV charging to inves-
tigate the impact on the residential distribution network’s hosting capacity. The authors
considered the impact of the flexible load created by EV. However, the authors did not
cover other factors such as voltage unbalance, network constraints, and DER uncertainties.
In [30], the authors studied the distribution network to maximise the hosting capacity
with a high penetration of DER. It considered the technical and economic impact factors
as objective functions. They proposed the stochastic multi-objective optimisation model
for the hosting capacity maximisation with wind power sources. The proposed model
emphasises reducing the renewable energy production and operational cost. It did not
include the renewable energy resource (RES) uncertainties, voltage unbalance, and real-
time monitoring of the power quality supplied to the consumers. In [31], the authors
considered the balancing, profile, and grid-related cost as the primary concern from an
economic perspective. They proposed an AI-based economic model to reduce the integra-
tion cost substantially. The author studied the deep-learning-based application, technical
data, and deployment architecture in [32]. They considered data availability to be a sig-
nificant constraint for model testing and development purposes. In [11], the grid impacts
and penetration of photovoltaic energy resources have been studied through power flow
analysis by the QSTS method. The continuation power flow (CPF) algorithm was proposed
in [33] for determining the hosting capacity with distributed energy resources. In the
study, the authors considered the DER outage due to the abrupt disturbance or voltage
instability for the generator sudden ramping. The proposed method only considered the
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under-voltage criteria and ignored other factors. In [34], the authors introduced the random
forests and firefly algorithm (RFs-FFA)-based hybrid model to predict the hourly global
solar radiation more accurately. They tested the proposed prediction model using various
statistical tools and techniques for the external and internal validation of the proposed
prediction model. The authors in [35] studied the deep-learning-based Spatial–Temporal
long short-term memory (ST-LSTM) on the IEEE 34-bus, 123-bus feeders, and 12.47 kV
9 km-long Arizona utility feeders to validate the proposed method for hosting capacity
analysis. The authors incorporated spatial and temporal correlations for predicting the
hosting capacity at each distribution network node in the study. However, the study did
not include the voltage sensitivity data.

The authors in [36] proposed the DGHost approximation technique by applying the
k-Nearest Neighbour Algorithm (k-NN). They investigated the consequences of the current
generated from small-scale renewable energy resources such as rooftop solar systems on the
hosting capacity of the low-voltage distribution network. The proposed method needs the
minimum network data for calculating the hosting capacity. The authors also used cross-
validation techniques to optimise the system and the accuracy of the result. The study only
considered the small-scale inverter-connected DG and low-voltage distribution systems.
The proposed DGHost methods require the complete model information of the network,
such as network connectivity and equipment parameters, which makes it challenging
to implement. In [37], the authors tested the machine-learning-based static multi-agent
reinforcement learning (MARL) algorithm to maximise the distribution network’s hosting
capacity and voltage flexibility. The study covered converter-interfaced generators (CIGs)
such as PV panels, wind generators, micro-turbines, and fuel cells using the secondary
voltage control mechanism. The authors validated the proposed method on the modified
IEEE 34-bus test feeder containing CIG for validation. The authors in [38] investigated
the algorithm of deep learning-based k-means clustering based Convolutional Neural
Networks’ and Long Short-Term Memory (kCNN-LSTM). The authors tested the model
using granular data for 15 minutes of energy consumption to forecast the energy demand
accurately. In [39], the authors examined the support vector machine (SVM) algorithm to
classify the low voltage distribution grid feeders based on the sample data. The proposed
model depends on the input data accuracy to estimate the penetration level of the grid
based on the node voltages and loads. The study should have included other factors of the
network and DER. The researchers in [40] proposed the artificial intelligence (AI) methods
for variable renewable energy (VRE) resources with the distribution network, considering
the economic and business viability. The study highlighted the financial aspects of VRE
integration but overlooked the uncertainties of the network and DER. In [13], the authors
proposed a Spatio-temporal Probabilistic Voltage Sensitivity Analysis (ST-PVSA) frame-
work to calculate the hosting capacity at a particular distribution network node with DER.
The study considered voltage unbalances, random behaviour of the photovoltaic resources
distributed in a random location, and distribution network parameters. The proposed
method should have covered voltage and power limits’ violation analysis over a short
period using the load and photovoltaic (PV) system time series data.

Research Gap

The modern electricity network is considered the most complex system for the versatility
of grid interconnections, equipment-wide points, and operating characteristics. The high
penetration of residential and commercial renewable energy resources has complicated the
technical issues of the distribution networks for the network operators’ or at the customers’
end [41]. Accurate estimation of the network capability to withstand the additional injection
of power generated from the DER [14] is the crucial factor for hosting capacity analysis.
The sustainable operation of the distribution network with a high penetration of DER depends
on the network’s real-time visibility and data transparency [41]. Proper consideration of
input assumptions and precise selection of impact factors [20] affect the output of the hosting
capacity of the distribution network and sustainable integration of renewable energy resources.
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The consumer load uncertainty, DER characteristics, inverter technology, and network control
mechanism have increased the non-linearity in the network analysis [42].

The hosting capacity analysis depends on the input data, impact factors, uncertainties,
and objective functions. Related works have categorised the hosting capacity analysis
studies as deterministic, stochastic, streamlined, and iterative. The deterministic method
is a model-based approach that determines a single output based on known inputs. This
method does not consider the time-series variations of the input data. The stochastic
method considers the distribution network and DER uncertainties. The probabilistic
approach of the hosting capacity analysis considers the uncertainties of the network and
DER to estimate the hosting capacity of the distribution network. Both deterministic and
stochastic methods fail to cover the time-series effect of network and DER uncertainties.
The streamlined and iterative methods consider the time-series effect of the input data for
calculating the hosting capacity of the distribution network to accommodate additional
DER without further infrastructure upgradation. The streamlined approach depends on a
series of mathematical equations and complex algorithms. The iterative method gradually
increases the DER penetration level and calculates the influences of different impact factors.
It creates a substantial computational burden for the hosting capacity analysis.

None of the above hosting capacity analysis methods covers the real-time monitoring
of the network and DER parameters to accommodate the time-varying effect. The super-
vised and unsupervised dynamic hosting capacity analysis methods consider the probabilis-
tic nature of the network and DER data. These methods conduct an extensive power flow
analysis based on a network model for obtaining the hosting capacity of the distribution
network [35]. The researchers have proposed different AI techniques to overcome the
computational burden of numerous power flow analysis scenarios, reduce computation
time, increase efficiency, and enhance result accuracy. The distributed energy resources are
intermittent in nature [17]. The hosting capacity analysis requires real-time network data
monitoring, accurate forecasting of load demand, and DER power output.

Artificial intelligence algorithms are flexible and efficient. They could capture the
non-linearity of the hosting capacity analysis of the distribution network with the high
penetration of DER. Researchers have studied different artificial intelligence algorithms
such as Multi-Parametric Programming (MPP) OPF [28], the random forests technique
and firefly algorithm [34], Spatial-Temporal LSTM (ST-LSTM) [35], Multi-Agent Reinforce-
ment Learning (MARL) [37], kCNN-LSTM [38], Support Vector Machines (SVM) [39], long
short-term memory (LSTM) [43], Improved Sine Cosine Optimisation Algorithm-based
LSTM (ISCOA-LSTM) [44], One-step Secant Backpropagation Neural Network (OSSB-NN)
and BFGS Quasi-Newton Backpropagation (BFGS-QNB) [45], Policy Function Approxi-
mation (PFA) [46], a novel combination of Teaching–Learning-based Optimisation (TLBO)
and Honeybee-Mating Optimisation (HBMO) algorithms [47], and the random forests
technique [48] to explore different aspects of the hosting capacity in real-time scenarios.
Most studies highlighted other prediction models. Some studies covered analysis, optimi-
sation, and distribution network hosting capacity enhancement techniques. Researchers
in [38,44] studied the consumption and demand forecasting of the distribution network.
In [43], the authors focused on the prediction of the peak demand of the distribution
zone. The authors in [45] focused on forecasting the short-term energy and load demand.
The photovoltaic current output prediction technique and PV output have been analysed
in [48,49]. The authors in [28,35,37,47,50] studied the hosting capacity optimisation of the
distribution network. In [35], the authors investigated the deep-learning-based Spatial–
Temporal LSTM to predict the real-time hosting capacity of each distribution network
feeder. The authors analysed voltage magnitude, voltage angles, load profiles, and PV
profiles. In [37], the authors proposed the multi-agent reinforcement learning algorithm
to maximise the distribution network’s hosting capacity and voltage flexibility. In [40],
the authors studied the VRE integration cost for cost optimisation. Distribution grid clas-
sification for hosting capacity analysis has been focused in [39], and the impact of the
PV-battery system on the distribution network has been studied in [46]. Few studies have
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covered the real-time monitoring of the distribution network and DER uncertainties for
optimal network hosting capacity to accommodate the maximum power from renewable
energy resources. In [23], the authors proposed Multi-Objective Cat Swarm Optimisation
(MO-CSO) to study the uncertainties and DER penetration level. They have verified the
algorithm using the backward-forward sweep power flow on an unbalanced IEEE 34-bus
radial system network. The authors did not cover the demand response in their study.

2. Impact Factors

Impact factors are the inputs and assumptions that determine the power system
network’s boundary values to assess the hosting capacity of the distribution network [20].
The network capability to integrate DER depends upon various impact factors. Different
hosting capacity analysis methods consider multiple factors to analyse the network capacity
to integrate DER without violating the power quality boundaries [51]. The obtained result,
the accuracy and complexity of the hosting capacity analysis framework depend on the
careful selection of the impact factors. The more impact factors considered, the more
complexity arises for analysis. The impact factors could be categorised based on the network
and DER characteristics, namely Grid-based impact factors and DER impact factors.

2.1. Grid-Based Impact Factors

The grid-based impact factors determine the current circumstances of the distribution
network to integrate additional power from the DER. It also defines the present state of the
network for calculating the hosting capacity. Most factors influence the voltage levels of the
power network. Other factors affect grid components’ impedance, reliability, protection,
and thermal issues. The importance of the impact factors depends upon their influence on
network issues. The grid-based impact factors could be summarised as in Table 2.

Table 2. Grid-based Impact Factors.

Impact Factors Description

Network Configuration The distribution feeder model and configuration are the primary concern for hosting capacity
analysis. Each feeder is unique for operation and changes its characteristics based on the orientation
and configuration [52]. The grid’s static and dynamic configuration dramatically affects the
distribution network’s hosting capacity. Each feeder has a distinctive hosting capacity due to its
unique characteristics. The network topology, control equipment location, transformer location, cable
characteristics, the active and reactive power control mechanism, and power factor significantly
affect the network hosting capacity [53].

Source Impedance of
Feeder Model

The feeder model impacts the hosting capacity with renewable energy resources. Generally,
the distribution feeders are designed to be radial in nature [20]. Hosting capacity analysis considers
the existing distribution network model and equipment data. Operators maintain operational
flexibility to cut off any feeder section for maintenance or other operational purposes. Such activities
affect the voltage profile, transformer loading, and thermal limits of the conductors and other
components of the network. The hosting capacity depends upon operational flexibility. The normal
‘as designed and the abnormal re-configured operating condition of the feeders [20] affect the
distributed energy resources penetration level.

Connected DER The location, technology, amount, type, and control mechanism of the DER affect the voltage profile,
thermal limits, and control system of the power network [7,10,14]. The impact of connected DER
should be considered for hosting capacity analysis.

Connected Load The nature, location, and amount of connected load affect the distribution feeders’ voltage profile,
protection analysis, and thermal limit. Hosting capacity analysis highly depends on the nature of the
connected loads [54]

Thermal Limits The connected DER impact the apparent power level in the electricity network. It determines the
maximum allowable apparent power in the network branch and depends upon the network assets
and their specification, such as transformers, control equipment, and conductors [55]. The hosting
capacity of any branch should satisfy the thermal limits of the network components.
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Table 2. Cont.

Impact Factors Description

Control Scheme The active and enhanced control mechanism affects the network’s hosting capacity to integrate more
DER [51]. The autonomous and managed control system with adequate data, communication system
and functionality determine the boundary conditions of hosting capacity to accommodate more DER
power injection into the distribution network [56].

Time Time reflects the impact of the various grid and DER factors. A realistic scenario could be generated
using the time-varying analysis to integrate more DER with the distribution network [14].

Voltage Regulation The voltage regulating equipment in the distribution network prevents the under and over-voltage
due to abrupt load changes or power output uncertainties due to the distributed energy resources.
The voltage profile generated from the voltage regulating devices should be considered for hosting
capacity analysis [52]. The DER output uncertainties influence the distribution network’s voltage at
common connection points. The real and reactive power injected from the distributed energy
resources also affects the voltage level of the network [55]. At any node of the network, the voltage
level Vα requires to be maintained within the permissible limit Vmin and Vmax for sustainable and
reliable power supply to the consumers. Power quality depends upon the voltage profile generated
by the voltage-regulating devices. The uncertainty of the DER output and the abrupt change of the
consumer’s load may deteriorate the distribution network’s voltage profile. Voltage regulating assets
keep the voltage level within the allowable limits and prevent under-voltage and over-voltage
problems in the power network [56]. Thus, the voltage profile provides the necessary information to
the network’s hosting capacity enhancement to incorporate more power into the network. Deploying
capacitor banks, additional control mechanisms, adjustment of voltage regulating equipment, and
setting the operating bandwidth of these assets help to flatten the voltage profile that enhances the
hosting capacity of the network [57].

Transmission and
Distribution network
integration

A recent study in [53] found that the flexibility in network topology significantly increases the
hosting capacity of the network. Based on the case study on the modified 33-Bus system, the authors
in [53] observed about 37% increase in hosting capacity deploying power factor control mechanism of
DER and voltage control of distribution network through OLTC. The high penetration of DER in the
distribution network causes transmission network planning challenges for integration with the
distribution network. The high power injection into the distribution network may create voltage
unbalance, bi-directional power flow [58], the difference in phase angle [59], fault current
enhancement, frequency instability, and network losses. Conventional power flow analysis assumes
the transmission line as a slack bus and overlooks the impact of DER constraints. Large-scale DER
penetration has caused voltage instability, bi-directional power flow and integration complexity for
the transmission network planners [58]. The effectiveness of coordinated transmission and
distribution network integration has been investigated in [59]. The study revealed that the high
penetration of DER at the substation end of the distribution network could increase the over-voltage
problem, fault current, and phase unbalance, especially during mid-day. In [60], the authors studied
the impact of energy storage on hosting capacity and transmission integration problems. They have
found that small-scale energy storage devices could substitute or complement the line investment
considering the penetration level, location of the energy storage system and coordination of the
network integration. In [61], the authors analysed the risks associated with the reactive power control
of DER. The study found that reactive power control could reduce the transmission-distribution
network integration and operational risks related to the high penetration of DER.

2.2. DER Impact Factors

The characteristics of the DER, such as the location, technology, power output, con-
verter technology, panel efficiency, and weather pattern, impact the distribution network
components’ voltage, loading, and thermal limits. The DER-based impact factors can be
summarised as in Table 3.
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Table 3. DER-based Impact Factors.

Impact Factors Description

DER Location DER location is the most critical impact factor on the voltage profile and thermal limits for the
distribution network’s hosting capacity estimation [9,20,52]. DER could be connected at a single
point or multi-points along the distribution network feeders. Single-site and multi-site scenarios
should be considered for estimating the feeder hosting capacity. The location of the DER concerning
the distribution transformer affects the voltage profile of the feeders. DER connected near the
substation transformer’s end may raise the voltage level. There are possibilities of voltage drop and
thermal limit violation when the DER are connected at the farthest end of the feeders. The hosting
capacity should also be analysed considering the upstream and downstream DER locations [52].
The DER could be connected at multi-locations distributed along the feeders. In each case, separate
scenarios should be analysed to obtain the actual hosting capacity of the network.

DER Technology The hosting capacity of the distribution network depends on the technology used for DER. The DER
technology could define its characteristics that may affect the hosting capacity of the network [52].
The fixed output and variable output DER have different impacts on the network’s integration
capability. The connected inverters could control the network’s active and reactive power feed, which
may influence the hosting capacity. The DER’s total output period should correlate with other grid
factors to determine network integration capability. The DER interface modality and technology used
for real and reactive power control mechanisms through connected inverters also impact the
hosting capacity.

DER Aggregation The connected DER affect the future connection request from the consumers. The hosting capacity
analysis should consider aggregating the existing and future renewable resources. The network
planner and distribution system operators should carefully consider the new DER connection request
and forecasted amount of DER for network stability and reliability to calculate the feeder
hosting capacity.

Other DER
Factors

The efficiency of the distributed energy resources, manufacturing technology, and plant topology also
impact the hosting capacity. The power output also depends on weather patterns and the location of
renewable energy resources. The photovoltaic panel orientation could also impact the network’s
hosting capacity.

All grid and DER-based impact factors highly affect over-voltage, under-voltage,
and regulator voltage deviation. The grid’s source impedance and voltage profile slightly
affect the network’s reverse power flow and thermal ratings. An automated control scheme
may overestimate the hosting capacity of the network. Active and reactive power control
schemes may increase the DER integrated with the network. The DER-based impact factors
such as DER location, technology, and inverter settings highly influence the number of
DER to be connected with the network. The feeder matrices have been mapped with the
Grid and DER-based impact factors in Table 4.

Table 4 clearly shows that the Voltage profile is highly related to all the grid-based and
DER-based impact factors. Over-voltage, under-voltage, and voltage deviation originat-
ing from the voltage regulation scheme are deeply related to all the other impact factors.
Feeder cable, substation transformer, connected DER, and load impedance directly affect
the voltage profile and may increase network loss, causing thermal violation problems
in the network. The amount, location, and variability of the load aggravate the voltage
regulation scheme, making it more challenging. It may cause over-voltage during high
generation and low demand periods such as mid-day in sunny weather. The network flexi-
bility to accommodate or curtailment of DER power injection, load management scheme,
and coordinated protection scheme improve the network operational reliability and power
quality to the consumers. DER location and inverter technology affect the distribution
network’s voltage profile and thermal ratings. Real and reactive power injection through
the DER connected inverter helps to manage the distribution network’s voltage profile and
power factor management.
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Table 4. Impact Factors Mapped with Feeder Matrices [52].

Feeder Matrices

Grid-Based Impact Factors Other Impact Factors
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Over Voltage Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Under Voltage Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Regulator Voltage Deviation Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Voltage Deviation Yes Yes X Yes Yes Yes Yes Yes Yes Yes Yes
Reverse Power Flow Yes X X Yes Yes Yes Yes Yes Yes Yes Yes
Operational Flexibility Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Thermal Ratings Yes – – Yes Yes Yes Yes Yes Yes Yes Yes
Protection Coordination Yes Yes Yes Yes Yes – – Yes – Yes Yes

Careful selection of grid and DER-based impact factors determines the accuracy of the
hosting capacity result and computational complexity. Considering more impact factors
increases the computational burden and required time. The feeder matrices characterise the
influence of impact factors. It provides information and visibility on the relative importance
of impact factors for the hosting capacity analysis. From the above tables, it is clear that all
network issues are not equally affected by all impact factors.

2.3. Electrical Demand and Flexibility of Different Energy Sectors

Generally, the power system is designed to meet the aggregated maximum demand.
The power generation should be sufficient to supply consumer loads at any time. Dis-
tributed energy resources have caused excess generation that exceeds the aggregated
demand. It causes technical and economic issues for the DSO. The demand-side manage-
ment using incentive or price mechanisms [62] could minimise the problems arising from
the distributed energy resources integrated with the distribution network. The demand side
response positively correlates with the distribution network’s hosting capacity. The volt-
age profile violation due to the high penetration of distributed energy resources could
be mitigated through coordinated demand management schemes. This would generate
both technical and economic benefits for the DSO and consumers. A Residential Demand
Response (RDR) could reduce power quality violations due to a low demand and a high
DER generation period.

To increase PV hosting capacity in the distribution network, the RDR-based demand
management structure was analysed in [63]. In the proposed structure, the researchers
shifted the residential loads for better utilisation of distribution network resources based
on cost, revenue, and consumer discomfort level to observe the effect on hosting capacity.
In the case study on the modified IEEE 15-bus system, 33.6% more hosting capacity has
been observed deploying the proposed scheme. In [64], the authors investigated the
impact of the variable load of EV on the hosting capacity of the distribution system.
They evaluated the permissible EV penetration level on the distribution network using
the demand response-based method on the RBTS, IEEE-RTS, and IEEE-33 Bus System.
The study found that the driver’s behaviour, EV charging location, time, and duration
negatively impact the penetration level in the distribution network and could be mitigated
using the interruptible/curtailable load-based DR method. The Energy Storage (ES) and
Demand Side Response (DSR) have been investigated in [65], considering the ES and DSR
as optimisation constraints in the nonlinear multi-period optimal power flow (OPF) of
the distribution network. A case study based on the optimisation algorithm on an 11 KV
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distribution network with 38 buses and 37 branches found that ES and DSR are very
effective in optimising the existing network assets, minimising network losses, enhancing
supply reliability, and increasing supply power quality. High generation and low demand
in a distribution network with a high penetration of PV, especially during sunny weather,
could generate high voltage deviation [66] in the network. Low generation and increased
demand also cause low voltage profiles and high line losses at the distribution feeders.
In [67], the authors compared the distribution network’s hosting capacity and loading
effect. On a 20 KV radial distribution system with four feeders, 33 nodes and 32 branches,
the hosting capacity was observed to be up to 70.40%, applying a reactive power control
mechanism. The power generation from the distributed resources and variability of the
load has been studied in [68] to investigate the impact on the hosting capacity. The study
observed up to 85.7% of the hosting capacity. A distributed load management scheme
has been proposed in [69] to enhance the hosting capacity of the distribution network
through domestic load variation. They found that the load management could increase PV
penetration, decrease PV curtailment, and improve power quality.

3. Hosting Capacity Calculation Approaches

The green and renewable energy resources, from bulk to small photovoltaic sources,
are distributed over the transmission and distribution network. The technical parameters
and the operational performance of the distribution network change with the penetration
level of the DER [11,14,17]. It causes an unbalance of allowable voltage levels to the cus-
tomer ends, thermal overloading to the transmission and distribution lines, transformer
overloading, protection disruption, harmonic distortion, and excessive losses in the distri-
bution network [8]. The impact level depends upon various factors such as the location of
the DER, amount of electricity injected, electricity generation pattern, active and reactive
power control mechanism, network topology, control equipment, and power factor [9,22].

The hosting capacity analysis begins with creating the network model in model-based
approaches (Figure 2). The network performance parameters such as voltage variation,
power quality, losses, and thermal overloading are set for checking the parameters’ vio-
lation for DER penetration. The hosting capacity analysis algorithm is set based on the
hosting capacity analysis method. The set algorithm examines the performance parameters’
violation scenarios. The DER penetration level is increased until the performance indices’
violation occurs. The highest level of DER penetration at which the performance indices’
violation occurs is determined as the hosting capacity.

The hosting capacity of the network depends on the network and DER impact factors.
It is measured based on the highest level of the distributed energy resources that could
be sustainably integrated with the distribution network without further augmentation
of the existing network resources maintaining the power quality within the statutory
limits [10,14,26,70]. In [12], the hosting capacity of a network has been expressed as the
aggregated result of the added photovoltaic energy resources that can be connected within
the allowable operational limits. The mathematical formulation of the hosting capacity of
feeder N could be expressed as,

HCN = ∑
f∈N

·HC f (1)

where Hosting Capacity for feeder f is

HC f = ∑
P∈p f

P with respect to |p f | ≤ |D f |. (2)

Here, p f is the set of the new photovoltaic sources connected to feeder f ; and D f is the
set of consumers connected to the low-voltage feeder.
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Figure 2. Hosting Capacity Analysis Flow Diagram.

The choice of hosting capacity analysis methods depends on considering the num-
ber of uncertainties of the networks and distributed energy resources, grid performance
indices, available data, power consumption pattern, and the network model [12]. It also
depends on the objectives of the particular study [71]. The accuracy of the results and the
impact factors considered are other essential factors for selecting hosting capacity analysis
methods. The choice among the methods may differ based on the available input data,
time, uncertainties, network model, and network complexity [14]. Feeder characteristics,
technologies of the distributed energy resources, energy policies, operational and economic
considerations, reliability, and functionality of simulation results may also affect the choice
of the hosting capacity analysis methodology [72].

The hosting capacity analysis could be broadly categorised as conventional and data-
driven methods. The conventional hosting capacity analysis methods depend on different
types of power flow simulation. The data-driven methods rely on the time-series network
and DER data. The hosting capacity analysis methods are shown in Figure 3.
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Figure 3. Hosting Capacity Analysis Methodologies.

The published articles have been searched from databases, including Google Scholar,
Scopus, ScienceDirect, and IEEE Xplore for up-to-date information on the hosting capacity
analysis methods. The related articles have been selected based on keywords such as
conventional hosting capacity analysis methods, the hosting capacity enhancement, the
hosting capacity analysis with DER, and individual methods’ names. Various websites of
research organisations such as EPRI and NREL, and organisations such as the Australian
Renewable Energy Agency (ARENA), UNEP, IEA, and IREA have been consulted for
searching relevant information. The reference list has included all relevant articles, reports,
and websites that has been consulted for this paper.

3.1. Conventional Approaches

Based on the network characteristics and distributed energy resources integration tech-
nical issues, the Deterministic, Stochastic, Streamlined, Iterative, and Hybrid methods are
mainly used for the hosting capacity analysis of the distribution networks [71]. The method-
ology for the hosting capacity analysis is governed by different technical assumptions that
may affect the accuracy and functionality of the results [72].

3.1.1. Deterministic Method

The deterministic method is a fundamental hosting capacity analysis method for
evaluating the impact of distributed energy resources on the distribution network. In this
method, all the connected DERs are considered at a time. It calculates the single output
considering the total output of all connected DER [17]. The DER output, location, charac-
teristics, and consumer load demand are taken as known data for calculating the hosting
capacity [12,14,17]. The hosting capacity is calculated through the power flow simulation,
harmonic analysis, and unbalanced power flow simulation [17]. The network model, line
parameters, voltage profile, network equipment data, inverter technology, and consumers’
power demand information are required as input data for the power flow simulation.
The analytical and rule-based analysis could also be adopted for the fixed generation
and time-series-based deterministic hosting capacity analysis method [14]. In the fixed
generation analysis process, all photovoltaic sources are considered to generate a fixed
amount of power at all times. In the time-series analysis process, the time variation of the
output of photovoltaic sources is considered for the hosting capacity analysis [17].

Uncertainties of distributed energy resources, production uncertainty, and power con-
sumption variability are not considered in the deterministic method [12,14]. It is regarded
as the most simplistic method of the hosting capacity analysis with simple mathematical
calculations [14], less computation burden, and speedy output. This method considers the
worst-case scenarios that affect the precision of the simulation result [70]. The output also
depends on the availability and accuracy of analysis data [17]. It tends to overestimate
and miscalculate the network hosting capacity. The deterministic hosting capacity analysis
method could not analyse the realistic scenarios of the distribution network. This method
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did not consider the uncertainties of the network, customer load, and DER characteris-
tics. Therefore, it could not reflect the integration impact of the high penetration of the
distributed energy resources with the medium and low voltage distribution network [12].

• Relevant studies on Deterministic Method
The deterministic method for the hosting capacity analysis has been studied
in [36,73–79]. In [36], the k-nearest neighbour regression algorithm (k-NN) has been
used for DG hosting capacity forecasting. The study has investigated the impact of
the line impedance, transformer short circuit impedance, and feeder length on voltage
fluctuation for the high penetration of the distributed Generators. The authors in [73]
studied the voltage unbalance through simulation of the direct voltage unbalance
of the distributed network, consisting of 5 KW inverters in Swedish networks and
3.0 KW, 3.7 KW, and 4.6 KW inverters installed in German networks. The pene-
tration level was studied using the location and phase position of the PV inverters.
The impact of harmonics on power quality, thereby limiting the hosting capacity of
the distribution network, has been investigated in [74]. The authors investigated the
impact of harmonic voltage, power factor, load, and voltage regulation equipment
on the magnitude of the harmonic voltage. The study conducted in [75] revealed
that transformer overloading might occur at medium voltage distribution networks
due to the high penetration of distributed energy resources. The authors studied
the impact of solar potential and grid integration considering the voltage band, line
loading, and transformer loading of the distribution network. Considering the PV
utilisation factor as a driving parameter, they implemented the forward, backward
and even PV increase on the analysis model to analyse the hosting capacity of each
node of the distribution feeder. Linearised power flow model has been investigated
in [76] for analysing the impact on voltage magnitude, losses, real and reactive power
injection, and feeder capacity of the distribution network. The authors considered the
DER output, consumer demand, and real and reactive power load as input for the
simulation. In [77], the hosting capacity has been studied using the voltage profile
through power flow simulation using the PSCAD. The voltage fluctuation issues due
to the penetration of photovoltaic energy resources have been studied using the feeder
impedance, transformer parameters, and transformer short circuit resistance. In [78],
the authors investigated the impact of the real and reactive power losses, voltage
unbalance, voltage magnitude, and fault on network hosting capacity. They perform
the power flow analysis and short circuit analysis for the study. The authors validate
their findings in the IEEE 34 Node distribution test feeder using the DIgSILENT power
factory software. In [79], the power flow analysis was used to calculate the impact
of reactive power, power factor, and power curtailment on the hosting capacity in
the 73-node 33 kV distribution system located in the town of Al-Qatraneh in Jordan.
Different studies have considered different impact factors, input variables, and simu-
lation processes for estimating the hosting capacity of the distribution network using
the deterministic method as illustrated in Table 5.

• Impact Factors and Required Data
The study has been conducted on different impact factors with different input data
types. The objective functions and expected output also differ from each other. Voltage,
power, power loss, real and reactive power, network data, load, and control parameters
have been used as impact factors for hosting capacity analysis. Moreover, the output
of the study differs in input data and its resolution. Consumer load demand, DER
output, line parameters, location, power factors, power loss, transformer data, feeder
impedance, and line geometry have been used as input data in studies for hosting
capacity analysis by the deterministic method. In [36], phase imbalance and DG
penetration level have been considered as the impact factors. The authors conduct
the power flow simulation using the low-voltage network, overhead line geometry,
and DER location as input data to determine the network hosting capacity. Negative
sequence voltage and voltage unbalance have been taken as impact factors considering
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the location, phase allocation of the PV inverters, tilt angles of the PV arrays and
electric vehicle chargers as input data in [73]. Direct harmonic voltage and magnitude
calculation simulation have been studied considering harmonic voltage and voltage
rise as impact factors, taking the harmonic injection of the current, power factor,
and RMS magnitude of the nodal voltage and current injection as input parameters
in [74]. In [75], the authors analysed the impact of the line and transformer loading,
and voltage limit on the hosting capacity of the distribution network. The study
revealed that the even distribution of DER along the feeder has a positive impact
on the hosting capacity. It also identified transformer overloading as the significant
limiting factor for the feeder’s capability to integrate more PVs. In [77], a power flow
simulation has been conducted for the hosting capacity calculation using the voltage
magnitude profile as the impact factor, feeder impedance, transformer parameter,
transformer short circuit resistance, and feeder length as input parameters. The authors
in [78] conducted the power flow and short circuit analysis simulation considering the
power loss, voltage magnitude, and voltage unbalance as impact factors for analysing
the hosting capacity. The study used the real and reactive power losses, voltage
profile, phase imbalance, fault level of the distribution system, and consumer’s load
demand as input data. The researchers validate the research findings in the IEEE 34
Node distribution test feeder. In [79], the voltage level, DER output, and overload
of transmission lines have been used as impact factors for conducting the power
flow simulation. They considered the consumer’s load demand, PV output, power
feedback to the transformer, and reactive power control as input data for the study.

Table 5. Impact factor, input, and simulation process for deterministic method.

Impact Factors Input Analysis Method Reference

Phase imbalance, DG penetration level LV network data, overhead line ge-
ometry, DER location

Power flow Simulation [36]

Negative sequence voltage, Voltage unbalance Location, phase allocation of the
PVIs, tilt angles, electric vehicle
chargers (EVCs)

Voltage unbalance simulation [73]

Harmonic voltage, voltage rise Harmonic injection, power factor,
RMS magnitude (nodal voltage)

Direct harmonic voltage
and magnitude calculation
simulations

[74]

Line loading, transformer loading, voltage limits PV utilisation factor, grid data Power flow simulation [75]

Voltage magnitude, Losses, Real and reactive
power injection, Feeder capacity

DER output, power demand, real
and reactive load, active power
loss sensitivity factor

Linearised power flow model [76]

Voltage magnitude profile Feeder impedance, transformer pa-
rameter, transformer short circuit
resistance, feeder length

Power flow simulation [77]

Losses, voltage magnitude and unbalance Losses (real and reactive), voltage
profile, phase imbalance, and fault
level, load demand

Power flow and short circuit
analysis simulations

[78]

Voltage, power, overload of transmission lines Customer load, PV output, Power
feedback to the transformer, Reac-
tive power control

Power flow simulation [79]

The deterministic method is the simplest method of hosting capacity analysis. Consid-
ering the DER output as a known value, this method gradually increases the penetration
level to observe the power quality violation. It does not consider network and DER un-
certainties. Based on the worst-case scenarios, it estimates the network’s hosting capacity
result through power flow simulation. It is the simplest method for getting a general
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overview of the network capability with a simple mathematical formulation and less time-
consuming simulation. This method could not generate real network and DER scenarios,
and often over-estimate the network capability; therefore, it is inappropriate for the practi-
cal application of complex networks and the real-time monitoring of DER for integrating
with the distribution network.

3.1.2. Stochastic Method

The stochastic method considers the existing distribution network model along with
probabilistic uncertainties [17]. It includes the uncertainties of size, location, and output
of the distributed energy resources in the stochastic analysis for calculating the hosting
capacity of the distribution network [9,13,40]. This method gradually increases the DER
penetration level at different distribution network locations to observe the adverse effects
on other network parameters. It also generates different scenarios to estimate the maximum
allowable limits of the network to integrate the DER output without violating the acceptable
limits of the power supply parameters [71]. The stochastic method also helps to measure
the probable impacts at various locations and sizes of future impacts.

In the stochastic method, hundreds of simulation scenarios are generated based on the
uncertainties considered to measure the hosting capacity of the network [10]. It involves
complex mathematical calculations and intensive computational efforts that require sig-
nificant execution time [17]. The repetitive problems occur due to generating numerous
scenarios [10]. The level of the simulation complexity depends on the number of uncertain-
ties included in the study [17]. The computation complexity, simulation time, and memory
usage increase with the number of uncertain variables of the distribution network and
distributed energy resources. The uncertainties considered and the complexity of the
calculation methods negatively affect the accuracy of the hosting capacity result [10].

Researchers have proposed improvement techniques to enhance the result’s accu-
racy and overcome repetitive problems during simulation. Different improvement tech-
niques such as Improved Stochastic Method [10], Bayesian Optimisation (BayesOpt) [26],
Multi-parametric Programming (MPP) [28], Multi-Objective Optimisation Model [30], and
Stochastic Analytic-probabilistic Methodology [70] have been discussed in the various
literature. In [10], the authors studied the improved stochastic analysis method for the
hosting capacity assessment with photovoltaic energy resources. The study introduced
a quick sorting algorithm to overcome the errors during the simulation process due to
the repetitive photovoltaic deployment. The study analysed voltage quality such as over-
voltage, voltage deviation, and voltage imbalance as primary system performance indices
for PV penetration. It used MATLAB and OpenDSS software as a co-simulation mecha-
nism. The study validated the simulation result on an 11.4 kV distribution feeder with a
seven-buses transmission network consisting of underground cables and overhead lines,
a secondary substation, and a wind turbine. The simulation results revealed that the
proposed method is more effective than the traditional stochastic method. The authors
proposed the technique as a planning tool for future DER integration. The authors in [26]
have investigated the Bayesian Optimisation method. They proposed a computational
framework for the probabilistic hosting capacity analysis (PHCA) that could easily fit with
the uncertainties considered and efficiently measure the hosting capacity of the network.
The study revealed that the proposed method could achieve about 25% higher accuracy and
be about 75% less time-consuming compared to the traditional stochastic method. In [28],
the authors investigated the multi-parametric programming method to reduce the complex-
ity and calculation burden of the optimal power flow for estimating the hosting capacity
without considering the probabilistic characteristics of the uncertainty of the network and
distributed energy resources. The authors have proposed the multi-objective optimisation
model in [30] and studied the method on wind power. The study found that the energy pro-
curement from the upstream rises with the escalation of the hosting capacity, active power
loss increases, and uncertainties decline. In [70], the authors investigated the stochastic
analytic–probabilistic methodology for the hosting capacity analysis. The method embeds
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the probabilistic load flow to achieve computation efficiency. It focused on photovoltaic
penetration. Impact factors, input, and analysis methods for the stochastic method have
been summarised in Table 6.

Table 6. Stochastic Method.

Impact Factors Input Analysis Method Reference

Voltage magnitude, current overloading Active and reactive loads, active and re-
active losses, line parameters, active and
reactive power, DG power output

Power flow simulation [6]

Over-voltage, Voltage unbalance, and
Voltage deviation

Feeder characteristics, PV location, PV in-
verter power factor, volt/var control

Power flow optimisation us-
ing Monte Carlo procedure

[9]

Over-voltage, Voltage deviation, Voltage
imbalance

Feeder parameters, load profile, solar ir-
radiance, temperature, PV location, PV
penetration level

Improved stochastic analy-
sis method

[10]

Nodal real/reactive power, Voltage mag-
nitude, Line flow limits

Nodal real and reactive injections, real
and reactive flows on distribution lines,
DER generation profile, DER installa-
tion scenario, real/reactive load profiles,
DER location

Power flow optimisation [26]

Location, frequency, and severity
of feeder

Solar generation data, (re)active injec-
tions, inverter oversizing; DER penetra-
tion levels

MPP– OPF [28]

Distribution feeders’ voltages and cur-
rents, Cost of energy procurement from
the upstream network, Power generation
by RES

Load uncertainty, wind power generation,
wind speed variation

Stochastic multi-objective
optimisation model

[30]

Voltage limits, thermal capacity,
voltage unbalance

Load profile, DER output profile Analytic probabilistic load
flow (PLF) using Monte-
Carlo

[70]

Voltage magnitude PV generation profile, load demand Probabilistic power flow us-
ing Latin Hypercube Sam-
pling with Cholesky De-
composition (LHS-DC)

[80]

Voltage magnitude and loading DG capacity, grid parameters, DG config-
urations, location

Probabilistic power flow
simulation

[81]

Over-voltage, under voltage, over current PV location, size, type, and number, PV
injection, consumer demand

Probabilistic power flow [82]

• Relevant studies in stochastic methods:
The stochastic method has evolved to analyse the probabilistic nature of the input for
the hosting capacity analysis of distribution networks. Voltage rise, current violation,
protection issues, and stability have been studied in [6] to analyse the capacity of
the distributed generation. The study used the power flow simulation to determine
the hosting capacity of the three-phase distribution network consisting of radial low-
voltage feeders. The authors in [9] applied the Monte Carlo simulation to study the
hosting capacity of distribution networks with small-scale rooftop solar photovoltaic
generating units. The study proposed feeder reconfiguration and volt-var optimisation
to enhance the distribution network hosting capacity. In [10], over-voltage, voltage
deviation, and voltage unbalance of distribution networks have been examined using
an improved stochastic method. It also proposed the repetitive check mechanism to
minimise errors due to the randomness of the PV unit deployment during the study.
In [26], the authors examine the hosting capacity of the 56-node distribution network
in California. The study found that the Bayesian optimisation provides about 25%
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more hosting capacity results and about 70% less computation time than the nonlinear
optimisation algorithm. Multi-parametric programming OPF has been investigated
in [28] for hosting capacity analysis in IEEE 123-bus and 1160 bus feeders. In [30],
the authors have estimated the hosting capacity of 69-bus radial and 152-bus distribu-
tion feeders using the stochastic multi-objective optimisation model. The study aimed
to exploit the highest hosting capacity and lowest costs for integrating distributed
energy resources such as wind power. In [80], the authors studied the over-voltage
issues of a radial distribution network. They proposed the probabilistic power flow
using Latin Hypercube Sampling with Cholesky Decomposition to analyse the hosting
capacity with high penetration of rooftop PV generating units and associated inverters.
The probabilistic power flow simulation has been conducted in [81] to determine the
impact on the voltage magnitude and loading of a distribution network due to the
high penetration of distributed energy resources. The authors in [82] studied the de-
coupled general polynomial chaos-based hosting capacity analysis tool for analysing
the impact of planning and operational level uncertainties.

• Impact factors and required data:
Hosting capacity analysis depends upon different input data and impact factors. In [6],
the power flow simulation has been conducted for the feeder hosting capacity analysis
based on the active and reactive loads, active and reactive losses, line parameters,
active and reactive power, and DG power output. In [26], the authors considered the
nodal real and reactive injections and real and reactive flows on distribution lines for
calculating the hosting capacity of the distribution networks. They also considered
the DER generation profile, DER installation scenario, real/reactive load profiles,
and DER locations as the input data for the hosting capacity analysis considering
nodal real/reactive power, voltage magnitude, and line flow limits. The authors
in [30] assessed the load uncertainty, wind power generation output, and wind speed
variation for the simulation using the stochastic multi-objective optimisation model
for assessing the distribution feeder hosting capacity. In [70], the authors studied
the load profile and DER output profile data to simulate the hosting capacity by
the analytic probabilistic load flow (PLF) using Monte Carlo. PV generation profile
and load demand data were studied in [80], for hosting the capacity analysis, taking
the voltage magnitude as an impact factor. In [81], DG capacity, grid parameters,
DG configurations, and locations have been considered input data for the hosting
capacity study.

The stochastic method is a model-based hosting capacity analysis method that consid-
ers the probabilistic uncertainties of the distribution network and DER issues. It provides
crucial information to the distribution network operators to plan for the future DER in-
tegration. The hosting capacity results depend on the number of uncertain problems
considered. At the same time, it increases the complexity and time for calculation. This
method generates millions of scenarios based on the network and DER uncertainties that
require complex mathematical calculations and decrease reliability. It could not cover the
real-time monitoring of the network and DER issues for sustainable integration and reliable
operation. This method is unsuitable for real-time monitoring, data analysis, and future
DER integration.

3.1.3. Streamlined Method

The streamlined method estimates the capability of the distribution network to inte-
grate distributed energy resources through load flow and short circuit analysis, considering
electrical characteristics and the consumer load profile [7]. This method could provide infor-
mation on the location and capacity of the distributive energy resources for determining the
future integration without the considerable improvement of the distribution network [7]. It
conducts the simulation, considering feeders and distributed energy resources characteris-
tics, such as line resistance, distribution transformers, system control devices, and levels
and locations of consumer loads [71]. It executes a series of sensitivity analyses based on
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simplified algorithms instead of detailed network modelling. This method evaluates the
time effect of DER, consumer load, and control mechanism on the hosting capacity of the
distribution network through the simulation of time-series data acquired by the smart meter
or other monitoring devices [71]. For calculating the hosting capacity analysis of the distri-
bution network, this method considers voltage, thermal, protection, and power quality as
regulating constraints [22]. The electrical characteristics of the network, uncertainties of the
photovoltaic resources, and consumer load consumption behaviour are considered for the
impact study through load flow and short circuit analysis [7]. This method is an effective
tool for studying distributed energy resources forecast, network reconfiguration, intelligent
inverter settings, and mitigation strategies of the distributed energy resources [71].

• Relevant Studies:
In the streamlined method, the distribution feeder’s realistic, optimistic, and conser-
vative hosting capacity is calculated using the sensitivity test instead of the detailed
power flow analysis [7]. Improvement in the simulation process, time, and required
network resources for estimating the hosting capacity of a particular feeder has been
proposed in different studies. In [7], the hosting capacity of each low-voltage distribu-
tion feeder has been analysed. Voltage limits, thermal capability, and control parame-
ters have been considered for analysing the hosting capacity in [7,20,83]. In addition,
the fault current has been considered a limiting factor for calculation. Time-series
forecast data of photovoltaic power sources and load profiles have been taken as input
values in [7]. In [83], the hosting capacity of distribution feeders has been analysed for
the high penetration of DER. The node-by-node hosting capacity was simulated by
deploying the utilised load profile and basic load flow model considering the thermal
limit, voltage, and protection as limiting factors. The relevant studies on streamlined
method have been summarised in Table 7.

Table 7. Streamlined Method.

Impact Factors Input Area Reference

Voltage, Thermal, Control Load profile, PV time-series output PV [7]

Voltage, Thermal, Control Load profile, PV time-series output DER [83]

The streamlined method could generate realistic, optimistic, and conservative results
of the hosting capacity [14]. The simulation complexity and result accuracy depend on the
network and DER uncertainties. The estimated hosting capacity result may suffer from
overestimation due to assumptions of this method, such as considering the DER output
as fixed throughout the period. The grid operators could use this method to generate
the future impacts of the photovoltaic sources on the distribution network. It requires a
conducting detailed analysis to validate the result obtained using this method to make the
final decision by the grid operators [8].

3.1.4. Iterative Method

In the iterative method of the hosting capacity analysis, the distributed energy re-
sources are modelled on the existing distribution network to study the impact of the
penetration on statutory limits of the power quality delivered to the customer. The power
flow analysis is carried out by gradually increasing the penetration level, and violation is
observed. The simulation studies the maximum allowable DER penetration at which the
voltage, current, reverse power flow, protection criteria, thermal limits, and other power
qualities violate the acceptable limit [10]. This method generates a series of DER deploy-
ment scenarios for accurate impact assessment at each node of the distribution networks to
measure the hosting capacity [71,84].

Both non-linear and linear optimisation power flow analysis is conducted in the
iterative method. In [85], the linearised iterative process has been applied to the IEEE 13-
node test feeder circuit to investigate the effectiveness and measure performance. The study
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found that the linearised iterative method outperforms the non-linearised iterative method
and reduces the computational time. The authors in [86] investigated the hosting capacity
of the distribution network for integrating the photovoltaic energy resources concerning
economic efficiency. They proposed the bi-level optimisation dispatch method based on
iterative particle swarm optimisation method. They demonstrated the proposed method on
the modified PG&E 69-bus and IEEE 123-bus radial distribution systems. They concluded
that the proposed linear analysis system has about ten times higher computation speed
than the non-linear iterative power flow analysis.

The iterative method requires much data, time, and computational effort. The com-
plexity increases with the increased network nodes and distributive energy resources [71].
It provides a comparatively accurate hosting capacity value [8]. This method is preferable
for calculating the distribution network node DER’s hosting capacity.

3.1.5. Hybrid Method

The hybrid method is the modified version of stochastic and iterative methods.
The trained periodic increment is used to overcome the computational burden in the
hybrid method. The iterative process needs to be conducted more meticulously for the
hosting capacity analysis of the network. Instead, a carefully chosen incremental iterative
process helps to find out the hosting capacity of the distributed resources within the tol-
erable limits without violating the statutory limitations of the power [71]. In this method,
simulation data are readily available, agile to implement, consume less processing time,
and generate relatively accurate results [8].

3.1.6. Capacity Constraint-Based Method (CCBM)

The Capacity Constraint-Based Method considers the forecasted value of power sup-
ply, load demand pattern, distribution network stability, over-voltage limit, under voltage
limit, current limit, and operation constraints for calculating the hosting capacity. The op-
timisation framework studies the capacity constraints of the distribution network and
applies it incrementally throughout the network to conduct a power flow analysis [71].
This method does not consider the uncertainties of the network and distributed energy
resources. It depends on the historical data collected from the smart meters connected to
the customer end. The maximum voltage occurrence and aggregated power demand data
set are extracted from the smart meter data.

This method is highly dependent on historical data collected from smart meters.
The accuracy of the estimated hosting capacity depends on the smart meter data quality
and data reliability. Moreover, this method does not consider variables of the distribution
network and distributed energy resources; the simulated value of the hosting capacity could
not represent the real scenario. This value could only be utilised for reference purposes.

3.2. Comparative Analysis of Conventional Hosting Capacity Methods

Different hosting capacity analysis methods are distinct from each other. The iterative
method is complex but gives comparatively accurate hosting capacity results [14]. The Ca-
pacity Constraint-Based Model does not depend on any network model [25]. On the other
hand, the dependency on smart meter data has limited its application [71]. Table 8 provides
a comparison among the different hosting capacity analysis characteristics:
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Table 8. Comparison among Conventional Hosting Capacity Analysis Methods.

Features

Conventional Hosting Capacity Analysis Methods
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Input Data Easy Complex Moderate Complex Easy Moderate

Execution Easy Complex Easy Complex Agile Moderate

Uncertainties No Yes Yes Yes No No

Simulation Worst-Case Based Realistic Sce-
nario Based

Realistic Sce-
nario Based

Realistic Sce-
nario Based

Realistic Sce-
nario Based

Trained
Model Based

Temporal Relationship Missing Missing Included Included Included Missing

Processing Speed Rapid Moderate Slow Slow Moderate Moderate

Time Speedy Slow Speedy Slow Speedy Moderate

Computation Effort Less High High Higher Less Moderate

Scalability Easy Complex Easy Complex Moderate Complex

Output Interpretation Easy Complex Easy Easy Easy Complex

Model-Based Yes Yes Yes Yes Yes No

Among the conventional hosting capacity analysis methods, the deterministic method
depends on the worst-case-based scenario of the distribution network. It requires less
computation effort as it does not consider the DER and network uncertainty. The hosting
capacity result obtained using this method could only be used as a reference. The stochastic,
streamlined, iterative and hybrid methods perform the realistic-scenario-based simulation
to estimate the feeder hosting capacity. The stochastic method is a relatively complex
process, takes more computation effort and consumes more time. The streamlined method
considers the DER and network uncertainties to analyse the hosting capacity of the net-
work. It performs the simulation based on a simplified algorithm instead of the detailed
network model. Therefore, it provides a higher processing speed and takes less computa-
tion time. Though the iterative hosting capacity analysis method is comparatively complex,
it gives more accurate results through a realistic-scenario-based simulation. The hybrid
method combines algorithms used in the deterministic, stochastic, streamlined, and itera-
tive methods. This method incorporates the benefits and eliminates the drawback of all
other methods. The CCBM method does not rely on the network model. Instead, it is highly
dependent on the historical data of the DER generation, load and other network compo-
nents. It does not provide the realistic hosting capacity of the network feeder. Therefore,
the hosting capacity results could only be used as a reference.

Time series analysis, Iterative, and capacity constraint-based methods highly depend
on available data. The deterministic method is simple, tests fewer scenarios, and takes
less simulation time [14]. Time series analysis, iterative and hybrid methods generate
more accurate hosting capacity results, as realistic network data are simulated in these
methods [68]. The hosting capacity methods based on the data requirement, simulation
time, scenario tested, and output accuracy can be summarised in Table 9.
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Table 9. Comparison among different Hosting Capacity Methods.
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Deterministic Simple Simple Low Worst Case Based Approximate

Stochastic Medium Complex High Realistic Scenario Accurate

Streamlined Medium Complex Medium Realistic Scenario Approximate

Time Series High Complex High Realistic Scenario Accurate

Optimisation Based Medium Complex Medium Realistic Scenario Exact

Iterative High Complex High Realistic Scenario Accurate

Hybrid Medium Medium Medium Realistic Scenario Accurate

CCBM High Low Low Not Required Approximate

The deterministic hosting capacity analysis method is less dependent on network and
DER data. In contrast, time series analysis, iterative, and CCBM hosting capacity analysis
methods highly rely on DER and network data. The deterministic approach does not
incorporate DER and network uncertainty. It provides an approximate value of the hosting
capacity value of the network with DER that could be used as a reference. The stochastic,
time series, and iterative hosting capacity analysis methods provide relatively more accurate
results. The stochastic approach is model-based, difficult to simulate and consumes more
computation time, but it gives more accurate hosting capacity results. The time series
analysis could incorporate the time effect of DER and network uncertainties for hosting the
capacity analysis, generating more precise results for the network planners and DSO.

3.3. Artificial Intelligence Approach of Hosting Capacity Analysis

The electricity power network is a complex network of generation, transmission, dis-
tribution, and control equipment. The modern power network consists of sophisticated
communication systems, power conversion equipment, renewable energy resources, power
storage networks, and information processing systems. The growing trend of digitisation,
decentralisation, and real-time monitoring of power networks requires a high volume of data
collection, analysis, and decision-making capabilities for sustainable operation, quick decision,
and economic viability. Artificial Intelligence has great potential for managing energy supply,
reliable operation, demand forecasting, and distributed energy resources’ integration through
intelligent decision-making tools [87]. The growing demand for green energy has triggered the
integration of a large number of distributed energy resources and energy storage devices with
the power network that requires real-time network data analysis integration sustainability,
network stability, operation reliability, and economic value [88]. The operational uncertainties
of DER, EV, energy storage devices, power conversation system, and uncertain load consump-
tion pattern involves the analysis of a large number of data [89]. Traditional analysis tools are
unable to fulfil the requirement of the modern electricity network [90]. Artificial Intelligence
algorithms could be very useful for the analysis of dynamic behaviour, forecasting, integration,
disturbance events, and cyber security of the electricity network with a high penetration of
DER and energy storage devices [88].

The network operators have to face significant complexity in the power network design,
operation, and integration for an increasing number of distributed energy resources [35]. Ar-
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tificial Intelligence could overcome the ever-increasing technical and operational complexity
of integrating distributed renewable energy resources with the distribution network [91]. It
could be used for power output prediction from renewable resources, photovoltaic power
optimisation, solar irradiance, and wind speed prediction, risk and tariff optimisation,
system stability, and integration. Artificial intelligence algorithms could be static or dy-
namic based on the input data and objective functions. Depending on the system and
problems to be analysed, different artificial intelligence methods have been proposed such
as the Meta-heuristic methods genetic algorithm (GA), particle swarm optimisation (PSO),
simulated annealing (SA), random forest (RF), k-Nearest Neighbours (kNN), support vector
machine (SVM), and artificial neural network (ANN) [92]. Power output forecasting has
gained much attention for the sustainable integration of renewable energy resources with
the power network. The artificial intelligence algorithms could increase the efficiency,
effectiveness, and potentiality of the real-time DER monitoring and achieve a maximum po-
tential power from these resources [89]. The stack auto-encoder (SAE), deep belief network
(DBN), deep recurrent neural network (DRNN), stacked extreme learning machine (SELM),
deep reinforcement learning (DEL), and deep convolution neural network (DCNN) are a
widely used deep learning algorithm for forecasting renewable energy [86,87,89].

In [35], the authors studied the deep-learning-based Spatial-Temporal Long Short-term
memory (ST-LSTM) algorithm for calculating the real-time hosting capacity of each feeder
of the distribution network by correlating the spatial and temporal network and DER
data. In the proposed algorithm, they have introduced a cloud-based end-to-end solar
energy optimisation platform (e-SEOP) for accumulating and analysing data gathered from
a dynamically calculated hosting capacity and real-time DER control system. The study
introduced a sensitivity gate for increasing the output accuracy. The power consumption
forecasting is essential for the integration of DER with the network. In [38], the authors
investigated the deep learning algorithm-based k-means clustering-based convolutional
neural networks and a long short-term memory (k-CNNLSTM) model for the reliable
forecasting of energy consumption. Using a case study and comparing results using
various tools and techniques, the authors have concluded that the proposed k-CNNLSTM
model provides more accurate demand forecasting of energy consumption. The improved
load forecasting results may help the network operator to manage the power demand more
efficiently and effectively [38]. In [39], the low-voltage grid has been classified based on the
network, simulation, and graph information. They proposed the support vector machine
(SVM) for analysing low-voltage grid characteristic parameters. The researchers in [45]
studied the supervised deep learning algorithm for forecasting the energy demand at the
district level so that the designers, planners, and administrators could utilise the forecasted
result. They examined the One-Step Secant Back propagation Neural Networks (OSSB-NN)
and the BFGS Quasi-Newton Back propagation (BFGS-QNB) using-real time consumption
and climate data. In [93], the authors proposed swarm intelligence optimisation and data
processing for estimating the potentiality of wind energy and forecasting the wind speed
that would help reduce the operating cost of the wind power generating stations. In [94],
the researchers introduced the deep-learning-based framework (D-FED) for calculating
the future energy demand, forecasting the electricity demand in real-time, and estimating
the dependencies of the load demand. They used the Short Long-Term Memory Network
moving window for their proposed framework. The artificial intelligence methods for the
distributed energy resources could be categorised as data-driven methods and optimisation-
based methods.

3.3.1. Data-Driven Methods

The hosting capacity is not a static value of the integration capability of the power net-
work. Rather, it is the estimation of the coordinated effects of different impact factors that
express the capability of the power network to accommodate the maximum power from
the distributed energy resources without violating the power quality limits. The model-
based methods depend on the network’s worst-case scenarios, considering different DER
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penetration levels, network characteristics, and consumer load demands [95]. The different
scenarios representing the minimum or maximum allowable limits of the power indica-
tors such as voltage level, current injection, thermal overloading, load demand, and DER
penetration could not represent realistic scenarios of the network. Such approaches tend
to overestimate or underestimate the hosting capacity of the network. Moreover, chang-
ing any parameter requires different scenarios that may generate millions of scenarios’
simulation burdens.

Model-based approaches become more complex to handle the time-based data for
the hosting capacity analysis. Therefore, they tend to be inefficient, time-consuming,
and error-prone hosting capacity analysis processes. The data-driven hosting capacity
analysis methods collect time-series input data of the network components, consumer
load variation, and DER penetration for estimating the hosting capacity of the distribution
network. It considers uncertainties of the DER integration based on real-time data. Different
artificial intelligence algorithms could be utilised to encompass the probabilistic nature of
the network, load, and DER parameters. It could train the learning model using offline or
online data to calculate the real-time hosting capacity [35]. The data-driven methods could
enhance the computational capability and output accuracy of the hosting capacity of the
distribution network.

• Machine learning:
The high penetration of distributed energy resources in the high and medium voltage
distribution network may affect the voltage profile and power quality. The active
power control and reactive power generation capability of the network could posi-
tively impact the stability and reliability of the network [37]. Machine-learning-based
approaches have been studied for mitigating the adverse impacts of the high pene-
tration of renewable energy resources. In [37], the Static Multi-agent Reinforcement
Learning (MARL) algorithm was studied to enhance the distribution network’s host-
ing capacity. The voltage flexibility of the network was analysed using the primary
voltage, line, and transformer loading as input parameters. The method was tested
using the Monte-Carlo-based power flow simulation on the modified IEEE 34 bus
system with the Converter-interfaced Generation (CIG). The authors achieved about
7.53% of voltage flexibility using their proposed machine-learning-based method.
The feasible and infeasible nature of the Optimal Power Flow (OPF) analysis was
incorporated in [28] to achieve rapid and scalable solutions for probabilistic hosting
capacity analysis. The proposed method solved a fraction of OPF to achieve speedy
results compared to the traditional methods. The Support Vector Machine (SVM)
approach was studied in [39]. In this study, the authors have classified the low voltage
distribution grid for hosting a capacity analysis based on the grid features, simulation
features, and graph features. The study found that the reinforcement of the grid,
utilisation of innovative technologies, and control of the reactive power could enhance
the hosting capacity of the distribution network for integrating distributed energy re-
sources. In [96], the network reconfiguration and Distributed Generators’ distribution
were studied using the Location-improved Sine-Cosine Algorithm (LSCA). The volt-
age stability and active power loss were analysed to estimate the hosting capacity of
the distribution network by applying the integrated forward-backward-based load
flow analysis.

• Deep learning:
The deep learning algorithms could enhance the performance of the hosting capacity
analysis through training neural networks. In [35], the Spatial-Temporal LSTM (ST-
LSTM) learning model was studied for predicting the real-time hosting capacity of
each feeder of the distribution network. The deep learning algorithm kCNN-LSTM
was studied in [38] for forecasting the energy consumption. The model was tested at
the four-storied building in the Indian Institute of Technology (IIT), Bombay, India.
In [93], the authors studied the Multiple Swarm Intelligence Optimisation (MSIO)
algorithm for forecasting and estimating the potential of the power generated from
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wind energy sources. In [94], the authors considered the long-term historical data for
electricity demand forecasting using the long short-term memory (LSTM) algorithm.

3.3.2. AI in Hosting Capacity Analysis

The real-time hosting capacity analysis requires a time-series data analysis for the
reliable operation and sustainable integration of the DER with the distribution network.
Different artificial intelligence techniques were proposed to estimate the hosting capacity
using the non-linear behaviour of different uncertain parameters [47]. Researchers proposed
different artificial intelligence techniques for the hosting capacity analysis (Table 10).

Table 10. Hosting Capacity Analysis Using AI Techniques.

Area of Study Algorithm Used Objective Function Reference

Photovoltaic hosting capacity analysis Multi-parametric programming (MPP)
OPF

Fast and scalable solutions for
PHCA studies

[28]

Distribution grid hosting capacity in
real-time

Deep-learning-based LSTM Real-time prediction of Host-
ing Capacity for each feeder

[35]

Converter-interfaced generators (CIGs)
integration

Static multi-agent reinforcement learning
(MARL) algorithm

Maximising hosting capacity
and voltage flexibility

[37]

Energy consumption forecasting Deep-learning-based kCNN-LSTM Energy consumption forecast [38]

Low voltage grid Support vector machines (SVM) Low-voltage grid classification
for hosting capacity

[39]

Energy demand predictions Improved sine cosine optimisation
algorithm-based LSTM (ISCOA-LSTM)

energy consumption forecasting [44]

Energy requirement forecasting OSSB-NN and BFGS-QNB Load demand forecasting [45]

Home PV system Policy function approximation (PFA) Impact of PV-battery systems
on distribution networks

[46]

Optimal locations for new DERs TLBO and HBMO algorithms Cost, losses, and voltage deviation [47]

PV System Multiple swarm intelligence optimisation
algorithm

Wind energy potential analysis,
wind speed forecasting

[93]

Electricity consumption forecasting Long short-term memory network Timestamp prediction of future
electricity demand

[94]

3.3.3. Optimisation

Integrating distributed energy resources with the power network would be economi-
cally profitable and technically sustainable by optimising distribution network parameters,
the network and DER control model, the DER output, and the demand uncertainty model,
as well as the DER output forecasting model. The sustainable integration of distributed re-
newable energy resources and energy storage devices within the electricity network requires
the analysis of the microscopic information for network stability, reliability, and economic
operation [88]. The varying nature of the power generated from the distributed energy
resources, energy storage devices, power conversation electronic equipment, and uncertain
load consumption pattern involves analysing a considerable amount of real-time data [89].
Traditional analysis tools are unable to fulfil the requirement of the modern electricity
network [90]. Artificial Intelligence algorithms could be very useful for the analysis of
dynamic behaviour, forecasting, integration, disturbance events, and cyber security of the
electricity network with a high penetration of DER and energy storage devices [88].

In [38], the authors investigated the deep learning algorithm-based K-means clustering-
based convolutional neural networks and long short-term memory (k-CNNLSTM) model
for the reliable forecasting of energy consumption. Using a case study and comparing the
results using various tools and techniques, the authors have concluded that the proposed
k-CNNLSTM model provides more accurate demand forecasting of energy consumption.
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The improved load forecasting results may help the network operator to manage the power
demand more efficiently and effectively [38]. In [39], the low-voltage grid was classified
based on the grid information such as the network feature, simulation feature, and graph
feature. They proposed the support vector machine (SVM) for analysing low-voltage grid
characteristic parameters. The researchers in [45] studied the supervised deep learning algo-
rithm for forecasting the energy demand at the district level so that the designers, planners,
and administrators could utilise the predicted result. They examined the One-step secant
back propagation neural networks (OSSB-NN) and BFGS Quasi-Newton back propagation
(BFGS-QNB) using the real time consumption and climate data. In [89], the authors re-
viewed the efficiency, effectiveness, and potentiality of the artificial intelligence algorithms
using deep learning techniques for forecasting the renewable energy output. The sparse
autoencoder (SAE), deep belief network (DBN), deep recurrent neural network (DRNN),
stacked extreme learning machine (SELM), deep reinforcement learning (DEL), and deep
convolutional neural network (DCNN) are a widely used deep learning algorithm for fore-
casting the renewable energy. Power consumption forecasting is essential for the integration
of DER with the network. In [93], the authors proposed a swarm intelligence optimisation
and data processing for estimating the potentiality of wind energy and forecasting the wind
speed that would help reduce the operating cost of the wind power generating stations.
In [94], the authors introduced the deep-learning-based framework (D-FED) for calculating
the future energy demand, forecasting the electricity demand in real-time and estimating
the dependencies of the load demand. They used the short long-term memory network
moving window for the proposed framework.

3.4. Efficiency of Different Hosting Capacity Analysis Approaches

Different hosting capacity approaches have adopted different analysis models. The host-
ing capacity output varies based on the objective functions and constraints considered
for analysis. Researchers consider the standard distribution network such as IEEE test
networks, European low voltage networks, and other standard networks. The methods
or models are also verified on practical distribution network models based on real data to
simulate the practical scenarios. The study in [22,28,33,97] used IEEE distribution networks
for validating their proposed models. The practical distribution network was used for
validating the model in [11,18,26,29,36,68,98]. The European low voltage network was
adopted in [40].

The hosting capacity in different studies varies due to the various assumptions, con-
straints and networks considered. In [29], the study found up to 70% of the EV share on
the distribution network, whereas in [97], 86% of hosting capacity was observed at the
suburban feeder network in the IEEE 33-bus system. In [98], the hosting capacity analysis
accuracy was highlighted. The study found about 90% output accuracy for the PV host-
ing capacity analysis using the Monte Carlo-based hourly stochastic analysis framework.
The use cases, models, objectives and obtained hosting capacity results are summarised in
Table 11.
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Table 11. Hosting capacity analysis method results.

Application Scenario Method Objective Results Reference

Distribution network with
15 feeders

Monte Carlo Procedure;
Stochastic Analysis Approach

To investigate the im-
pact of PV location,
voltage regulator, and
power factor on host-
ing capacity

Up to 71.8% hosting
capacity of feeder
achieved with re-
stricted PV location

[9]

A 11.4 kV distribution feeder
with seven buses

Improved stochastic analysis
method

Analysis of PV hosting
capacity

Up to 400% PV pene-
tration observed using
PV inverter Volt/VAR
control

[10]

Real distribution network con-
sisting of 943 nodes

Dynamic distributed pho-
tovoltaic hosting capacity
methodology

Dynamic hosting ca-
pacity estimation with
distributed PV sources

Dynamic hosting ca-
pacity achieved up to
60–20% higher com-
pared to static hosting
capacity

[11]

Swedish distribution network
with 51 secondary substation
and 34 customers

NIS analysis software To investigate the PV
penetration level

A 40% PV penetration
observed

[18]

The 33-bus distribution system Mixed-integer linear program-
ming model

Enhancing hosting ca-
pacity with DG and EV
penetration with the
network

A 66.67% DG penetra-
tion achieved with EV
injection with the net-
work

[22]

A 56-node South California Edi-
son distribution network

Probabilistic Hosting Capac-
ity Analysis via Bayesian Op-
timisation

Optimal DER Location A 25% higher hosting
capacity with 70% com-
putation time saving

[26]

IEEE 123-bus feeder Multi-parametric Program-
ming (MPP)-aided Probabilis-
tic Hosting Capacity Analysis
(PHCA) method

Acceleration of hosting
capacity analysis

A 10 to 20 times faster
hosting capacity analy-
sis acceleration

[28]

LV radial network proposed by
Task Force C6.04.02 CIGRÉ

DG hosting capacity approxi-
mation using the k-NN regres-
sion technique

Hosting capacity analy-
sis using Time-of-Tariff
(TOU) for EVs

Up to 70% of the EVs
share achieved

[29]

Standard radial 69 bus distribu-
tion feeder and a practical 152
bus distribution system

Stochastic multi-objectives op-
timisation model using Mixed
Integer Nonlinear Program-
ming (MINLP) optimisation
method

Losses and their associ-
ated cost

Reduced active power
loss

[30]

IEEE-33 radial distribution sys-
tem

Continuation Power Flow
(CPF)-based voltage stability
analysis method

Optimal Hosting ca-
pacity and Computa-
tion time

Reduced observed
bus number, scenarios
to be analysed and
computation time
compared to stochastic
method

[33]

European LV feeders General polynomial chaos-
based probabilistic power
flow

Planning and opera-
tion uncertainties of
the hosting capacity
analysis

Hosting capacity in-
creased three times by
allowing a 25% higher
grid limit

[40]

Medium voltage radial feeder
with 19 feeder circuits and 7084
consumer connections

Hybrid method Impact of load and
PV generation uncer-
tainty on hosting ca-
pacity analysis

Observed up to 85.70%
penetration level

[68]
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Table 11. Cont.

Application Scenario Method Objective Results Reference

Low voltage distribution net-
work of New Zealand EDBs
with almost 30,000 customer
connection points

DG hosting capacity ap-
proximation using k-NN re-
gression technique

DG hosting capacity
analysis

The median distribu-
tion error achieved be-
low 10% for all DG pen-
etration level

[36]

IEEE 33-bus system Monte-Carlo simulation-
based PV hosting capacity
analysis with respect to
economic constraint

Technical and eco-
nomic limiting factors
on hosting capacity

A 40% reduced net-
work costs; 85%, 86%,
and 76% hosting capac-
ity in rural, suburban,
and urban areas, re-
spectively

[97]

A 12.47-KV distribution net-
work with 24 MVA substation
transformer, 1196 MW of PV
generation and 1218 customer
connections

Monte-Carlo-based hourly
stochastic analysis frame-
work

PV hosting capacity
analysis

More than 90% accu-
racy is obtained

[98]

4. Future Research Directions

The application of artificial intelligence techniques is a relatively less explored area
in the hosting capacity analysis of the low voltage distribution network. Various artificial
intelligence techniques could be excellent tools for examining power quality parameters.
The hosting capacity analysis is concerned with measuring the capability of the distribu-
tion network to withstand the additional DER within the allowable power quality limits.
Artificial intelligence techniques can estimate the parameters on a real-time basis, enhance
computational efficiency and increase output accuracy. Instead of conventional methods,
artificial intelligence techniques could be utilised for measuring the real power injection
to the distribution network from distributed energy resources, real and reactive power
curtailment, and assessing the required network augmentation. The real-time forecasting
of the power generation from the DER and consumer demand could play a crucial role
for the hosting capacity analysis and low voltage distribution network management for
the distribution network operators. Artificial intelligence could be a powerful tool for the
real-time power generation and consumption forecasting that would boost the performance
of the network. Researchers should pay attention to the real-time measurement of all net-
work parameters and respond accordingly to ensure consumers’ sustainable and reliable
power supply.

5. Conclusions

In this paper, relevant works were studied to explore the state-of-the-art hosting ca-
pacity analysis methods and DER integration challenges faced by the distribution system
operators. It also highlights the research gap in different literature investigating the meth-
ods and algorithms used for analysing various aspects of power flow and hosting capacity.
It examined various impact factors that affect the hosting capacity of the distribution net-
work with a high penetration of DER. It also discussed different hosting capacity analysis
methods investigated by different researchers. This paper concludes that the artificial
intelligence-based hosting capacity analysis methods could be better alternative for a real-
time hosting capacity analysis and sustainable integration of the DER with medium and
low voltage distribution network.
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