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Abstract: Fault diagnosis plays an important role in complex and safety-critical systems such as
nuclear power plants (NPPs). With the development of artificial intelligence (AI), extensive research
has been carried out for fast and efficient fault diagnosis based on intelligent methods. This paper
presents a review of various AI-based system-level fault diagnosis methods for NPPs. We first discuss
the development history of AI. Based on this exposition, AI-based fault diagnosis techniques are
classified into knowledge-driven and data-driven approaches. For knowledge-driven methods, we
discuss both the early if–then-based fault diagnosis techniques and the current new theory-based ones.
The principles, application, and comparative analysis of the representative methods are systematically
described. For data-driven strategies, we discuss single-algorithm-based techniques such as ANN,
SVM, PCA, DT, and clustering, as well as hybrid techniques that combine algorithms together. The
advantages and disadvantages of both knowledge-driven and data-driven methods are compared,
illustrating the tendency to combine the two approaches. Finally, we provide some possible future
research directions and suggestions.

Keywords: fault diagnosis; artificial intelligence; knowledge-driven; data-driven; nuclear power plants

1. Introduction

Advances in technology have increased the level of automation in industry, but they
have made systems increasingly complex, placing higher demands on system safety and
reliability. One way to improve system safety and reliability is to improve the quality, relia-
bility, and robustness of system components, but this still cannot eliminate the occurrence
of faults [1,2]. Therefore, fault diagnosis has become an important technique to ensure the
safety and reliability of industrial systems. For complex nuclear power plant systems, fault
diagnosis techniques are designed to monitor whether the system and its components are
functioning properly, detect the type of fault at an early stage, and determine the location
and severity of the fault to avoid further damage [3].

Fault diagnosis includes fault monitoring, fault location, and fault analysis [4,5]. Fault
monitoring determines whether there is a fault in the system and components. Fault
location determines the location of the fault. Fault analysis performs the function of deter-
mining the type, severity, and cause of the fault. Traditional fault diagnosis techniques are
generally divided into hardware-redundancy-based, model-based, and signal-processing-
based methods [6–8]. The hardware-redundancy-based method is to use a redundant
component design idea to detect component faults when the component outputs are dif-
ferent from those of the redundant components [9–12]. The model-based method requires
a more accurate mathematical model of the system, similar to the concept of hardware
redundancy, which is diagnosed by comparing the output of the mathematical model with
that of the actual system [13–16]. The signal-processing-based method requires mathe-
matical or statistical processing of the measured data to extract information related to the
fault [17–20].
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More than two-thirds of the nuclear reactors in service by the end of 2021 worldwide
were pressurized water reactors (PWRs), and the typical pressurized water reactor system
composition is shown in Figure 1. PWR nuclear power plants use light water as a coolant
and moderator [21], which mainly consists of a nuclear steam supply system [21,22], a
turbine generator system [23], and other auxiliary systems [24]. After the coolant absorbs
the heat energy released from nuclear fuel fission, the heat is then transferred through the
steam generator to the second circuit to generate steam, which then enters the turbine to
do work and generate electricity [25]. Nuclear power plant systems contain hundreds of
subsystems with potential radiological hazards. If a fault occurs during operation, the
operator is required to accurately determine the fault type. Therefore, fault diagnosis is an
important support technology to assist operators in making fault identification. Traditional
fault diagnosis techniques for nuclear power plants rely mainly on expert experience,
which is somewhat uncertain and subjective. With the advancement of instrumentation
and control systems, nuclear power plants generate a large amount of data. Artificial
intelligence can process the large amount of data, and the research on fault diagnosis
technology based on AI is increasing.
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System-level faults are one of the major causes of accidents in nuclear power plants.
In the event of a fault, trained operators are faced with hundreds of subsystems and a large
number of monitoring and control parameters, and the immense psychological stress can
easily lead them to misjudgments, which can lead to serious radiological consequences.
With the rise of AI, numerous studies on fault diagnosis based on AI have emerged. AI
is a technology that resembles human intelligence through some programmed language
of computers. AI has shown great advantages in some aspects. First, AI can process huge
sources of information in a short period, helping operators extract critical information
quickly after a fault occurs. Second, AI can also eliminate human error. Even the best
experts in the nuclear field have the potential to make mistakes, while AI systems built
on specific tasks do not suffer from such errors. Third, AI can work continuously, and
continuous condition monitoring is essential for nuclear power plants. AI does not always
work, e.g., some AI technologies that rely on training are unreliable if they encounter
situations other than training.
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With the development of AI technology, more and more scholars have focused on the
application of AI in nuclear power plant fault diagnosis [3,27–29]. However, there is no
systematic compendium of AI-based fault diagnosis methods for nuclear power plants.
This paper aims to comprehensively review the progress of fault diagnosis techniques
from an AI perspective and establish a new framework for fault diagnosis classification.
Fault diagnosis technology is divided into two types: knowledge-driven and data-driven.
The existing research is described and analyzed in detail under this framework. One of
the purposes of this paper is to introduce existing nuclear power plant fault diagnosis
problems to the research group of AI and to introduce AI concepts and techniques to the
nuclear power industry, to make the combination of AI and fault diagnosis better. This
paper also tries to identify the problems to be solved and the direction of future research.
Note that this paper will not discuss all the techniques in the field of fault diagnoses, such
as traditional signal-processing-based fault diagnosis techniques and component-level fault
diagnosis. The reader may refer to [16,30] for more information on the history and methods
of diagnosis techniques.

This paper is organized as follows: Section 2 is a fault diagnosis classification frame-
work from the AI perspective. Section 3 introduces knowledge-driven fault diagnosis
techniques and representative methods. Section 4 introduces data-driven fault diagno-
sis techniques and representative methods. Section 5 is the comparative analysis of the
two methods. Section 6 provides the conclusions of this paper and the directions for
future research.

2. Fault Diagnosis Classification from the AI Perspective

It is important to identify the history of AI development, which helps to establish a
framework for AI-based fault diagnosis technology for nuclear power plants.

2.1. Development History of AI

Artificial intelligence (AI) was born in 1956, and there are two competing lines of devel-
opment, namely, symbolism and connectionism [31]. As shown in Figure 2, connectionism,
also known as data-driven methods, predates symbolism and originates in early computers
and cybernetics [32]. The concept of neural networks was introduced by neuroscientist
Warren McCulloch and logician Walter Pitts in 1943 [33]. The development trend in Figure 2
shows the dominance of connectionism in the early stages, and connectionism saw a major
development in the late 1950s [34]. Frank Rosenblatt, inspired by the work of many parties,
proposed a true connectionism system [35]. In the 1960s and 1970s, a variety of connec-
tionist techniques were developed [36–38], such as statistical learning techniques based on
decision theory [38] and reinforcement learning techniques [39], with representative works
such as Samuel’s checkers program [40] and Nilsson’s “learning machines” [41].

In the late 1970s, limited by the computing power of the time, the development
of connectionism reached a low point, and the school of symbolism gradually emerged.
Symbolism, also known as knowledge-driven methods, was defined as artificial intelligence
at the Dartmouth Conference in 1956, and connectionism in cybernetics was introduced into
AI years later [42]. Symbolism dominated the field of AI from the 1960s to the early 1990s.
At the request of National Aeronautics and Space Administration (NASA) in 1965, Stanford
University successfully developed the Dendritic Algorithm (DENRAL) expert system,
which has a very rich knowledge of chemistry and can help chemists infer molecular
structures from mass spectrometry data. The completion of this system marked the birth of
expert systems [43]. By the mid-1970s, expert systems had gradually matured, the most
representative of which was the Daptomycin (MYCIN) system by Sholtev et al., which was
used to diagnose and treat bloodstream infections and encephalitis infections and could
provide prescription recommendations [44]. Another highly successful expert system is
the Prosecutor (PROSPECTOR) system, which was used to assist geologists in detecting
mineral deposits and was the first to achieve significant economic benefits [45]. After
the mid-1980s, expert systems have been widely put into commercial operation. One
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famous example is the eXpert CONfigurer (XCON)/R1 expert system developed by the
Department of Environmental Conservation (DEC) in collaboration with Carnegie Mellon
University, which saves millions of dollars per year [46]. Subsequently, symbolism went
downhill due to its complex construction process and limited performance [47]. Since the
1990s, there has been a strong tendency for connectionism to replace symbolism due to
improved algorithms, increased computing power, and improved data resources [48–50].
Geoffrey Hinton, the father of neural networks, and his student Ruslan proposed a solution
to the problem of gradient disappearance in deep network training, starting the wave
of deep learning in industry and academia [51]. However, in 2012, Google launched the
Knowledge Graph project, which is essentially an improvement on the semantic web of
the 1960s symbolism school and to some extent represents progress in the development of
symbolism [52].
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In conclusion, connectionism is dominant in the current development process of AI
while symbolism is in a slow development stage. However, both AI routes have their
one-sidedness. Connectionism lacks robustness and interpretability, while symbolism lacks
data mining and relies excessively on expert subjective opinions and complex combinatorial
rules. Therefore, the two schools have a strong complementarity, and the integration of the
two schools will certainly become a major trend in the future development of AI. For the
convenience of description, this paper refers to symbolism as the first-generation AI and
connectionism as the second-generation AI.

2.2. AI-Based Fault Diagnosis Classification

Since the 1980s, AI-based fault diagnosis techniques have been applied in nuclear
power plants [53], and subsequent developments have been closely linked to AI techniques.
The nuclear accident diagnosis expert system [54] is a typical representative of the first-
generation AI-based techniques, which consists of a fault diagnosis knowledge base, a
comprehensive knowledge base, and a fault diagnosis inference machine. The system
obtains fault types by importing the monitored physical symptoms into the inference
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machine and interacting with the diagnostic knowledge base. Early expert systems were
mainly based on simple if–then rules in the computer domain [55], and new theories
such as signed directed graphs (SDGs) [56], Bayesian networks (BNs) [57], and dynamic
uncertain causality graphs (DUCGs) [58] were gradually introduced subsequently. Neural-
network-based fault diagnosis technology is a typical application of second-generation AI,
which uses historical data to train neural networks to obtain a diagnostic model capable
of identifying faults [59]. In addition, scholars have conducted in-depth research on the
applications of single and hybrid algorithms. Scholars applied a single algorithm including
artificial neural networks, principal component analysis, support vector machine, decision
tree, and unsupervised clustering to fault diagnosis and preliminarily verified the feasibility
of these methods [60–64]. Subsequently, hybrid algorithms such as fuzzy logic–neural
network, laminar model–neural network, principal component analysis–neural network,
laminar model–support vector machine, and principal component analysis–convolution
neural network are proposed, and these hybrid algorithms have been proven to have better
diagnostic performances than single algorithms [65–73].

VOSviewer 1.6.17 is a software tool for constructing and visualizing bibliometric
networks. In this paper, we use VOSviewer software to conduct statistical and cluster
analyses of the literature to obtain the hot topics and frontier trends in the field of “nuclear
power plant fault diagnosis”. A subject search was conducted by the keyword “fault
diagnosis”, and the research direction was set to “nuclear science technology” based on
all the databases subscribed to the Web of Science. The clustering view shown in Figure 3
was obtained by performing text analysis on 647 relevant papers. The brighter the node
color in the graph, the more relevant papers are. Being closer to the center indicates that
the research object receives more attention. The fault diagnosis methods related to AI can
be divided into part A and part B as shown in Figure 3. In part A, “knowledge base”,
“expert system”, “fuzzy logic”, and “fuzzy logic” can be seen, and they belong to the
first generation of AI technology. Part A is located at the edge of the clustering diagram,
which indicates that the current attention to the application of the first generation of AI
technology is not high. In part B, “artificial neural network” and “training” can be seen,
and they belong to the second generation of AI technology. It can be seen that part B has
brighter color and higher centrality, which indicates that the fault diagnosis method based
on second-generation AI is the current research hot spot.
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As shown in Figure 4, this paper establishes a new fault diagnosis classification frame-
work from the AI perspective, that is, knowledge-driven and data-driven fault diagnosis
methods. Knowledge-driven methods correspond to first-generation AI technology, and
data-driven methods correspond to second-generation AI technology. Then, the develop-
ment of the two methods is systematically combed to help readers understand the progress
of fault diagnosis technology from the AI perspective.
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3. Knowledge-Driven Fault Diagnosis Methods

Knowledge-driven fault diagnosis methods for nuclear power plants, also known
as expert systems, can be regarded as a combination of the knowledge base and the
inference machine. They mainly use the experience accumulated by domain experts in
long-term practice. As shown in Figure 5, the knowledge-driven fault diagnosis methods
can be divided into two types, the early if–then (Section 3.1) and the current new theories
(Section 3.2). These new theories include signed directed graphs, Bayesian networks and
dynamic uncertain causality graphs, etc. The inference mechanism is the main difference
between them. Finally, we summarize the characteristics of these knowledge-driven
methods (Section 3.3).
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3.1. Fault Diagnosis Methods Based on If–Then

The fault diagnosis technology based on if–then rules mainly includes the establish-
ment of the knowledge base and the inference engine. William et al. built a fault diagnosis
expert system by taking four types of typical accidents (LOFW, SGTR, LOCA, and MSLB) in
nuclear power plants as the diagnosis objects [55]. They first established nine if–then rules
(Table 1) based on domain knowledge and then constructed an expert system based on these
rules. As shown in Figure 6, the system infers from known facts until the type of accident
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is obtained. If there is not enough information to conclude, the system infers backward to
determine what information it needs to know. The system will then query the nuclear plant
instrumentation or use the operator to fill in the knowledge gaps. Bergman et al. first used
expert systems to diagnose faults in boiling water reactors [74]. Since expert knowledge
has uncertainty, some scholars have introduced the concept of fuzzy membership in the
representation of expert knowledge and used fuzzy logic for inference as a way to deal
with the uncertainty of expert knowledge [75,76]. Sutton et al. developed a fuzzy expert
system for the early detection of steam leakage faults in nuclear power plants [77]. Fuzzy
theory is good at describing the uncertainty caused by imprecision, while evidence theory
can describe the uncertainty caused by ignorance. Yang et al. proposed an expert system
based on a confidence rule base based on fuzzy theory, evidence theory, and decision
theory [78,79]. The confidence rule base adds the concept of confidence to the if–then rule,
which can represent the complex causal relationship between various types of data with
uncertainty. The above shows that the early expert systems in the nuclear field focused on
the application and improvement under if–then rules.

Table 1. If–then rules.

Rule Number If Then

1 (PCS pressure decreasing)
(HPIS on) PCS integrity challenged

2 PCS temperature increasing PCS–SCS heat transfer inadequate

3 PCS temperature increasing SG inventory inadequate

4 (High containment radiation)
(High containment pressure) Containment integrity challenged

5 (PCS–SCS heat transfer inadequate)
(Low feedwater flow) Accident is LOFW

6 (SG inventory inadequate)
(Low feedwater flow) Accident is LOFW

7 (PCS integrity challenged)
(Low feedwater flow) Accident is LOCA

8 (PCS integrity challenged)
(SG level increasing) Accident is SGTR

9 (SG inventory inadequate)
(High steam flow) Accident is MSLB

Abbreviations: PCS: primary coolant system; HPIS: high pressure injection system; SCS: secondary coolant system;
SG: steam generator; LOFW: loss of feedwater; LOCA: loss of coolant accident; SGTR: steam generator tube
rupture; MSLB: main steam line break.
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3.2. Fault Diagnosis Methods Based on New Theories
3.2.1. Signed Directed Graphs

Signed directed graphs (SDGs) are also knowledge-driven methods, which do not
require an exact mathematical model. SDGs first originated in the chemical industry and
were proposed by Iri et al. [80]. SDGs consist of nodes and directed arrows between nodes,
which can effectively represent the relationships between elements within a system. As
shown in Figure 7, the node representation in SDG is flexible. Nodes a, b, and c can
represent not only physical variables, such as pressure and temperature, but also some
parts of the system, such as switches and valves. Nodes R1 and R2 can represent an event,
such as a specific fault cause or adverse consequence [10]. The relationships between nodes
in SDG are expressed qualitatively, and it is not necessary to provide the exact quantitative
relationships between system nodes. Therefore, it is easier to establish the model. For
fault diagnosis of the SDG model, the means of combining reverse inference and forward
inference are generally adopted. Assume that nodes a and b are abnormal and c is normal.
According to the reverse inference, two compatible paths can be obtained: b→ a→ R1
and b→ a→ R2. R1 and R2 are the candidate fault sources. Then the forward inference is
verified. If R1 is the fault source, node c should be large or small, but the state of node c is
normal, which is not consistent with the observation. Therefore, the candidate fault source
R1 is a false solution and should be discarded. Similarly, the forward inference for R2 is
verified, and R2 is consistent with the actual observed value when R2 is the fault source,
which means that R2 is a plausible fault source. More detailed information on the signed
directed graph can be found in [81–83].
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To improve SDGs’ accuracy and sensitivity, SDGs have been successively combined
with other methods, such as SDGs–expert system [84], SDGs–principal component anal-
ysis [85], SDGs–qualitative trend analysis [86], SDGs–hazard and operability [87], SDGs–
fuzzy logic [88,89], and SDGs–Bayesian networks [90].

In the nuclear field, Wu et al. thoroughly studied the application of SDGs methods for
fault diagnosis and successively combined SDGs with fuzzy theory and correlation analysis
for online monitoring and diagnosis of nuclear power plants [91–93]. The fault diagnosis
technology based on SDGs can reveal the fault propagation path and comprehensively
explain the fault cause, which is its remarkable feature. However, when the system is
complex, the rule combination explosion problem will appear in accordance with the
directed graph, which is one of the reasons why this method is not widely used at present.

3.2.2. Bayesian Networks

A Bayesian network is a directed acyclic network, which consists of nodes and directed
edges. Nodes include parameter nodes and fault nodes, and the relationship between
nodes is connected by directed edges. The uncertainty of the relationship between nodes
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is expressed by a conditional probability table [94]. Figure 8 shows a simple Bayesian
network model in which X1 is the fault nodes and has two states (“0” and “1”), and X2−X5
are parameter nodes, each of which has i, j, k, l states. Assuming that the parameter nodes
have two states, their conditional probability tables are shown in Tables 2 and 3. The
directed edges between the nodes indicate the dependencies between the parent and child
nodes, such as X1 with X2. More detailed information on Bayesian networks can be found
in [95,96].
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Table 2. CPT of parameters X2, X3, and X4.

P(X1) P(X2|X1) X1=1 X1=0 P(X3|X1) X1=1 X1=0 P(X4|X1) X1=1 X1=0

X1 = 1 0.5 X2 = 1 0.90 0.05 X3 = 1 0.95 0.05 X4 = 1 0.90 0.05

X1 = 0 0.5 X2 = 0 0.10 0.95 X3 = 0 0.05 0.95 X3 = 0 0.10 0.95

Table 3. CPT of parameter X5.

P(X5|X3,X4)
X3=1 X3=0

X4 = 1 X4 = 0 X4 = 1 X4 = 0

X5 = 1 0.90 0.05 0.95 0.10
X5 = 1 0.10 0.95 0.05 0.90

Assuming that the state information of the parameter node X5 is currently obtained
as l1, the probability that the faulty node X1 is in state 1 (faulty state) is inferred from
Equation (1).

P(X1 = 1|X5 = l1) =
P(X1=1,X5=l1)

P(X5=l1)
=

∑i,j,k P(X1=1,X2=i,X3=j,X4=k,X5=l1)
P(X5=l1)

=
∑i,j,k P(X5=l1|X3=j,X4=k)P(X3=j|X1=1)P(X4=k|X1=1)P(X2=i|X1=1)P(X1=1)

P(X5=l1)

(1)

Bayesian networks were first used to build regulatory systems and have been used in
industrial systems since the 21st century, especially in the area of reliability. Lerner et al.
proposed a dynamic Bayesian network (DBN) for tracking and diagnosing complex sys-
tems [97]. Przytula et al. proposed an efficient BN generation procedure for diagnosis
and applied it to internal combustion locomotives, satellite communication systems, and
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satellite test equipment [98], which can handle continuous variables representing parameter
states and discrete variables representing fault situations. Mahadevan et al. applied the BN
concept to a new method for reassessing the reliability of structural systems [99].

In the nuclear field, Wu proposed a fault diagnosis framework for NPPs with BNs
as the core, which combines PCA, data fusion, and fuzzy theory to achieve an online
diagnosis of NPPs with multi-sensor information [100]. Jones et al. proposed a DBN system
for diagnosing the state of nuclear power plants, which can predict the progress of an
accident [101]. Oh et al. focused on the diagnostic performance under normal operating
conditions and LOCA system states based on a dynamic Bayesian network and adopted
the step-by-step diagnostic idea for system states and accident types [102]. Yi Ren et al.
proposed a method of uncertainty reliability evaluation combining GO-FLOW and dynamic
Bayesian network. This method uses sensitivity analysis to provide input information
that contributes most to uncertainty. The uncertainty is then quantified using the DBN
algorithm and Monte Carlo simulation to appropriately estimate the analysis results [103].
Zhao et al. combined Bayesian networks with a probabilistic risk assessment to achieve fast
prediction of accident source terms. They used Bayesian networks for online fault diagnosis
and matched the fault diagnosis results with the accident sequences in probabilistic risk
assessment to obtain the source term release class [104–106]. Bayesian networks have
advantages over if–then and SDG in accommodating missing information and uncertainty
inference and quantifying diagnostic results.

3.2.3. Dynamic Uncertain Causality Graphs

In the 1990s, Zhang proposed a knowledge expression and inference model based on
probability, the Dynamic Causality Diagram (DCD) [107]. Based on the DCD, Zhang further
proposed the dynamic uncertain causality graphs (DUCGs), which added conditional action
events and default events. It expressed the uncertain causality by independent random
events and graphically. When predicting, the qualitative inference results are obtained first,
and then the probability is calculated numerically [108]. Compared with BNs, the DUCG
model is greatly simplified by removing unrelated independent events, and inference
becomes very easy when evidence of independent connecting events or action events is
introduced. In addition, DUCG overcomes the shortcomings that the concise expression
of knowledge and inference methods of the BN applicable in the single-assignment case
are not applicable in the multi-assignment case. The reason for describing the state of a
variable is called an assignment. A single-assignment variable means that there is only one
assignment for a variable, and a multiple-assignment variable means that there is more
than one assignment for a variable. For detailed principles of DUCG theory, readers can
refer to [58,109–112].

In the nuclear field, Deng was the first to establish a DUCG model for fault diagnosis
in NPPs and validated the performance of the model with a second-loop feeder pipe
leakage fault [113]. Zhang et al. proposed a DUCG method with fault diagnosis and fault
process deduction [114]. Zhao et al. proposed a DUCG diagnosis system for CPR1000
reactor type and compared the method with other diagnosis methods, which promoted
the development of an intelligent diagnosis system for the CPR1000 [115–118]. Dong et al.
studied the new inference algorithm and industrial fault diagnostic system for nuclear
power plants [119,120].

According to our literature study, the application of DUCG in the nuclear field is
still in its infancy. There is a lack of specialized books on this theory, which hinders
the promotion of DUCG technology to a certain extent. However, DUCG-based medical
diagnosis technology is developing more rapidly, and Zhang’s team is also conducting
related research and promotion [121–126].

3.3. Summary of Knowledge-Driven Fault Diagnosis Methods

This section focuses on knowledge-driven fault diagnosis methods for NPPs and
classifies the existing methods into two types: if–then rule (Section 4.1) and new theories
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(Section 4.2). Expert systems (if–then), signed directed graphs, Bayesian networks, and dy-
namic uncertainty causal graphs are introduced in detail. The development characteristics
of these four methods are shown in Figure 9. The earliest expert systems are based on if–
then rules and rely on the rules stored in the expert knowledge base. The symbolic-directed
graph method incorporates qualitative knowledge representation between nodes, which
greatly improves the inference ability. The Bayesian network introduces uncertain inference
technology, which can accommodate information loss and improve system robustness.
Dynamic uncertainty causal graphs develop multi-assignment inference techniques based
on Bayesian networks, which possess higher inference efficiency. These knowledge-driven
methods share common drawbacks. They all need to establish a complete knowledge base
first. Therefore, it is necessary to improve the efficiency of knowledge acquisition and the
completeness of the knowledge base. In addition, the complex cause–effect relationships
within nuclear power plants make the knowledge base complex and large, which requires
improved reasoning efficiency.
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4. Data-Driven Fault Diagnosis Methods

The data-driven fault diagnosis method for nuclear power plants can be regarded as
a combination of a “data base” and an “inference machine”. The “data base” is defined
as the massive data resources required by the method, which should be distinguished
from the concept of the database in the computer field. Additionally, the “inference
machine” refers to a trained model based on large amounts of data, which is different from
knowledge-driven “inference machines” (Section 3). As shown in Figure 10, the application
of data-driven fault diagnosis methods in the nuclear field can be divided into two types:
single algorithms (Section 4.1) and hybrid algorithms (Section 4.2). Most hybrid algorithms
are improved based on single algorithms and have stronger diagnostic performance. To
enable readers to understand the data-driven methods and their research progress in detail,
the principles of several representative methods and their application progress in NPP fault
diagnosis are introduced in Section 4.1. The research progress of fault diagnosis based on
hybrid algorithms is introduced in Section 4.2. Finally, we summarize the characteristics of
data-driven methods (Section 4.3).

4.1. Fault Diagnosis Methods Based on Single Algorithms

In this section, we present several representative single algorithms and their research
progress in the nuclear field and conclude with a brief comparison of these methods.
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4.1.1. Artificial Neural Network

Artificial neural networks (ANNs) are mathematical models that mimic the structure
and function of biological neural networks. They are used to approximate or evaluate
functions [127]. An ANN is a system that can learn and summarize existing data to produce
a system that can be automatically identified. The most common artificial neural network
is a back propagation neural network (BPNN), as shown in Figure 11, which consists of an
input layer, one or more hidden layers, and an output layer in which neurons are connected
by weights. Each neuron contains two transformation steps internally [128–130]. First,
the weighted sum of all input values connected to that neuron is calculated. Second, the
weighted sum is nonlinearly transformed using an activation function.
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The training process of a BPNN is as follows: when a BPNN obtains a learning sample,
the sample is transmitted from the input layer through the hidden layer to the output layer,
which is the input response of the network. If the network fails to obtain the expected
target output in the output layer, the error signal will enter the back-propagation phase and
return to the input layer along the original connection path. The error signal can be reduced
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by modifying the weights of each layer. When errors are propagated repeatedly, the correct
prediction of the output layer increases. The back-propagation process is stopped until the
error is sufficiently small, and then a mapping is created between the input and output
to obtain a model with predictive or diagnostic capabilities. With the development of
technology, artificial neural networks have developed in various forms. The network
architecture can be divided into three types: feed-forward neural networks [131], recurrent
neural networks [132], and reinforcement networks [133].

Since artificial neural networks can handle complex multimodal, associative, infer-
ential, and memory functions, this matches the fault diagnosis of complex nuclear power
systems. The fault diagnosis method based on a neural network is to establish a mapping
of the fault diagnosis based on the training data. The trained network is then used for
new observations to judge anomalies. Zwingelstein et al. first applied the BPNN to the
fault diagnosis of NPPs and preliminarily verified the feasibility [60,134,135]. In addi-
tion to BPNNs, such as recurrent neural networks (RNNs) [136], improved BPNNs [137],
self-organizing neural networks [138], and Hopfield neural networks [139] have all been
studied in applications. In general, research based on neural networks is mostly in the
preliminary validation phase. The combination of neural networks with other algorithms
for diagnosis is the mainstream trend. The related content will be presented in Section 4.2.

4.1.2. Support Vector Machine

The basic idea of support vector machines (SVMs) is to divide data into different
categories using a hyperplane formed by formulas. Taking the simplest two classifications
as an example, as shown in Figure 12, the formula represents different hyperplanes. For a
linearly separable dataset, w·x+ b = 1 and w·x+ b = −1 denote the two boundaries of the
hyperplane. All hyperplanes that can divide the dataset into two classes are within these
two boundaries. Among all hyperplanes, the goal of SVM is to find an optimal decision
boundary that is farthest from the nearest samples of different classes, that is, to obtain the
most robust classification hyperplane. Since the nuclear power plant operation data are
nonlinear, it is not possible to establish the hyperplane by the same method. The solution is
to map the data from the low-dimensional space to the high-dimensional space and find
the optimal hyperplane in the high-dimensional space, and the kernel function is the core
of the method. More detailed principles about SVM can be found in [133–135].
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Gottlieb et al. first used support vector machines for the diagnosis of NPP accidents
and verified the feasibility of SVM for data classification [135]. Zio et al. used support
vector machines in the diagnosis of subsystems such as feed water system [136], first-
loop system [137], and other components of abnormal monitoring [138,139]. Kim et al.
used support vector machines to predict the times of serious accidents to help operators
better manage accidents [140]. Abiodun et al. established diagnostic models for different
components of NPPs in the form of a support vector set for early fault diagnosis [141]. As
with neural network methods, NPP fault diagnosis relying on SVM alone has been less
studied. As a fundamental method, the current research involving SVMs is more in the
area of hybrid algorithms, which will be presented in subsequent sections.

4.1.3. Decision Tree

The decision tree is a tree structure learned from data. The decision tree is based
on a tree structure to make decisions. It selects one of several attributes of the training
samples for determination each time and assigns the samples to different sets according to
their values on that attribute, after which the next round of decisions is made until all the
samples in the same set belong to the same class. Decision trees usually have three steps:
feature selection, generation of decision trees, and pruning of decision trees. As shown
in Figure 13, when using a decision tree for fault diagnosis, the fault feature parameters
are tested starting from the root node, and the fault samples are assigned to their internal
nodes based on the test results. Each internal node corresponds to a value of that feature,
so the samples are tested and assigned recursively until they reach the leaf node, which
is the type of fault. In fact, for complex industrial systems such as nuclear power plants,
overly complex decision trees will lead to poor generalization performance. Readers can
find more detailed information in [140–143].
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In the field of NPP fault diagnosis, decision trees are more intuitive and explanatory
than other algorithms, but pure decision-tree-based fault diagnosis is less applied. Yu et al.
first used a decision tree in the fault diagnosis of NPP and compared and combined it
with other algorithms [63,144,145]. Sharanya et al. used decision trees for the diagnosis
of cooling tower faults in NPPs. Based on the comparison of several algorithms, they
concluded that decision trees have the potential to be combined with other algorithms to
construct hybrid models [146].

4.1.4. Principal Component Analysis

Principal component analysis (PCA) is a statistical method that converts a set of po-
tentially correlated variables into a set of linearly uncorrelated variables called principal
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components through an orthogonal transformation. PCA is often used for data dimension-
ality reduction. As shown in Figure 14, the first step is to move the center of the axes to the
center of the data and then rotate the axes to maximize the variance of the data on the C1
axis to retain more information, where C1 is the first principal component. The second step
is to find the second principal component C2 so that it has a covariance of 0 with C1 to avoid
overlapping with C1 information and maximize the variance of the data in that direction.
The third step is to use the same steps as the second step to continue to find the next
principal component. Data containing m variables can have up to m principal components.
More detailed principles of principal component analysis can be found in [147–149].
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In the field of NPP fault diagnosis, PCA is generally used for fault monitoring. Lu
et al. used PCA in the fault diagnosis of steam generators to extract the main features of
faults and quantify the accuracy of fault identification by projecting normalized vectors
into the fault space [147,148]. Zhao et al. used PCA for steam generators and considered
the uncertainty of the simulation model, which improved the robustness of the PCA model
diagnosis [149]. Wei et al. used the PCA method for status monitoring of the sensor in
NPPs and calculated the non-detection area of the sensor in the model, which expanded
the fault diagnosis scope of the PCA model [150–154]. Yu et al. proposed an improved
PCA model to improve the diagnostic accuracy and the diagnostic capability of multi-
sensors [155,156]. Zhang et al. systematically studied the fault detection performance of
various PCA methods [157]. In addition, most of the fault diagnosis methods use PCA as
a pre-technology to reduce the data dimension to improve the diagnostic performance of
hybrid methods, which will be described in subsequent sections.

4.1.5. Clustering

Clustering is an emerging method, and the understanding of clustering is not system-
atic enough compared with the aforementioned algorithms. There is not even a chapter
on clustering in the well-known textbook [158]. Clustering is an unsupervised learning
method, that is, the labeling information of the training samples is unknown. The goal is to
divide the samples in a dataset into several usually disjoint subsets, each called clusters.
Note that clustering is significantly different from classification. The former algorithms
(Sections 4.1.1–4.1.4) essentially solve the classification problem, that is, the labels of each
sample are known and the data are classified into known categories. Clustering divides
the data into different subsets according to its inherent nature and rules. Clustering can be
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divided into partition-based methods, hierarchy-based methods, density-based methods,
network-based methods, and model-based methods. More detailed principles of clustering
can be found in [159–161].

In the field of NPP fault diagnosis, clustering is mainly used for fault monitoring. This
method can be used to distinguish abnormal conditions from normal conditions even if
they have not been trained. Talonen first developed a diagnostic model for early fault
identification in NPPs based on a partition method [162]. Podofillini et al. established a
dynamic process fault identification model based on model clustering [163]. Mercurio et al.
simulated 60 accident samples and classified them into four categories using a clustering
method, one of which was a new type of fault that was not trained beforehand [164].
Sameer et al. clustered turbine fault information from different NPPs and developed a
generic fault diagnosis framework [165]. Baraldi et al. successively used clustering for fault
diagnosis of different components of NPPs [61,166–170].

4.1.6. Comparison of Single Algorithms

Some data-driven methods have not been mentioned, such as logistic regression and
naive Bayes. Due to their lack of applicability or application prospects, they are not further
described in this paper. Table 4 summarizes the characteristic of the above five methods.

Table 4. Comparison of single algorithms.

Methods Type Advantages Disadvantages

Artificial neural network Supervised learning Various networks; strong
non-linear fitting ability. Large amount of data is needed.

Support vector machine Supervised learning High accuracy; suitable for small
samples; avoid overfitting.

Difficult to train large-scale data;
sensitive to kernel function selection.

Decision tree Supervised learning
Strong explanatory; acceptable

for a sample with
incomplete information.

Easy overfitting; easy to ignore
attribute relations in data.

Principal component analysis Supervised learning Data dimension reduction. Poor interpretability.

Clustering Unsupervised learning Diagnose untrained faults. Sensitive to K value selection.

4.2. Fault Diagnosis Methods Based on Hybrid Algorithms

In the field of NPP fault diagnosis, hybrid algorithms combine the advantages of
different single algorithms to obtain better diagnosis results. With the development of AI
technology, almost all of the current methods are based on hybrid algorithms. As shown
in Table 5, we conducted a detailed survey of the existing hybrid-algorithm-based fault
diagnosis methods. In this table, we established six topics based on the five algorithms
introduced in Section 4.1. In the first five topics, X stands for other auxiliary algorithms,
such as ANN+X, which represents a hybrid diagnostic algorithm with ANN as the main
algorithm. The sixth topic is the research literature involving the comparison of each
algorithm. According to the literature research, the proportion of the literature on each
topic and the distribution of the diagnostic objects are shown in Figure 15.

In general, the current research of ANN+X algorithm occupies the mainstream di-
rection, which is consistent with the development trend of AI, followed by SVM+X and
comparison. In terms of diagnosis objects, system-level faults in NPPs, such as LOCA,
SGTR, MSLB, and other initial events, are the vast majority of the diagnosis objects. How-
ever, component-level faults such as valves, feed pumps, inverters, etc. are less studied. One
of the reasons is that most of the studies are conducted based on simulators due to the lack
of real fault data, while simulation data for system-level faults are more readily available.
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ANN+X. This topic is closely related to the development of neural network technology.
For example, RNN is a very popular technique in recent years, which is good at processing
time series data and has wide applications in natural language processing and artificial
intelligence translation. Ye et al. introduced RNN with other algorithms into NPP fault
diagnosis [171–173], making full use of the time series nature of the data. Some scholars con-
sidered the NPP data too complex, so they used other algorithms as front-end techniques to
reduce the dimensionality and finally obtained better diagnostic performances [69,174,175].
Since there are various types of ANNs, each with unique advantages, integrated learning
techniques combining multiple networks have been widely studied [158–162]. Ming et al.
introduced multilayer flow models to improve the accuracy and interpretability of the
neural network [67]. Qian et al. proposed a method to expand the fault diagnosis dataset
based on generative adversarial networks (GANs) and demonstrated that the enhanced
dataset can improve the performance of various models [163]. In addition, several scholars
have studied the optimization of the hyperparameters of ANNs to obtain the parameter
settings with the best diagnosis performance [172].

Comparison. In a comparative study, Yao et al. compared the performance of ANN
with PCA, DT, and SVM methods in a more systematic way. He also transformed the state
information of NPPs into image form and then used the advantages of convolutional neural
networks in image recognition for the fault diagnosis [164]. In addition, Liu et al. built
a hybrid model of SVM and SDG (the knowledge-driven method) and adopted different
diagnostic methods for different objects [165]. To sum up, the relative research is relatively
basic, and systematic comparative research is not yet available.

Other topics. The research directions of SVM+X include two main aspects. One is a
combination of algorithms to reduce the data complexity with SVM. Another is to introduce
algorithms related to the SVM parameter optimization [73,166,167]. The other three topics
(PCA+X, DT+X, and Clustering +X) are less studied, and these three topics can be further
studied in terms of integrated learning, interpretability, and hyperparameter optimization.

4.3. Summary of Data-Driven Fault Diagnosis Techniques

This section provides a detailed survey of the data-driven NPP fault diagnosis methods
based on a single and hybrid algorithm perspective. To help readers understand the
basic principles of these methods more quickly, this part dilutes the relevant formulas and
elaborates the core ideas in layman’s terms, and it includes an index of the relevant literature
for readers who need to do further study. The study shows that the current research favors
the application of hybrid algorithms. This is because a single algorithm often does not fully
satisfy the needs of the fault diagnosis. ANN+X is a popular research direction, which is
also driven by the current popular deep learning technology. However, for nuclear power
plants with high safety and reliability requirements, the inherent uninterpretability of neural
networks and the dependence on massive data will hinder their practical application.
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Table 5. Fault diagnosis methods based on hybrid algorithm.

Topic Reference Algorithm Diagnosis Object Highlights

ANN+X

[171] WPT and LSTM NPP converter The operation mode of the power system is analyzed in
depth when a failure occurs.

[174] WPT and ANN NPP system faults Disturbing perturbations in training set are reduced
by WPT.

[173] RNN, WOLP, and ARTD NPP system faults
The paper improved the practical applicability and

scalability of diagnosis systems to real processes
and machinery.

[69] CN and DBN NPP system faults Correlation analysis is used for dimensionality reduction.

[69] FNN and MSIF NPP system faults The system is able to achieve a single-fault and some
multiple-fault diagnoses.

[172] CGRN and EPSO NPP system faults The technical framework of digital twin model, deep
learning, and heuristic algorithm is established.

[158] BPNN and RBF NPP system faults First adopts the BP-ANN for a rapid group pre-diagnosis,
then uses the RBF ANNs to verify the results.

[159] FNN and RBF NPP system faults A combination of NN and fuzzy theory is proposed.

[160] ANN and VF NPP system faults Many neural networks diagnose the same fault, and the
result is obtained by voting fusion.

[161] ANN and LF NPP system faults The logical fusion method was employed to fuse the
diagnosing results of different neural networks.

[162] ELM and AdaBoost NPP system faults The paper verifies the feasibility and validity of the
ensemble learning method for fault diagnosis.

[168] ANN and SW NPP system faults Adaptive feature learning using a sliding
window strategy.

[67] ANN and MFM NPP system faults MFM can provide explanations on how the malfunctions
originated and propagated to the current situation.

[169] ANN and FL Small break loss of
coolant accident High sensitivity and superior prediction capabilities.

SVM + X

[166] LS-SVM and GPR NPP system faults PSO is applied to find the optimal GPR model to better
assess the severity of the fault.

[170] SVM and RS NPP system faults The uncertain data is reduced based on RS theory.

[73] SVM and EPSO NPP system faults The optimization of hyperparameters of SVM by
improved PSO is compared with others.

[167] SVM and GA Physical parameter A new GASVM is proposed to classify multiple faults.

PCA+ X [72] PCA and MFM NPP system faults Mechanism simulation is implemented to provide
training data with fault signatures.

DT + X [145] DT and RS NPP system faults A parameter reduction method based on neighborhood
rough sets was proposed.

Clustering +X [176] Clustering and FBS NPP turbine The paper developed a framework of unsupervised
classification of transients.

Comparison

[164] PCA and (SVM, KNN,
LDA, DT, and LR) NPP system fault s The state information imaging is used to construct the

different condition images.

[177] PCA and SVM NPP system fault s A three-layer fault classification model was established to
diagnose the fault type, location, and degree.

[178] PCA and ANN SG tube; RCS pump Radial basis network provides better prediction and
diagnoses the faults faster than Elman neural network.

[165] ANN, D-S, and SDG NPP system faults To the different diagnostic object, we adopted the
different diagnostic methods.

[179] ANN and SVM Feed-water pump A comparative analysis of ANN and SVM was performed.

[147] PCA and ANN NPP system faults The method utilizes the (PCA) technique to reduce the
problem dimension.

Abbreviations: WPT: wavelet packet transforms; LSTM: long short-term memory; RNN: recurrent neural network;
WOLP: wavelet on-line pre-processing; ARTD: autonomous recursive task decomposition; CN: correlation
analysis; DBN: deep belief network; FNN: fuzzy neural network; MSIF: multi-source information fusion; CGRN:
convolutional gated recurrent network; EPSO: enhanced particle swarm optimization; RBF: dial basis function;
VF: voting fusion; LF: logical fusion; ELM: extreme learning machine; SW: sliding window; MFM: multi-flow
model; FL: fuzzy logic; RS: rough sets; GA: genetic algorithm; FBS: fuzzy-based slope.

5. Results

The advantage of knowledge-driven methods is that there is no need to establish a
systematic analytical model, and the diagnosis results are highly interpretable and robust.
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However, there are shortcomings in these methods. First, it is difficult to obtain expert
knowledge, and the accuracy depends on the richness of the knowledge base. Second,
when there are many inference rules, matching conflicts may occur during the inference
process, resulting in low inference efficiency. The advantages of the data-driven methods
are that the modeling process is relatively simple, general, and in real time, but there are
also some shortcomings. Second, it is difficult to obtain fault sample data, and it is almost
impossible to obtain real fault sample data for NPPs. For example, a large amount of data is
required to train a neural network, which is not friendly to nuclear power plants. Third, the
generalization ability of the model is weak. Once the actual data are slightly different from
the training data, it may lead to inaccurate diagnosis results. Fourth, its calculation process
is not interpretable, and it is difficult to convince industry workers. Table 6 compares the
advantages and disadvantages of the two types.

Table 6. Comparison of fault diagnosis methods.

Characteristic Ease of Modeling Interpretability Robustness Reasoning Efficiency

Knowledge-driven no yes yes no

Data-driven yes no no yes

The table shows that the two types are highly complementary but that a way to truly
integrate the two has not yet been achieved. In recent years, physics-informed neural
networks (PINN) [180], which embed physical partial differential equations into neural
networks for learning solutions, have effectively improved the generalization ability of
models and compensated for the disadvantages of purely data-driven methods. The
integration of knowledge-driven and data-driven methods represented by PINN brings
new ideas to nuclear power plant fault diagnosis technology. How to combine the two
organically and make full use of the knowledge and data resources of nuclear power plants
is an important research direction.

6. Conclusions and Future Directions

This paper reviews the fault diagnosis techniques for NPPs from the perspective of
AI. A new fault diagnosis classification framework is established. The fault diagnosis
techniques are divided into two types: knowledge-driven and data-driven. The knowledge-
driven methods are divided into the early if–then rules and current new theories (SDG, BN,
DUCG, etc.). The principles, application, and comparative analysis of these methods are
systematically described. The data-driven methods are divided into two research directions:
single algorithms and hybrid algorithms. For single algorithms, the principles, application,
and comparative analysis of the five representative algorithms (ANN, SVM, PCA, DT, and
clustering) are also given. For the hybrid algorithm, a “topic + X” classification means
is constructed in this paper. The existing fault diagnosis technology based on hybrid
algorithms is investigated in detail, and the mainstream trend of current research is given.
Finally, the advantages and disadvantages of both knowledge-driven and data-driven
methods are compared, and an important research direction is how to combine data-driven
and knowledge-driven methods. With the advancement of AI technology, NPP fault
diagnosis methods are still being improved and developed forward, and the following are
some possible research directions.

1. The combination of data-driven and knowledge-driven fault methods. At present,
their respective theories have become mature, but there is still a lack of theoretical
research integrating their advantages. In the context of the digital transformation of
NPPs, data resources can be easier to obtain, and knowledge resources can be obtained
from NPP’s Deterministic Security Analysis Report (DSAR) and Probabilistic Risk
Analysis Report (PRAR). DSAR and PRAR contain detailed knowledge descriptions
of fault mechanisms, which can be used to build knowledge-driven models such
as Bayesian network models, and data resources of nuclear power plants can help
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build data-driven models such as neural networks. For example, when strong inter-
pretability of diagnostic results is required, it is necessary to consider incorporating
knowledge into the model. We have explored the combination of knowledge-driven
and data-driven methods by using PRAR and DASR to build Bayesian networks for
fault type diagnoses as well as using data to build neural networks for fault severity
diagnoses [181]. Studying new technologies to make full use of these two resources is
a field worthy of research in the future.

2. On-demand system fault diagnosis. In practice, Zhao et al. classify the types of NPP
system-level faults into two types, operational faults and on-demand faults [106]. An
operational fault is defined as an unexpected abnormal behavior during the operation
of a nuclear power plant, such as a rupture of primary coolant pipes and a rupture of
heat transfer pipes of steam generators. An on-demand fault is defined as the fault of
the response system to perform a predetermined function after an operational fault
occurs, such as high pressure in the primary circuit, which makes the pressure of the
regulator higher than the set value and prevents the relief of the safety valve from
opening. At present, there is little research on on-demand faults, but it is of great
significance to nuclear safety.

3. Introduction of digital twin technology. Digital twin refers to the simulation process
of integrating multi-disciplinary, multi-physical quantity, multi-scale, and multi-
probability technology by making full use of the data such as the physical model,
sensor update, and operation history and finally completing the mapping in the
virtual space, to reflect the whole life cycle process of the corresponding physical
equipment [182]. At present, most studies are based on data from NPP simulators.
These simulators are not high-fidelity models, which means that the application of
the diagnostic model in actual NPP has great uncertainty. The digital twin technology
can accurately simulate the actual equipment. The reliability and safety of its practical
application will be greatly improved based on this technology. Nguyen et al. studied
a digital twin approach to system-level fault detection and diagnosis for thermal
hydraulic systems [183]. Therefore, it is of great significance to establish the digital
twin model of NPPs.

4. More detailed diagnostic hierarchy. As shown in Figure 15, most of the current studies
focus on system-level faults in NPPs, while there are few studies on human factor
faults, sensor faults, control room faults, network security faults, etc.

5. Construction of the generalized model. In many cases, the fault diagnosis models we
construct are only applicable to specific tasks. When encountering a new task, it is
an important challenge to reuse the previous data and experiences. Transfer learning
provides a possible solution [184]. Some related studies are in progress [185–188].

6. Interdisciplinary cooperation. Fault diagnosis is a comprehensive technology in-
volving multiple disciplines (modern control theory, mathematical statistics, signal
processing, pattern recognition, artificial intelligence, etc.). Most of the current fault
diagnosis research is limited intra-disciplinary exploration. An optimal fault diagno-
sis research should gather multidisciplinary knowledge as a way to drive the fault
diagnosis technology in a more efficient, sensitive, and intelligent direction. Therefore,
a cross-disciplinary perspective is crucial for researchers.

Author Contributions: Conceptualization, J.L. and J.T.; methodology, B.Q. and J.L.; investigation,
B.Q.; writing—original draft preparation, B.Q.; writing—review and editing, J.L. and J.T.; funding
acquisition, J.L. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Innovation Funds of CNNC-Tsinghua Joint Center for
Nuclear Energy R&D (Project No. 20202009032) and grant from National Natural Science Foundation
of China (Grant No. T2192933).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2023, 16, 1850 21 of 27

References
1. Ding, S.X. Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2008.
2. Qian, Y.; Li, X.; Jiang, Y.; Wen, Y. An expert system for real-time fault diagnosis of complex chemical processes. Expert Syst. Appl.

2003, 24, 425–432. [CrossRef]
3. Ma, J.; Jiang, J. Applications of fault diagnosis in nuclear power plants: An introductory survey. IFAC Proc. Vol. 2009, 42,

1150–1161. [CrossRef]
4. Hwang, I.; Kim, S.; Kim, Y.; Seah, C.E. A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control

Syst. Technol. 2009, 18, 636–653. [CrossRef]
5. Dey, S.; Mohon, S.; Pisu, P.; Ayalew, B. Sensor fault detection, isolation, and estimation in lithium-ion batteries. IEEE Trans. Control

Syst. Technol. 2016, 24, 2141–2149. [CrossRef]
6. Kim, S.; Jung, I.; Kim, Y. Hybrid Fault Detection and Isolation Techniques for Aircraft Inertial Measurement Sensors. Int. J.

Aeronaut. Space Sci. 2006, 7, 73–83. [CrossRef]
7. Han, L.; De-Yun, X. Survey on data driven fault diagnosis methods. Control Decis. 2011, 26, 1–9.
8. Dehestani, D.; Eftekhari, F.; Guo, Y.; Ling, S.; Su, S.; Nguyen, H. Online support vector machine application for model based fault

detection and isolation of HVAC system. Int. J. Mach. Learn. Comput. 2011, 1, 66–72. [CrossRef]
9. Andersson, M. Fault diagnosis of a fixed wing UAV using hardware and analytical redundancy. Dissertation 2013, 1, 92.
10. Jacintha, V.; Shakthimurugan, K.; Kripakaran, V.; Lokeshwaran, S. FPGA Based Dual Redundancy CAN Controller with Fault

Tolerance. In Proceedings of the 2018 4th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 7–9
February 2018; pp. 667–671.

11. Merrill, W.C.; Guo, T.-H.; Delaat, J.C.; Duyar, A. Real Time Fault Diagnosis for Propulsion Systems. IFAC Proc. Vol. 1991, 24,
491–496. [CrossRef]
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