
Citation: Korde, U.A. Use of

Magnetostrictive Actuators for Wave

Energy Conversion with Improvised

Structures. Energies 2023, 16, 1835.

https://doi.org/10.3390/en16041835

Academic Editor: Hua Li

Received: 14 December 2022

Revised: 3 February 2023

Accepted: 4 February 2023

Published: 12 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Use of Magnetostrictive Actuators for Wave Energy Conversion
with Improvised Structures
Umesh A. Korde

Environmental Health and Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA;
ukorde1@jhu.edu

Abstract: This paper presents work on a wave energy device with an on-board power take-off based
on a magnetostrictively actuated deformable structure. Such devices potentially could be used in
low-cost, short-term expeditionary operations. The paper discusses an analytical model that describes
the heave oscillations of a buoy with two inclined, overhanging beams with magnetostrictive strips
affixed to them. This work comprises the first steps toward an analytical model that would enable
potential users to obtain quick power estimates at the planning stage. Here, the fully nonlinear
magneto-mechanical-electrical constitutive relations are linearized about a desirable operating point,
and a coupled dynamic model is derived using a variational formulation that includes buoy heave,
flexural oscillations of the two beams, and the voltage response of the magnetostrictive strips.
Energy conversion performance in wind-sea-dominated Pierson–Moskowitz spectra is found to be
modest. However, present results also indicate that performance could be improved with suitable
mechanical modifications.
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1. Introduction

Wave energy utilization has interested inventors and potential users since at least the
late 19th century. Several archetypal conversion technologies that have developed since
then are reviewed in [1]. Principles and components of several conversion concepts are
reviewed in [2], while some hydrodynamics and control-related aspects of representative
conversion methods are described in [3]. Interest in wave energy conversion has grown
significantly in recent years, with much of the activity being aimed at commercial-sale
applications [4]. Use of wave energy for powering oceanographic instrumentation has
also received increasing attention (e.g., [5,6]) in recent years. There is now a growing body
of work focused on a variety of non-grid applications of wave energy with commercial
potential (e.g., [7]), and progress is also being made in the design of wave energy converters
for recharging autonomous underwater vehicles (AUV) [8].

Whereas much of the present-day research emphasizes device technologies that are
intended to serve for several years and meet the power conversion requirements for long-
term applications, this paper presents a somewhat different perspective. Here, we describe
a part of our recent research on small, improvised wave energy devices that are expected
only to serve temporary short-term needs. Particular focus is on the use of low-cost
indigenous materials, straightforward assembly and operation, minimal hardware, and
where applicable, single-use primary converter with multi-use power take-off systems that
are interchangeable among different primary converters.

Such considerations may arise in a variety of situations in including recreational
activities such as seaside camping, sailing, and fishing expeditions where there are limits on
transportable hardware and when small amounts of power are desired from environmental
sources such as waves. Certain applications may also require quiet operation.

The need for quiet operation and interchangeability precludes a number of mechanical
options for the power take-off. Here, we investigate a power take-off based on deformable

Energies 2023, 16, 1835. https://doi.org/10.3390/en16041835 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16041835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0103-7353
https://doi.org/10.3390/en16041835
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16041835?type=check_update&version=2


Energies 2023, 16, 1835 2 of 19

structures and ‘smart’ materials for which structural strain produces an electrical (in addi-
tion to mechanical) response and vice versa. Piezoelectric materials have been considered
for secondary energy conversion in wave energy conversion since at least the late eight-
ies [9]. Recent trends in application of piezoelectric materials for wave energy conversion
can be found, for instance, in [10]. Due to their small coupling coefficients, piezoelectrics
lack the force authority to serve as effective power converters in applications where large
amounts of power with large forces and displacements are involved [11]. This is particu-
larly true for piezoelectric polymers being used to control flexural deformations [12]. The
question considered in this work was whether metallic smart materials could effectively
serve the force and displacement needs of wave energy conversion. Rare-earth metal
alloys such as Terfenol (terbium–dysprosium–iron) and Galfenol (gallium–iron) are known
to have magnetostrictive properties (e.g., [13,14]). Accordingly, these materials deform
structurally when subjected magnetic fields. A reverse effect also occurs when an external
force produces a structural deformation that causes a magnetic field, which in turn leads to
a voltage and current. Magnetostrictive materials have been tested for application in energy
harvesting [14] as well as structural vibration control [15], which provides the motivation
for investigating them for energy conversion and oscillation control on wave-actuated
deformable structures that could potentially constitute the power take-off system for a
small wave energy device. The emphasis of the present work is on the energy conversion
potential of magnetostrictive materials for a small wave energy device. It is expected that
magnetostrictive strips manufactured in large numbers would present a cost advantage.
Potential users could then use a selected number for power conversion with deformable
structures on an improvised wave energy device.

In the case of Galfenol or Terfenol actuators, an externally applied magnetic field
between the two ends of a magnetostrictive strip aligns the internal magnetic moments
along the field direction. When such a strip is deformed in a direction normal to the
field, the structural deformation causes the moments to realign, which in turn alters the
magnetic flux density across a conductor coil around the strip, producing a voltage and
driving a current through a load. For Galfenol and Terefenol, the effect can be bidirectional
and it enables actuation and sensing, and our goal here is to investigate whether it is
strong enough to enable power capture from waves. In particular, we consider the energy
capture performance of a power take-off based on long, flexible beams affixed with strips
of Galfenol, whose magnetostrictive properties are well documented and readily available
(e.g., [14]).

The relationships that quantify structural response to magnetic fields and vice versa are
an extension of the ‘constitutive relations’ from structural mechanics. Here, the constitutive
relations are derived from a full magneto-electro-mechanical description, as reviewed
in [13]. The two important goals of the present work are, (i) to develop an integrated
dynamic model for a system comprised of a wave excited body that carries on board two
long beams with Galfenol strips affixed to them; and (ii) to use a constitutive model for
Galfenol that allows material behavior nonlinearities to be utilized to improve actuation
authority and power capture. Figure 1 shows a schematic for a small buoy with the Galfenol
actuated long beams, potentially assembled using tree limbs. A cylindrical geometry is
chosen here because it is amenable to 3-D printing technology, and can even be assembled
by tying together a number of tree logs. Wave motion causes the buoy to oscillate. Buoy
oscillations excite oscillations of the two beams, which in turn cause cyclic deformation of
the Galfenol strips attached to the beams. Each beam carries an end-mass at its overhanging
ends, the purpose of the end masses being to accentuate the low-frequency oscillations of
the beams, knowing that ordinary wind-wave or swell spectra would apply excitation in
the frequency range from 0.1 to 1 Hz.

Section 2.1 describes the magnetostrictive constitutive relations used in this work.
Section 2.2 discusses the dynamic model for the wave-excited buoy with long beams
supporting Galfenol strips. Section 3 discusses The paper concludes with a summary of the
main findings in Section 4.
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Figure 1. Schematic view of a 2-beam Galfenol power take-off for wave-excited oscillations of a small
buoy. Note the significant overhangs for the beams. The boundary conditions used here suitably
represent the overhangs. Schematic not to scale. Thanks to Dr. Kevin Baldwin at JHU-APL for
generating the machine drawing.
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Figure 1. Schematic view of a 2-beam Galfenol power take-off for wave-excited oscillations of a small
buoy. Note the significant overhangs for the beams. The boundary conditions used here suitably
represent the overhangs. Schematic not to scale. Thanks to Dr. Kevin Baldwin at JHU-APL for
generating the machine drawing.

2. Materials and Methods
2.1. Magnetostriction Constitutive Relationships

The following treatment is based on [13]. It is assumed that the magnetostrictive
strips are prestressed to a stress T0, which induces a magnetic field HT (the middle term
in Equation (1) below). The externally applied magnetic field is related to the current I
flowing through the coil around the strip and the number of turns N. The overall magnetic
field He on the strip can be expressed as,

He = NIe f +
9
2

λsT0

µ0M2
s

M + αM. (1)

where e f accounts for coil end effects, and is approximated as e f = 1 here. M denotes
magnetization, while λs and Ms are saturation magnetostriction and saturation magne-
tization, respectively. µ0 is free-space magnetic permeability, and α quantifies the effect
of interactions between magnetic moments. The magnetization M is comprised of an
anhysteretic component Man and an irreversible component Mirr, as

M = cMan + (1− c)Mirr. (2)

If the oscillations occur over a small portion of the M− H curve about an operating
point (M0, H0), then the irreversible component can be neglected. M ≈ Man can be
expressed as

M ≈ Man = Ms

[
coth

(
He

a

)
− a

He

]
(3)
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To find the dynamic relationship between M and He, we use the expansion

coth
(

He

a

)
≈ a

He
+

He

3a
− H3

e
135a3 + . . . . (4)

Combining Equations (1) and (3) and using the approximation (4), we can express the
magnetization M as

M =
NIMs[

1− Ms
3a

(
α + λsT0

µ0 M2
s

)] . (5)

The magnetostriction λ is related to magnetization M according to [13],

λ =
3
2

λs

M2
s

M2. (6)

Substituting M from Equation (5) into Equation (6).

λ =
3
2

λs
N2 I2

[
1− Ms

3a

(
α + λsT0

µ0 M2
s

)] . (7)

The combined strain ST at a point x on the beam due to a stress T and magnetization
M can be expressed as

ST = sT +
3
2

λs
N2 I2

[
1− Ms

3a

(
α + λsT0

µ0 M2
s

)] . (8)

Here, s denotes compliance (i.e., reciprocal of stiffness). For oscillations about the
operating point (M0, H0), He = NI in the second term can be linearized as

H2
e ≈ H2

0 + 2N2 I0∆I + . . . . (9)

Letting S0 denote the prestrain in the beam due to the steady magnetic field H0,

S0 =
3
2

λs
H2

0[
1− Ms

3a

(
α + λsT0

µ0 M2
s

)] , (10)

denoting just the oscillatory part of the strain as S,

S = sT +
3λsH0[

1− Ms
3a

(
α + λsT0

µ0 M2
s

)]∆I. (11)

Denoting 2N2∆I as H, with the understanding that I ≈ ∆I must be small, and defining
its coefficient as d,

S = sT + dH; d =
3λs H0H[

1− Ms
3a

(
α + λsT0

µ0 M2
s

)] . (12)

To find the direct relationship between the magnetic flux density B and the stress T,
we argue that the component BT of B due to the stress-caused magnetic field component
HT is

BT = µT HT , where HT =
9
2

λs

µ0

(T0 + T)
M2

s
M. (13)

µT denotes the permeability at constant stress. Approximating conditions with H held
constant at H0 (with M = M0),
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BT =
9
2

µT λs

µ0

(T0 + T)
M2

s
M0. (14)

With the derivative of BT with respect to T defined as d∗,

d∗ =
∂BT
∂T

=
9
2

µTλs M0

µ0M2
s

. (15)

The full expression for magnetic flux density B together with the direct contribution
of H can be written as

B = d∗T + µT H. (16)

Note that Equations (12) and (16) are linear, and form the constitutive relationships we
use here, although the operating point (M0, H0) can be chosen to maximize magnetostric-
tion (and thus the mechanical to electric coupling), with d and d∗ being evaluated at the
operating point.

It was found useful to work with inverted forms of the relations (12) and (16),

T = c11S + dB,

H = d
∗
S + νB.

(17)

The coefficients in Equation (17) are given by

c11 = 1
s− dd∗

µT
, d = d/µT

s− dd∗
µT

,

d
∗
= d∗/µT

s− dd∗
µT

, ν = s/µT

s− dd∗
µT

.
(18)

2.2. Coupled Dynamic Model

The dynamic model for the problem at hand is summarized below. The situation
being modeled is interesting in that we have floating-body oscillations being excited by
waves, with the oscillations in turn exciting the oscillations of the flexible beams with
magnetostrictive actuators attached. Thus, between the waves and the electric circuit
powered by the actuator current and voltage, there are three energy exchanges: (i) between
waves and floating body, (ii) floating body and oscillating beams, and (iii) beam oscillations
to converter electrical circuits. The boundary conditions for the overhanging beams are
summarized below.

2.2.1. Boundary Conditions

The tree limb beams shown in Figure 1 are resting on the keel of the buoy, with part
of their weight also being supported by the deck openings through which they overhang.
Here, the two supports are modeled as pin joints, and the tree limbs are modeled as two-
span beams with one span of length L2 overhanging a shorter simply supported span of
length L1. For either beam of length L = L1 + L2, with w(x, t) denoting the out-of-plane
beam deformation at a point x along beam length, we may define x1 = x, x ≤ L1, and
x2 = x− L1 to express the beam profiles W(x) for a solution w(x, t) = W(x)T(t) as follows.

W(x) = W(x1) = C1 cos kx1 + C2 sin kx1 + C3 cosh kx1 + C4 sinh kx1,

W(x) = W(x2) = D1 cos kx2 + D2 sin kx2 + D3 cosh kx2 + D4 sinh kx2.
(19)

Additionally, we allow below for the endpoints of the beam overhangs also to support
an end masses to accentuate beam oscillations at the lower frequencies common to ordinary
wave spectra. The boundary conditions become
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W(x1) = 0, W ′′(x1) = 0, at x1 = 0,

W ′′(x2) = 0, W ′′′(x2) = FW(x2), x2 = L,

W(x2) = 0, x2 = 0, (20)

W(x1) = W(x2), at x = L1,

F = −ω2me

Λ
.

me above represents the end mass carried by each beam, and Λ represents the flexural
rigidity of the beams with Galfenol strips attached. Λ is defined in the following section.
The boundary conditions in Equation (20) present a closed system, with the determinant
going to zero at the spatial eigenvalues of the overhanging beams. From these, the natural
frequencies of the beams can be determined for various geometries and end-masses, with
the goal of finding the best combinations for the present application.

Two cases are studied below: (1) where the deck-level supports for the beams are
tight enough for the beams to maintain contact with them throughout the oscillation; and
(2) where these supports are loose enough for the beams to bounce within the supports
during their oscillation cycles.

For convenience, the buoy shape is chosen to be cylindrical with a hemispherical
bottom. Heave is assumed to be the dominant oscillation, even though a pitch/roll mode
can be added relatively easily. For the case with the tight deck-level supports, the dynamic
variables are (i) buoy oscillation in heave s, (ii) beam oscillations in single-axis bending
w(x, t), and (iii) voltage produced between the terminals of an electrical load circuit con-
nected to the actuators V. A third variable representing the beam angle θ was added to the
system for the situation with loose supports. It was found convenient to use the variational
formulation for deriving the equations of motion for the entire system.

2.2.2. Beams Tightly Fitting through Deck Supports

For the first case, the angle between the beams and the vertical was assumed to be a
constant, αi, i = 1, 2. For the beams, uniaxial bending is assumed, and shear deformation
and rotary inertia are neglected. The total kinetic energy was expressed as

TK =
1
2
[mD + a(∞) + mbi + mei]ṡ2 +

2

∑
1

1
2

ρbh
L∫

0

ẇ2
pidx. (21)

The in-air mass of the buoy is mD, while a(∞) represents its infinite-frequency added
mass in heave. mbi = ρbhL is the mass of each beam, and mei is the end-mass attached to
each beam. Further, wi is the deflection of the ith beam perpendicular to its neutral axis, the
vertical deflection component wpi being given by wi(x, t) cos αi = wp(x, t). The strain at
any beam fiber z from the neutral axis can be expressed as S = −zwxx for small deflections.
Then, using this expression for S in Equation (17), the total potential energy of the beams
together with the potential energy of the buoy can be expressed as

VV =
1
2

kDs2 +
2

∑
i=1

1
6

c11bh3
L∫

0

w2
pixxdx +

1
6

bh3dB2
i w2

pixxdx. (22)

Here, wpixx denotes the second derivative with respect to x of wpi, the out-of-plane
deflection of the ith beam. The Lagrangian L is

L = L(ṡ, s, ẇip, wipxx) = TK −VV . (23)

An action variable J can be set up over a time interval 0 ≤ t ≤ Tt such that



Energies 2023, 16, 1835 7 of 19

J =
Tt∫

0

L(ṡ, s, ẇip, wipxx)dt. (24)

Minimization of J over the interval 0 ≤ t ≤ Tt requires that the first variation δJ = 0.
The minimization process leads to the equations of motion and the boundary conditions
(natural or externally prescribed), which we here prescribe as in Equation (20) above. The
equations of motion can be derived from

∂

∂t

(
∂L
∂ṡ

)
− ∂L

∂s
= Fe,

∂

∂t

(
∂L

∂ẇip

)
− ∂2

∂x2

(
∂L

∂wipxx

)
= 0; i = 1, 2. (25)

The force Fe on the right side of the first of Equation (25) represents the exciting/diffraction
force due to waves, the radiation force due to body oscillation in waves, and additional
effects such as viscous-frictional damping.

The equation of motion for the buoy is

(
mD + a(∞) + ∑

i
(mbi + mei)

)
s̈ + kDs +

2
∑

i=1
ρbh

L∫
0

ẅi cos αi

+cD ṡ +
t∫

0
hr(τ)ṡ(t− τ)dτ = Ff .

(26)

Ff on the right denotes the exciting force (accounting for diffraction effects) due to
waves. The convolution integral on the left is part of the radiation force, with hr denoting
the impulse response of the body. cD ṡ represents the linear approximation to the viscous
friction damping force. Next, the equation of motion for the ith beam is found to be

(
ρẅi +

1
6

c11h2wixxxx

)
cos αi +

1
4

dh2Bixx = ρs̈, i = 1, 2. (27)

We point out here that the flexural rigidity term Λ in Equation (20) is given by

Λ =
1

12
c11bh3. (28)

The magnetic flux density Bi is further related to the deflection wi through

1
2

dhWixx + νBi = Hi. (29)

It is noted next that the voltage Vi produced across the coil wound around the Galfenol
actuators is related to the magnetic flux density Bi according to

Vi = Ni Ai
∂Bi
∂t

. (30)

We assume that Hi (which includes changes due to flowing current) remains approxi-
mately constant during the oscillation for small oscillations and for a long coil of conductors
over a strip. Therefore, its spatial and temporal derivates are approximated to zero. Then,

Bi ≈
(

dh
2ν

)
∂2wi
∂x2 . (31)

We use this approximation in Equations (27) and (30). From Equation (30),
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∂Vi
∂x

=
Ni Aidh2

ν

∂3ẇi
∂x3 . (32)

Then, if the coil on each strip spans from x = `1 to x = `2, we find that the voltage
difference between the two terminals of the coil is

Vi2 −Vi1 =
Ni Aidh2

ν
(ẇixx(`2)− ẇixx(`1)). (33)

Equation (33) provides the voltage that would be available for use during the oscilla-
tion. Since Equation (27) uses oscillation components in the vertical direction, substitution
for Bixx as expressed in Equation (31) implies

(
ρẅi +

1
6

c11h2wixxxx +
1
8

dh2

ν
cos αiwixxxx

)
cos αi = ρs̈, i = 1, 2. (34)

Equations (26) and (34) describe the overall oscillation dynamics, with the waves
imparting a predominantly heave oscillation on the buoy and the buoy acceleration then
driving the beam deflections. Each of the Galfenol strips attached to the beams respond with
a voltage difference between two ends of a conductor coil wound around it, as described
by Equation (33). The beam oscillations are consistent with the boundary conditions in
Equation (20). With a load resistor RLi connected across the conductor coil in a simple
implementation, the power dissipated by it would be

PWi = V2
i /RLi; Vi = Vi2 −Vi1, i = 1, 2. (35)

Buoy displacement s(t) and beam deflections wi(x, t) can be evaluated when the wave-
applied exciting force Ff on the body is known. In this work, the Ff (t) time series were
obtained for chosen irregular wave conditions, assuming long-crested Pierson–Moskowitz
spectra. The spectral density was computed knowing the significant wave height Hs and
energy period Te, after which a wave elevation time series could be computed assuming
superposition of a large number of frequencies (in this work, N f = 512 for most calculations)
with the phase angles provided by a random number generator.

It is relatively straightforward to solve Equations (26) and (34) as a system by expand-
ing the deflection wi(x, t) into its natural modes or eigenfunctions ψin(x) as determined by
the boundary conditions (20). Thus, letting

wi(x, t) =
∞

∑
n=1

ζinψin(x) ≈
N

∑
n=1

ζinψin(x), (36)

where ζin(t) are the time-dependent modal oscillations, and

ψin(x) = W1i(x), 0 ≤ x ≤ L1,

ψin(x) = W2i(x), L1 ≤ x ≤ L.
(37)

We note that the modes ψin(x) are mutually orthogonal. Expanding wi(x, t) in
Equation (34) for each beam into its eigenfunctions, multiplying both sides by ψin and
integrating from 0 to L, and utilizing the orthogonality property of the nth eigenfunction
ψin, we arrive at the following ordinary differential equations for each modal displacement
ζin(t). This process results in the following system of equations.
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ρζ̈in(t) +
[

1
3 c11h2 + 1

8
d

2
h2

2ν

]
k4

n − ρs̈n
cos αi

= 0, i = 1, 2; n = 1, 2, . . . , N.
(

mD + a(∞) +
2
∑

i=1
(mib + Mei)

)
s̈ +

t∫
0

hr(τ)ṡ(t− τ)dτ + cD ṡ

+kDs =
2
∑
i]1

N
∑

n=1
ρbhζ̈inΨin + Ff ,

Vi(`2)−Vi(`1) = −
N
∑

n=1

iωNi Aidh2

ν k2
nζi(iω)(ψin(`2)− ψin(`1)), i = 1, 2.

(38)

Here,

Ψin =

L∫

0

ψindx, i = 1, 2. (39)

This formulation allows N to be a suitably large number. In this application, the source
of excitation is surface waves, whose action is mostly confined to the frequency range
(0.05, 0.5) Hz, which corresponds to a wave period range of (2, 20) s. In light of this, it is
argued that only the fundamental flexural modes of the present beams would be responsive
to oscillations in the practical surface wave frequency range. We therefore just include the
fundamental modes, so that N = 1. Retaining just the first oscillation modes for the beams
and taking the Fourier transforms of both sides of each remaining equation,

−ω2ρζ1(iω) + Kbk4
1ζ1(iω) + 2ρbhω2Ψi1

Li cos αi
s(iω) = 0, i = 1, 2.

[
−ω2

(
mD + a(∞) +

2
∑

i=1
(mib + mei) + aD(ω)

)
+ kD + iω(bD(ω) + cD)

]
s(iω)

−ω2ρbh
2
∑

i=1
ζi(iω)Ψi1 = Ff (iω).

Vi(`2)−Vi(`1) = iω
2
∑

i=1

Ni Aidh
2nu k2

n(ψi1(`2)− ψi1(`1))ζi(iω).

(40)

Here, ζi(iω), s(iω), and Ff (iω) are all complex-valued. The exciting force Ff (iω),
frequency-dependent added mass aD(ω), and the radiation damping bD(ω), etc., can be
evaluated for a given geometry, using a numerical solver for a boundary-element type
approximation. Equation (40) thus represent a system of algebraic equations which yields
frequency-domain solutions for ζ1, ζ2, and s(ω). The voltage across the conductor coil can
then be determined and the power converted can be computed knowing the load resistor
(or equivalent resistance in a load circuit being driven by the power take-off).

2.2.3. Beams Loosely Held within Deck Supports

In this case, the large clearance between the beams and the deck supports allows
beam rotation about the points where they rest on the keel. As the buoy oscillates, it
excites rigid body rotations of the beams that repeatedly are interrupted by impacts with
the deck-support inner edges. Each impact acts as an impulsive load causing flexural
vibrations over a range of natural modes. We expect that repeated excitation of some of the
flexural natural modes may enhance power conversion beyond what is available through
the fundamental-mode flexural vibration mode examined above. The dynamics of the
overall system with this additional feature are modeled as described below.

In addition to the three main variables, s(t), w1(x, t), and w2(x, t) above, there are
now variables θ1(t) and θ2(t) that represent the rigid-body rotations of the beam about
the rest-angle θ0, which is set to be the same for each beam, and each beam has a length
L. In this case, the beam end-masses also play an important role in the overall response.
Further, in addition to the buoy exciting force Ff (t), there are now impact forces that act on



Energies 2023, 16, 1835 10 of 19

the beams each time they collide with the inner periphery of their respective deck openings.
The total kinetic energy of the system can be expressed as the sum of the following:

TK1 =
1
2

(
mD + a(∞) +

2

∑
i=1

(mbi + mei)

)
ṡ2,

TK2 =
1
2

L∫

0

mei

[(
ẇi + xθ̇i

)2
+ 2
(
ẇi + xθ̇i

)
sin θ0 ṡ

]
δ(x− L)dx, i = 1, 2. (41)

TK3 =
1
2

L∫

0

ρbh
[(

ẇi + xθ̇i
)2

+ 2
(
ẇi + xθ̇i

)
sin θ0 ṡ

]
dx, i = 1, 2.

The potential energy of the system is the sum of

VV1 =
1
2

kBs2 + meig
L∫

0

(wi + xθi) sin θ0δ(x− L)dx, i = 1, 2.,

VV2 = ρgbh
L∫

0

(wi + xθi) sin θ0dx + meigs, i = 1, 2., (42)

VV3 =

L∫

0

[
1
3

c11bh3 +
1
8

dbh3

ν

]
w2

ixxdx, i = 1, 2.

Assuming the rigid-body rotations of the beams θi to be small, the boundary conditions
of Equation (20) are assumed to continue to be valid for this case too. The Lagrangian for
this case is expressed as

L
(
s, ṡ, wi, ẇi, wixx, θ, θ̇

)
= T −V, i = 1, 2. (43)

Here, T = TK1 + TK2 + TK3 and V = VV1 + VV2 + VV3. The external forces acting on
the buoy in this case are the same as for the previous case. However, each impact causes
an impulsive force to act on the beams that needs to be accounted for. Using Lagrange’s
equations as outlined in Equation (23) and assuming two beams, we arrive at the set of
equations that describe the overall dynamics, starting with

(mD + a(∞) + 2me)s̈ + 2me
(
ẅL + Lθ̈

)
sin θ0 + 2ρbh

L∫
0

ẅdx sin θ0

+ρbhL2θ̈ sin θ0 + kDs = Fe + Fip,
(44)

for the buoy heave. Here, Fe includes the exciting force in heave on the buoy due to waves
and the radiation force as in Equation (26) above. The additional force Fip here is the force
generated each time a beam impacts its support during its oscillation. An expression for
this force is given following the remaining equations of motion. For the rigid-body rotation
θ of each beam, we have (assuming that θ = θi, i = 1, 2)

me
[
2
(
ẅL + Lθ̈

)
+ 2L sin θ0 s̈

]
+ ρbh

[
2

L∫
0

ẅxdx + L3

3 θ̈ + L2 sin θ0 s̈

]

+2
(
megL + ρgbhL2)[cos θ0 − sin θ0θ] = FipL1.

(45)

Next, for the flexural oscillation of each of the beams, we have

me
[(

ẅ + xθ̈
)
+ s̈ sin θ0

]
δ(x− L) + ρbh

[(
ẅ + xθ̈

)
+ s̈ sin θ0

]
[

1
3 c11bh3 + 1

8
dbh3

ν

]
wxxxx = −Fip

(46)
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The impact force occurs each time the oscillating beam strikes the loose support, or at
each t = tip when

s = L1 sin θ0θ, and,

ṡ = −L1θ̇ sin θ0,
(47)

L1 is the length of the short span of the beam (recall that a length L2 overhangs the support
and that L = L1 + L2). The magnitude of Fip can be expressed as

Fip(t) =
[
(mD + a(∞))s̈−meqL1θ̈

]
δ(t− tip). (48)

The equivalent mass of the beam meq can be derived, for the fundamental oscillation
mode, as

meq =
1
L2

[
1
3

ρbhL3 + meL2
]

. (49)

Once again, expanding the beam flexural oscillation into its eigenfunctions ψn(x) as in
Equation (36) and for the moment, retaining just the fundamental mode, we arrive at the
following system of equations. For buoy heave s(t), we have

(m + a(∞) + 2me)s̈ + 2me
(
ζ̈1ψ1(L) + Lθ̈

)
sin θ0

+ 2ρbhζ̈1Ψ1 sin θ0 + ρbhL2θ̈ sin θ0 + kDs = Fe + Fip. (50)

Here, Fe and Fip are as defined above, including also

FR(t) = −cD ṡ−
t∫

0

hr(τ)ṡ(t− τ)dτ, (51)

and Fip is given by Equation (48), occurring at each t = tp when the condition (47) is
satisfied. The equation of motion for θ becomes

2me
(
ζ̈1ψ1(L) + Lθ̈

)
L + 2meLs̈ sin θ0 + 2ρbhζ̈1

L∫
0

xψ1(x)dx

+ 1
3 ρbhL3θ̈ + ρbhL2 sin θ0 s̈ + 2

(
megL + ρbhL2)(cos θ0 − sin θ0θ) = FipL1.

(52)

Finally, the flexural mode ζ1 is described by

2me
[
ζ̈1ψ2

1(L) + Lψ1(L)θ̈ + s̈ψ1(L) sin θ0
]
+ 2ρbh

[
1
2 Lζ̈1 + θ̈

L∫
0

xψ1(x)dx + s̈ sin θ0Ψ1

]

+2
[

1
3 c11bh3 + 1

8
dbh3

ν β4
]
ζ1L = −FipΨ1.

(53)

In the results discussed here, a reduced version of the model in Equations (50)–(53) was
tested, for quicker indications of the benefit of the proposed loose-fitting arrangement. The
successive impacts were modeled using a series of Dirac delta function in the time-domain,
and it was assumed that the impact-generated flexural oscillations decayed rapidly. In
the frequency domain, the overall effect of successive impacts was approximated using
the force

Fn(ω) = ±Ff (ωp), (54)

ωp denotes the peak frequency in a spectrum. In the present calculations, the displacement
of the beam relative to the buoy was assumed to be in phase for ω ≤ ωp, and oppo-
site in phase for ω > ωp. Ff (ωp) denotes the wave-applied exciting force at the peak
frequency ωp.
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3. Results and Discussion

Figure 2a plots the anhysteretic part of the magnetic field-magnetization relationship.
The mostly linear relationship flattens as the magnetic field intensity increases beyond the
values shown [13]. Figure 2b plots the essence of the magnetostrictive effect as described by
the relationship between applied magnetic field and resulting strain. We note the growing
slope of the curve with increasing H.

(a) (b)

Figure 2. Anhysteretic response of magnetization and structural strain to increasing magnetic field
strength for a magnetostrictive bar.

A review of Figure 2 suggests that an operating point about a large value of H
(>2× 105 A/m) would likely be ideal for prestraining the present actuators. A large value
H0 for prestraining would imply greater slope of the H − ST curve, which would mean
greater strain for smaller changes in the magnetic field, or conversely, greater changes in
magnetic field for smaller changes in strain.

The following figures refer to the stress–strain–magnetic field–magnetic flux density
relationships as linearized about the chosen H0. The goal was to explore whether, by
changing the applied magnetic field H0, we could significantly alter the values of any of the
coupling constants in the linearized constitutive relationships. An ability to do so would
enable real-time control of the response of a magnetostrictive actuator (i.e., make it more
sensitive to strain or magnetic flux density by changing the field H0 during operation).
These relationships are reviewed in Equation (55) below.

T = c1S− d1B,

H = −d
∗
1S + ν1B.

(55)

The coupling coefficients c1 and d1 are shown in Figure 3. These describe, respectively,
how the magnetic field can influence the coupling between strain and stress, and the cou-
pling between magnetic flux density and stress. As Figure 3a shows, c11 is not particularly
sensitive to changes H. Hence, it does not seem profitable to attempt magnetic field H0
manipulation to change the stiffness of a magnetostrictive actuator during service. On the
other hand, it appears that the coupling constant d1 can be adjusted considerably during
operation by changing H0, although this was not attempted in the present work.

Figure 4 plots the coefficients d
∗
1 and ν1 that relate, respectively, the strain to the

magnetic field H and the magnetic flux density to the magnetic field in the presence of
magnetostriction. Neither coefficient is found to be particularly sensitive to H0, which
indicates that the magnetostriction property of the material is not very strong. Although d1
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can be changed considerably by altering H0, its small magnitude implies small magnitudes
for the magnetic flux density (and the voltage) produced during oscillations.

(a) (b)

Figure 3. Effective stiffness c1 and magnetic flux density–stress coupling constant d1 under the action
of magnetic field H0.

(a) (b)

Figure 4. Effective coupling constant between strain and induced magnetic field, and the effective
magnetic flux–density–magnetic field coupling constant.

The dynamic performance of the complete system was investigated in real-sea con-
ditions. Results for a Pierson–Moskowitz wave spectrum with significant wave height
Hs = 2.5 m and energy period Te = 5.0 s are discussed below. Although only wind seas are
considered to be dominant in these calculations, a Pierson–Moskowitz spectrum is helpful
because of the relative ease with which swell and wind seas can be combined in simulations.
As mentioned previously, two cases were studied: (i) with the beams tightly fitting within
the deck-level openings, and (ii) with the beams supported supported loosely within the
deck-level openings, so that they would experience repeated impacts as they oscillate.

Case (i) results are considered first. Figure 5 shows the buoy heave amplitude fre-
quency response, with a peak at ω ∼ 1.11 rad/s and amplitude 0.45 m. Given the small
diameter of the buoy (2.0 m), the displacement response is narrow-banded, despite the
coupling with the two beams on deck. Figure 6 plots the flexural oscillation fundamental
mode amplitudes ζ1 and ζ2 for the beams, with a peak at ω ∼ 1.11 rad/s. The coupled
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system comprising a buoy and beams has a peak response at ω ∼ 1.11 rad/s. Also shown
in Figures 5 and 6 is the power spectral density used in the calculations. It is observed from
these figures that the dynamic response of the device is reasonably well-matched to the
wave conditions.

Version February 3, 2023 submitted to Energies 19 of 23

Figure 9. Buoy heave amplitude response to an irregular wave spectrum (Pierson-Moskowitz,
Hs = 1.0m, Te = 5.0s.) with beams fitting loosely within their deck supports. Also shown is the
power spectral density.

Figure 10. Fundamental modes of beam flexural deflection amplitude response to an irregular wave
spectrum (Pierson-Moskowitz, Hs = 1.0m, Te = 5.0s.) with beams fitting loosely within their deck
supports. Also shown is the power spectral density.

Case (ii) results are discussed next. As Figure 9 shows, the peak response amplitude of the 216

buoy is slightly greater for the same wave spectrum as before, while the fundamental-mode 217

oscillations of the beams are also greater (Figure 10). Beam oscillations are found to be 218

considerably greater in this case. 219

As noted, the voltage and power results of Figure 11 and 12, respectively, considerable 220

improvement is observed in both, particularly at frequencies closer to the natural frequen- 221

cies of the beams. Thus, each Galfenol strip is now seen to generate about 80 mV at the 222

spectral peak, while the converted power at the peak frequency now exceeds 1.2 W. The 223

results do indicate an overall improvement in performance, thanks to the direct forcing of 224

the beams available through their impacts with their supports. Having additional Galfenol 225

Figure 5. Buoy heave amplitude response to an irregular wave spectrum (Pierson–Moskowitz,
Hs = 1.0 m, Te = 5.0 s) with beams fitting tightly within their deck supports. Also shown is the
power spectral density.
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Figure 9. Buoy heave amplitude response to an irregular wave spectrum (Pierson-Moskowitz,
Hs = 1.0m, Te = 5.0s.) with beams fitting loosely within their deck supports. Also shown is the
power spectral density.

Figure 10. Fundamental modes of beam flexural deflection amplitude response to an irregular wave
spectrum (Pierson-Moskowitz, Hs = 1.0m, Te = 5.0s.) with beams fitting loosely within their deck
supports. Also shown is the power spectral density.

Case (ii) results are discussed next. As Figure 9 shows, the peak response amplitude of the 216

buoy is slightly greater for the same wave spectrum as before, while the fundamental-mode 217

oscillations of the beams are also greater (Figure 10). Beam oscillations are found to be 218

considerably greater in this case. 219

As noted, the voltage and power results of Figure 11 and 12, respectively, considerable 220

improvement is observed in both, particularly at frequencies closer to the natural frequen- 221

cies of the beams. Thus, each Galfenol strip is now seen to generate about 80 mV at the 222

spectral peak, while the converted power at the peak frequency now exceeds 1.2 W. The 223

results do indicate an overall improvement in performance, thanks to the direct forcing of 224

the beams available through their impacts with their supports. Having additional Galfenol 225

Figure 6. Fundamental modes of beam flexural deflection amplitude response to an irregular wave
spectrum (Pierson–Moskowitz, Hs = 1.0 m, Te = 5.0 s) with beams fitting tightly within their deck
supports. Also shown is the power spectral density.

Figure 7 shows the voltage between terminals for each of the two beams. Each beam is
equipped with a single, long Galfenol strip, with a coil of N = 20,000 conductor turns and
a load resistance of 0.01 ohm. The number of conductor turns is roughly 7 per millimeter,
which is practically feasible with thin conductor wires. The combined power converted by
the two strips (one on each beam) is shown in Figure 8. Both voltage and power values
are found to be small, with peaks around 25 mV and 90 mW, respectively. Attaching M
Galfenol strips to each beam, as well as providing more beams, would raise the power
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outputs overall, while adding to the system mass, which could be helpful in improving the
low-frequency response and power conversion from waves.
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Figure 7. Voltage produced by Galfenol strips on each beam in response to an irregular wave
spectrum (Pierson-Moskowitz, Hs = 1.0m, Te = 5.0s.). Beams fit the deck support tightly.

Figure 8. Combined power conversion by Galfenol strips on each beam in response to an irregular
wave spectrum (Pierson-Moskowitz, Hs = 1.0m, Te = 5.0s.). Beams fit the deck support tightly.
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Note that the small jump in the curves near ω = 2.0 rad/s is because the numerically 214

determined radiation damping value is truncated to zero beyond this frequency. 215

Figure 7. Voltage produced by Galfenol strips on each beam in response to an irregular wave
spectrum (Pierson–Moskowitz, Hs = 1.0 m, Te = 5.0 s). Beams fit the deck support tightly.
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Figure 8. Combined power conversion by Galfenol strips on each beam in response to an irregular
wave spectrum (Pierson-Moskowitz, Hs = 1.0m, Te = 5.0s.). Beams fit the deck support tightly.
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Figure 8. Combined power conversion by Galfenol strips on each beam in response to an irregular
wave spectrum (Pierson–Moskowitz, Hs = 1.0 m, Te = 5.0 s). Beams fit the deck support tightly.

Note that the small jump in the curves near ω = 2.0 rad/s occurs because the numeri-
cally determined radiation damping value is truncated to zero beyond this frequency.

Case (ii) results are discussed next. As Figure 9 shows, the peak response amplitude of
the buoy is slightly greater for the same wave spectrum as before, while the fundamental-
mode oscillations of the beams are also greater (Figure 10). Beam oscillations are found to
be considerably greater in this case.
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Figure 9. Buoy heave amplitude response to an irregular wave spectrum (Pierson–Moskowitz,
Hs = 1.0 m, Te = 5.0 s) with beams fitting loosely within their deck supports. Also shown is the
power spectral density.

Figure 10. Fundamental modes of beam flexural deflection amplitude response to an irregular wave
spectrum (Pierson–Moskowitz, Hs = 1.0 m, Te = 5.0 s) with beams fitting loosely within their deck
supports. Also shown is the power spectral density.

As noted, the voltage and power results of Figures 11 and 12, respectively, consid-
erable improvement is observed in both, particularly at frequencies closer to the natural
frequencies of the beams. Thus, each Galfenol strip is now seen to generate about 80 mV
at the spectral peak, while the converted power at the peak frequency now exceeds 1.2
W. The results do indicate an overall improvement in performance, thanks to the direct
forcing of the beams available through their impacts with their supports. Having additional
Galfenol strips attached to each beam and using more beams would also improve overall
power conversion.
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Figure 11. Voltage produced by Galfenol strips on each beam in response to an irregular wave
spectrum (Pierson–Moskowitz, Hs = 1.0 m, Te = 5.0 s). Beams fit the deck support loosely.

Figure 12. Combined power conversion by Galfenol strips on each beam in response to an irregular
wave spectrum (Pierson–Moskowitz, Hs = 1.0 m, Te = 5.0 s). Beams fit the deck support tightly.

Finally, it is likely that a rectangular raft geometry would enable additional use of
pitch mode oscillations to enhance power capture. This advantage would also be available
with a toroidal geometry, though not with a spherical shape. In the case of the toroidal
and spherical geometries, the hydrostatic stiffness terms would require attention, given the
potential nonlinearities about the waterline. It is also noted that increasing the inertia of the
buoy will lower the heave natural frequency and help the device respond more efficiently to
longer waves and swells. Conversely, a decrease in inertia will raise the natural frequency
and help the device perform more efficiently in shorter wind seas.
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4. Conclusions

Overall, it appears that, since material properties of magnetostrictive actuators such
as Galfenol are not tailored for low-frequency applications, power conversion is generally
smaller than with more traditional mechanical or pneumatic power take-offs. However, by
including suitable engineering features (e.g., introduction of multiple impacts as attempted
here), it might become feasible to produce more power and voltage with a more reasonable
number of conductors and more realistic values of load resistors.

This work takes a slightly different approach to wave energy conversion, and inves-
tigates the degree to which it is possible to convert wave energy to power applications
on small improvised platforms built using available and foraged materials and minimal
equipment. This work uses a coupled dynamic model to understand limits on effective
integration of deformable structures and smart materials for power conversion on board
temporary improvised buoyant structures.

Of particular interest here was a deeper investigation of magnetostrictive materials,
Galfenol (gallium–iron alloy) being the material chosen for this study. For a low-cost
wave-excited buoy with improvised flexible beams that are fixed with Galfenol strips and
provided with lightweight electromagnetic hardware, adequate power amounts could
be generated in real time if we could incorporate design features that enable repeated
mechanical impacts between the power converting beams and one of the supports. In
addition to the effects modeled here, such impacts would excite a number of resonant
modes, including some higher modes at which the magnetostrictive coupling effects are
more favorable.

On the whole, it may also be advantageous to consider using mechanical energy
converters such as larger versions of mechanisms used in movement-powered watches on
the energy conversion system based on flexible beams on wave-excited floating buoys.

Even though the energy conversion performance observed here was modest, the
present results provide sufficient motivation for the next steps, which include labora-
tory testing and more precise analytical modeling and simulation for the wave-excited
buoy with flexible beams and magnetostrictive strips. Particular additions needed are
(i) direct inclusion of the equation of motion for beam rotation within loose supports
(Equations (45) and (52)), (ii) together with the use of impact-time and impact force condi-
tions in Equations (47)–(49), (iii) and inclusion of higher-frequency natural modes.

Funding: This research was funded by the U.S. Office of Naval Research grant number N00014-20-1-2036.

Acknowledgments: I am grateful to the U.S. Office of Naval Research for providing the funding for
this research under grant N00014-20-1-2036. It is a pleasure to thank Program Director Mike Wardlaw
for the numerous stimulating discussions on this project. I am also happy to thank Mike McBeth
for his advice and comments throughout this work. Thanks are due, for their thoughtful input, to
Garry Shields and David Newborn of the Naval Surface Warfare Center, Carderock, MD and to
Cyndi Utterback, Kevin Baldwin, and Dale Griffith of the Johns Hopkins University Applied Physics
Laboratory. Finally, I appreciate the support of Murtech, Inc. for my dynamic modeling activities.

Conflicts of Interest: The author declares no conflict of interest.

References
1. McCormick, M.E. Ocean Wave Energy Conversion; John Wiley and Sons: Hoboken, NJ, USA, 1981.
2. Falcão, A.F.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [CrossRef]
3. Korde, U.A.; Ringwood, J.V. Hydrodynamic Control of Wave Energy Devices; Cambridge University Press: Cambridge, UK, 2016;

Chapter 13.
4. Guo, B.; Ringwood, J. A review of wave energy technology from a research and commercial perspective. IET Renew. Power Gener.

2021, 15, 3065–3090. [CrossRef]
5. Korde, U.A.; Song, J.J.; Robinett, R.D.; Abdelkhalik, O. Hydrodynamic considerations in near-optimal control of a wave energy

converter for ocean measurement applications. Mar. Technol. Soc. J. 2017, 51, 44–57. [CrossRef]
6. Korde, U.A. Wave energy conversion under constrained wave-by-wave impedance matching with amplitude and phase-match

limits. Appl. Ocean. Res. 2019, 90, 101858. [CrossRef]

http://doi.org/10.1016/j.rser.2009.11.003
http://dx.doi.org/10.1049/rpg2.12302
http://dx.doi.org/10.4031/MTSJ.51.6.5
http://dx.doi.org/10.1016/j.apor.2019.101858


Energies 2023, 16, 1835 19 of 19

7. LiVecchi, A.; Copping, A.; Jenne, D.; Gorton, A.; Preus, R.; Gill, G.; Robichaud, R.; Green, R.; Geerlofs, S.; Gore, S.; et al. Powering
the Blue Economy; Exploring Opportunities for Marine Renewable Energy in Maritime Markets; US Department of Energy, Office of
Energy Efficiency and Renewable Energy: Washington, DC, USA, 2019; p. 207.

8. Driscol, B.P.; Gish, L.A.; Coe, R.G. A Scoping Study to Determine the Location-Specific WEC Threshold Size for Wave-Powered
AUV Recharging. IEEE J. Ocean. Eng. 2020, 46, 1–10. [CrossRef]

9. Burns, J. Ocean Wave Energy Conversion Using Piezoelectric Material Members. U.S. Patent 4685296A, U.S. Patent and
Trademark Office, Washington, DC, USA, 11 August 1987.

10. Kiran, M.; Farrok, O.; Mamun, M.; Islam, M.; Xu, W. Progress in piezoelectric material based oceanic wave energy conversion
technology. IEEE Access 2020, 8, 146428–146449. [CrossRef]

11. Leo, D. Engineering Analysis of Smart Material Systems; John Wiley and Sons: Hoboken, NJ, USA, 2007; Chapter 4.
12. Korde, U.A.; Wickersham, M.A.; Carr, S.G. The effect of a negative capacitance circuit on the out-of-plane dissipation and stiffness

of a piezoelectric membrane. Smart Mater. Struct. 2008, 17, 035017. [CrossRef]
13. Dapino, M.J.; Smith, R.C.; Flatau, A.B. A structural-magnetic strain model for magnetostrictive transducers. IEEE Trans. Magn.

2000, 36, 545–556. [CrossRef]
14. Yoo, J.H.; Flatau, A.B. A bending-mode galfenol electric power harvester. J. Intell. Mater. Syst. Struct. 2012, 23, 647–654. [CrossRef]
15. Deng, Z.; Dapino, M. Review of magnetostrictive materials for structural vibration control. Smart Mater. Struct. 2018, 27, 1–18.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JOE.2020.2973032
http://dx.doi.org/10.1109/ACCESS.2020.3015821
http://dx.doi.org/10.1088/0964-1726/17/3/035017
http://dx.doi.org/10.1109/20.846217
http://dx.doi.org/10.1177/1045389X12436729
http://dx.doi.org/10.1088/1361-665X/aadff5

	Introduction
	Materials and Methods
	Magnetostriction Constitutive Relationships
	Coupled Dynamic Model
	Boundary Conditions
	Beams Tightly Fitting through Deck Supports
	Beams Loosely Held within Deck Supports


	Results and Discussion
	Conclusions
	References

