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Abstract: The hydrothermal behavior in a helical double-tube heat exchanger is numerically es-
timated. A new type of swirl generator with two sections, including; outer curved blades and a
semi-conical section with two holes in the inner section, is employed. Two geometrical factors,
containing the length (L1) and the position of the swirl generator (S), are used for investigation. The
calculations were performed by a commercial FVM code, ANSYS FLUENT 18.2. The numerical
outcomes show that a shorter length of the swirl generator leads to a better hydrothermal behavior.
Accordingly, the model with L1 = 100 mm at

.
m = 0.008 kg/s achieves the maximum thermal perfor-

mance by about 17.65, 53.85, and 100% enhancement compared to the models L1 = 200, 300 mm, and
without swirl generator. Among the different studied positions of the swirl generator, the maximum
heat transfer coefficient and average Nusselt number in entire mass flow rates belong to the case with
position S = 0.3π mm. Moreover, the thermal performance of the case with S = 0.3π mm is higher
than cases with S = 0.1π mm, S = 0.5π mm, and without swirl generator by about 11.11, 53.84, and
100%, respectively.

Keywords: heat transfer performance; helical double-tube heat exchanger; swirl generator; turbulator,
hydrothermal behavior; swirl flows

1. Introduction

Heat exchangers are a crucial section of numerous industries, from pharmaceuticals to
petrochemicals. Today, systems based on renewable energies are considered one of the main
sources of power production in the world [1–3]. Heat exchangers figure prominently in
the performance of these systems. Moreover, in renewable systems, there is a considerable
amount of waste heat, which can be recovered by using suitable heat exchangers [4]. This
wide application requires some researchs to augment the heat transfer amount. Overall,
there are two kinds of heat exchangers, including; passive and active types [5], which use an
external force. Unlike the active type, the passive type does not consume external work [6].
Therefore, the passive type has received more attention from researchers and industrialists.
In the passive model, various methods are used to create secondary and rotational flows
within the fluid flow, which brings greater turbulence of the fluid and thus augments the
heat transfer rate. These methods consist of using nanofluids [7–10], spiral tubes [11,12],
extended surfaces (fins) [13–16], swirl generators [17,18], and corrugated walls [19,20].

Energies 2023, 16, 1801. https://doi.org/10.3390/en16041801 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16041801
https://doi.org/10.3390/en16041801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3813-4947
https://doi.org/10.3390/en16041801
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16041801?type=check_update&version=2


Energies 2023, 16, 1801 2 of 19

Another advantage of heat exchangers is that the employed working fluid can be
two-phase, which is one of the practical features of this type of equipment. Therefore, they
can be utilized at different points of power and refrigeration cycles [21–23].

Tang et al. [24] empirically scrutinized the heat exchange rate in finned tube heat
exchangers considering different types of fins. The empirical outcomes exhibited that
the hydrothermal behavior increases with increasing fin length. Wongcharee et al. [25]
investigated the heat exchange in a corrugated tube, and the outcomes demonstrated that
the heat exchange amount rises with the reduction of the swirl ratio. Darzi et al. [26]
performed an empirical heat transfer analysis of nanofluid flow in a corrugated pipe.
They recognized that the combination of nanofluid and corrugated surfaces causes an
augmented heat transfer rate of up to 330 percent. Du et al. [27] numerically examined
the hydrothermal behavior of a heat exchanger with helical baffles and elliptical tubes.
They demonstrated that the overall efficiency of the improved heat exchanger can be
increased by up to 50 percent. Bahiraei et al. [28] evaluated the heat transfer in a triple-pipe
heat exchanger in the presence of fins as swirl generators. They found that the thermal
performance increases as the height of the fins rises. Moreover, the lower the pitch, the
higher the thermal performance. Abolarin et al. [29] estimated the changes in heat transfer
in a pipe using twisted tape as a vortex producer. They analyzed the impacts of geometrical
factors on thermal properties. The outcomes revealed that the joint angle occupies a
prominent place in the heat transfer changes. They also found that the temperatures
near the walls increase when the wavelength is smaller. Zhang et al. [30] studied the
hydrothermal behavior in corrugated pipes. Based on the obtained outcomes, employing
the corrugated pipe enhanced the heat transfer amount.

Kareem et al. [31] evaluated the hydrothermal behavior in a helically corrugated pipe
by empirical and numerical analysis. The outcomes indicated that the greater the severity
of the tube, the upper the thermal performance. Lu et al. [32] numerically examined the
thermal performance of a pipe with a swirl generator. They found that better hydrothermal
behavior can be achieved by using a swirl generator with a smaller distance between the
leading edge and the holes of the swirl generator. In their experiments, Mashoofi et al. [33]
deliberated the thermal behavior of fluid flow in a pipe with a coil as a vortex producer.
The average Nusselt number could be increased up to 32 percent in the provided thermal
system. Noorbakhsh et al. [34] utilized twisted tapes with the same twist angle on both
sides (hot and cold) of a double-pipe heat exchanger to raise the heat transfer amount and
numerically investigated the heat transfer characteristics of the proposed thermal system.
The twisted tapes used acted as extended surfaces (fins) and as swirl generators. Their
numerical outcomes exhibited that the more fins (or twisted tapes) used, the higher the
average Nusselt number. Kwon et al. [35] numerically considered the change in thermal
efficiency when a static mixer is used in a pipe to improve the heat transfer amount. Their
numerical outcomes displayed that the heat transfer coefficient augments up to 100 percent
by using the proposed static mixer. For a more detailed review of turbulators with various
geometries, it is better to refer to review articles [36].

Hashemi Karouei and Mousavi Ajarostaghi [37] examined numerically the hydrother-
mal behavior inside a double tube heat exchanger with a helical vortex generator (VG). The
used VG in their work is similar to the employed one in the present work. In their work,
the impacts of the radius of the VGs holes and the inner radius of the VG on the thermal
performance of the heat exchanger were examined. Their numerical outcomes depicted
that as the t VGs inner radius augments, the thermal performance increases by about
80 percent. Moreover, augmentation of the radius of VGs hole by about 133.34 percent
causes an increase in the thermal performance by about 50 percent. In the other work by
this group [38], they employed hybrid nanofluids instead of water in the inner channel
of the heat exchanger. The employed working fluids were water-silver-graphene and
water-iron oxide-multi wall carbon nanotubes. Their outcomes illustrated that among the
evaluated working fluids, silver-graphene/water was the finest one considering thermal
performance. Hashemi Karouei et al. [39] worked on a heat exchanger, the same as the
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employed one in the present work, in the other work in which the impacts of the angle
and number of VGs blades on the thermal performance were examined by performing
numerical simulations. Their results depicted that the best case belongs to the model with
twelve numbers of blades considering thermal performance. Furthermore, considering
various angles of VGs blades, a model with a blade angle of 180 degrees was the finest one
in terms of thermal performance.

Here, a new type of swirl generator containing some blades and a semi-conical sector
is developed to improve the heat transfer percentage in a helical double tube heat exchanger.
The proposed swirl generator is curved with some vanes to produce the vortex streams.
Furthermore, two holes in the semi-conical sector of the swirl generator are considered
to cause more disturbance to the flow. The position and length of the suggested swirl
generator are the evaluated geometrical factors here. It should be noted that these two
geometrical parameters were not investigated and analyzed in previous works [37–39].
The impacts of the geometrical and practical factors are investigated by performing finite-
volume method-based (FVM) simulations.

2. Materials and Methods
2.1. Problem Description

The schematic diagram of the considered helical double-tube heat exchanger in dif-
ferent views is shown in Figure 1. Moreover, the 3D views of the employed curved swirl
generator and 2D-view of the swirl generator’s cross-section with geometric factors are
illustrated in Figure 2. The proposed heat exchanger is rounded with a radius of 2π radians.
A novel swirl generator is used inside the inner tube at a distance of 0.1 radians from the
inlet of the inner tube. The used swirl generator consists of two parts, (i) the vanes and
(ii) a semi-conical part. The lengths of these parts are L1 and L2, respectively. The length L2
is kept constant by 100 mm. Water is considered here as the working fluid on both sides
of the heat exchanger. The geometrical factor values are given in Table 1. In addition, the
thermophysical characteristics of water and steel (material of the employed swirl generator)
are given in Table 2.
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(b) the 3D-view of the computational domain.



Energies 2023, 16, 1801 4 of 19

Energies 2023, 16, x FOR PEER REVIEW 4 of 20 
 

 

Figure 1. The schematics of the geometries of the helical double pipe heat exchanger and employed 
swirl generator; (a) the 2D-view of the heat exchanger’s cross-section with geometric factors, and 
(b) the 3D-view of the computational domain. 

   

Figure 2. The 3D-views of the employed curved swirl generator and 2D-view of the swirl generator’s 
cross-section with geometric factors. 

Table 1. The values of the geometric factors of the computational domain. 

Properties Value (mm) 
Swirl Generator’s Outer Radius (Ro) 17 
Swirl Generator’s Inner Radius (Ri) 12 
Channel’s Radius of Swirl Generator (r) 6 
Thickness of Swirl Generator’s Blades (w) 2 
Height of Swirl Generator’s Blades (h) 5 
Radius of Swirl Generator’s Holes (ri) 3 
Cold Channel’s Diameter (Di) 0.1 
Hot Channel’s Diameter (di) 0.042 
The Radius of Heat Exchanger’s Round (R) 0.8 

Table 2. The thermophysical characteristics of considered materials. 

Property Water (Working Fluid) Steel (Swirl Generator) 
Density (kg/m3) 998.2 7881.8 
Viscosity (Pa·s) 0.001003 - 

Thermal Conductivity 
(W/(m·K) 0.6 16.0 

Specific Heat (J/ (kg·K) 4181.8 502.0 

The present study consists of two sectors. First, the influence of the length of the used 
curved swirl generator on the hydrothermal behavior of the suggested heat exchanger is 
numerically investigated. The schemes of the swirl generators with various lengths (L1) 
studied here are shown in Figure 3. The following three lengths are investigated: 100, 200, 
and 300 mm. The position of the applied curved swirl generator is kept constant here with 
S = 0.1π mm. 

  

Figure 2. The 3D-views of the employed curved swirl generator and 2D-view of the swirl generator’s
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Table 1. The values of the geometric factors of the computational domain.

Properties Value (mm)

Swirl Generator’s Outer Radius (Ro) 17
Swirl Generator’s Inner Radius (Ri) 12
Channel’s Radius of Swirl Generator (r) 6
Thickness of Swirl Generator’s Blades (w) 2
Height of Swirl Generator’s Blades (h) 5
Radius of Swirl Generator’s Holes (ri) 3
Cold Channel’s Diameter (Di) 0.1
Hot Channel’s Diameter (di) 0.042
The Radius of Heat Exchanger’s Round (R) 0.8

Table 2. The thermophysical characteristics of considered materials.

Property Water (Working Fluid) Steel (Swirl Generator)

Density (kg/m3) 998.2 7881.8

Viscosity (Pa·s) 0.001003 -

Thermal Conductivity
(W/(m·K) 0.6 16.0

Specific Heat (J/ (kg·K) 4181.8 502.0

The present study consists of two sectors. First, the influence of the length of the used
curved swirl generator on the hydrothermal behavior of the suggested heat exchanger is
numerically investigated. The schemes of the swirl generators with various lengths (L1)
studied here are shown in Figure 3. The following three lengths are investigated: 100, 200,
and 300 mm. The position of the applied curved swirl generator is kept constant here with
S = 0.1π mm.

In the next section, the impact of the position of the applied curved swirl generator
in the inner spiral tube on the thermal manner of the heat exchanger is investigated by
numerical simulations. The schematics of the swirl generators with different positions (S)
evaluated here are shown in Figure 4. Three different positions of the used swirl generator
with S = 0.1π, 0.3π, and 0.5π mm are investigated. In this part, the length of the swirl
generator is kept constant with L1 = 100 mm.
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2.2. Governing Equations

The conservation equations of mass, momentum, and energy are the following [40]:

∂ρ

∂t
+∇.

(
ρ
→
v
)
= 0 (1)

∂
(

ρ
→
v
)

∂t
+∇.

(
ρ
→
v
→
v
)
= −∇p +∇.

(
µ∇→v

)
(2)

∂
(
ρcpT

)
∂t

+∇.
(→

v
(
ρcpT

))
= ∇(k∇T) (3)

The employed dimensionless parameters are as follows [37–39]:

Nuave =
hmdh

k
(4)

f =
2dh∆p
ρu2L

(5)
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η =

(
Nu
Nu0

)(
f0

f

) 1
3

(6)

where Nuave, f, and η are average Nusselt number, friction factor, and thermal performance,
respectively.

In the present work, the Schmidt correlation [41] has been employed to calculate the
critical Reynolds number in a helical tube as follows:

ReCr = 2300

[
1 + 8.6

(
r

RC

)0.45
]

(7)

In Equation (7), RC and r are the helical radius and inner coil radius, respectively.
This equation is confirmed for the condition of (1/860) < (r/RC). In the present work (the
case without turbulator), the value of critical Reynolds number according to the Schmidt
correlation is 6154.

Moreover, there is another correlation that has been exhibited by Ito [42] as follows:

ReCr = 20000
(

r
RC

)0.32
(8)

Equation (8) is confirmed for the condition of (1/860) < (r/RC) < (1/15). In the present
work (the case without turbulator), the value of critical Reynolds number according to
the Ito correlation is 6240. In the study, the greatest value of considered Reynolds number
is ReMax = 1700, which is 3.63 and 3.67 times more than the critical Reynolds number
according to the correlations of Schmidt and Ito, respectively. So, the fluid flow regime in
this work has been considered laminar.

Moreover, in a number of previously published articles, while the critical Reynolds
number in a simple pipe is calculable by placing a swirl generator (insert or turbulator)
in a simple pipe, the researchers still considered the laminar flow regime in the range of
the Reynolds number lower than the ReCr in a plain pipe. Lim et al. [43] analyzed the
hydrothermal behavior in a tube equipped with twisted tape by performing empirical
tests and numerical simulations. The highest evaluated Reynolds number in their work
was Re = 1400, which is 1/1.6 times the critical Reynolds number of a plain pipe. They
illustrated that the fluid flow is laminar in this Reynolds number considering a tube with
twisted tape. Moreover, Zheng et al. [44] examined the thermal process in a tube equipped
with an insert as turbulator at Re = 300–1800 by numerical calculations. The Re = 1800 is
1/1.3 times the ReCritical of a plain tube. They considered the laminar flow regime. In the
other study, Guo et al. [45] studied the heat transfer process in a tube equipped with the
twisted tape as turbulator at Re = 500–1750 considering laminar fluid flow. So, considering
the presented outcomes in References [43–45] and also based on Equations (7) and (8), in
which the calculated ReCr for our case (without any swirl generator) are ReCr = 6145 and
6240, respectively, the assumption of laminar flow regime is correct for present case (with
proposed turbulator) in this work.

In addition to the above, to prove the correctness of the assumption of the laminar flow
regime in the proposed heat exchanger, the numerical simulations have been performed
for two Reynolds numbers, including Re = 757 and 1700 considering the following two
various fluid flow regimes: laminar and turbulent. The obtained numerical outcomes are
presented in Table 3. Hence, the errors among two flow regimes in considered Reynolds
numbers are below 5 percent in terms of the average Nusselt number, which demonstrates
that it is authentic to employ the laminar flow regime in simulations here.
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Table 3. Comparison results between turbulent and laminar flow regimes at two different
Reynolds numbers.

Mass Flow
rate [kg/s] Re

Average Nusselt Number
Error [%]

Friction Factor (f)
Error [%]

Laminar Turbulent Laminar Turbulent

0.02504 757 33.5 34.31 2.4 8.1 8.50 4.8

0.05843 1700 44.5 46.35 4 26 26.97 3.6

2.3. Boundary Conditions

In all calculations, the mass flow rate of the cold stream (outer helical pipe or annulus
part) has been constant by 0.02504 kg·s−1. Four values have been considered for the mass
flow rate of the hot stream (inner helical pipe), including the following: 0.008, 0.02504, 0.043,
and 0.05843 kg·s−1. The VELOCITY_INLET and PRESSURE_OUTLET boundary conditions
have been set for all inlet and outlet ports of the proposed heat exchanger, respectively. The
outer surface of the heat exchanger has been considered adiabatic.

3. Results and Discussion
3.1. Mesh Independence Evaluation

To analysis, the grid size independence, the inlet temperature of the hot and cold
streams is 360 and 300 K, respectively. The generated grid for the posed case is displayed
in Figure 5. Consequently, it may be argued that the boundary layer grid is employed to
augment the precision of the outcomes. Six grids with various cell sizes were generated
for the analysis of grid independence. The comparison among the obtained outcomes is
shown in Figure 6 in terms of the outlet temperature of the hot stream. It can be concluded
that the grid with 1,400,000 cells could be considered for performing the simulations to
save simulation time and cost.
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3.2. Validation Analysis

The empirical results of Akiyama and Cheng (hydrothermal behavior in a spiral
tube) [46] were used to validate the numerical model employed. In the empirical work,
two different boundary conditions with constant heat flux and constant temperature for
the wall of the spiral tube were considered. Thus, the validation analysis was performed
for both of them. The results of the validation analysis are revealed in Figure 7, where the
numerical outcomes of the present work are compared with the empirical outcomes [46].
Consequently, it resulted that the present numerical model has acceptable precision as
the maximum error among the numerical method and the empirical outcomes is 9.1%.
It should be noted that the outcomes of both empirical (Akiyama and Cheng [46]) and
numerical (present study) works were presented in the laminar regime.
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3.3. The Impact of the Proposed Swirl Generator’s Length (L1)

In this section, the effects of the length of the swirl generator used (L1) and the mass
flow rate of the working fluid are evaluated. Three swirl generator lengths, namely, 100, 200,
and 300 mm, are selected. Moreover, the obtained results are presented for four different
mass flows. The schematics of the swirl generators with different lengths evaluated here
are illustrated in Figure 3.

The profiles of average Nusselt numbers against mass flow rate for various lengths of
swirl generators are shown in Figure 8. It can be observed that the use of the suggested
vortex generator with each length value leads to a growth in the average Nusselt number
and heat transfer coefficient compared to the case without a swirl generator since the
generated swirling flows downstream of the swirl generator cause a higher heat transfer
rate among the fluid flow and the interface among the hot and cold flows. In addition, the
outcomes demonstrate that the average Nusselt number and heat transfer coefficient rise
with increasing mass flow rate in each model, with this increase being more pronounced at
lower mass flow rates. In addition, the average Nusselt number and heat transfer coefficient
decrease as the length of the swirl generator increases. Consequently, the maximum heat
transfer rate in the case L1 = 100 mm is recorded at the highest mass flow rate considered.

Energies 2023, 16, x FOR PEER REVIEW 10 of 20 
 

 

3.3. The Impact of the Proposed Swirl Generator’s Length (L1) 
In this section, the effects of the length of the swirl generator used (L1) and the mass 

flow rate of the working fluid are evaluated. Three swirl generator lengths, namely, 100, 
200, and 300 mm, are selected. Moreover, the obtained results are presented for four dif-
ferent mass flows. The schematics of the swirl generators with different lengths evaluated 
here are illustrated in Figure 3. 

The profiles of average Nusselt numbers against mass flow rate for various lengths 
of swirl generators are shown in Figure 8. It can be observed that the use of the suggested 
vortex generator with each length value leads to a growth in the average Nusselt number 
and heat transfer coefficient compared to the case without a swirl generator since the gen-
erated swirling flows downstream of the swirl generator cause a higher heat transfer rate 
among the fluid flow and the interface among the hot and cold flows. In addition, the 
outcomes demonstrate that the average Nusselt number and heat transfer coefficient rise 
with increasing mass flow rate in each model, with this increase being more pronounced 
at lower mass flow rates. In addition, the average Nusselt number and heat transfer coef-
ficient decrease as the length of the swirl generator increases. Consequently, the maxi-
mum heat transfer rate in the case L1 = 100 mm is recorded at the highest mass flow rate 
considered. 

When a swirl generator of greater length is used, more secondary flows are produced 
in the central region of the pipe. This reduces the contact area between the fluid and the 
interface of the two flows, resulting in a lower heat transfer rate. On the other hand, the 
outlet flows from the swirl generator holes cause the flows generated (by the swirl gener-
ator vanes) to contact the interface of the two flows more (due to the collision of the fol-
lowing two flows: outlet flow from the vortex generator vanes and outlet flows from the 
vortex generator holes), resulting in a higher heat transfer rate. Consequently, a longer 
length of the swirl generator results in the outlet flows from the blades (generated swirl 
flows) being more dominant than the outlet flow from the holes. The fluid flow down-
stream of the swirl generator passes through the tube with a swirling motion in the middle 
of the pipe, and the interface between the two flows decreases. To better see the effects of 
the swirl generator used on the hydrothermal behavior, the streamline of the fluid flow 
for different views is shown in Figure 9. 

 
Figure 8. The deviations of average Nusselt number versus the mass flow rates for various cases 
(L1) at n = 12, θ = 180 degrees, and S = 0.3π mm. 
Figure 8. The deviations of average Nusselt number versus the mass flow rates for various cases (L1)
at n = 12, θ = 180 degrees, and S = 0.3π mm.

When a swirl generator of greater length is used, more secondary flows are produced
in the central region of the pipe. This reduces the contact area between the fluid and the
interface of the two flows, resulting in a lower heat transfer rate. On the other hand, the
outlet flows from the swirl generator holes cause the flows generated (by the swirl generator
vanes) to contact the interface of the two flows more (due to the collision of the following
two flows: outlet flow from the vortex generator vanes and outlet flows from the vortex
generator holes), resulting in a higher heat transfer rate. Consequently, a longer length of
the swirl generator results in the outlet flows from the blades (generated swirl flows) being
more dominant than the outlet flow from the holes. The fluid flow downstream of the swirl
generator passes through the tube with a swirling motion in the middle of the pipe, and the
interface between the two flows decreases. To better see the effects of the swirl generator
used on the hydrothermal behavior, the streamline of the fluid flow for different views is
shown in Figure 9.
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Figure 9. The produced secondary (swirl) flows with contours of temperature and velocity magnitude
from the exit of swirl generator’s holes, and the fluid flow over the blades.

Figure 9 illustrates that the proposed turbulator has two different parts, including the
fluid passage area over the spiral blades and the internal channel. The outlet ports of the
inner channel end in a spiral cone-shaped area, and at the end of it, there are two mutual
holes, and the flow passing through the inner channel of the turbulator exits from these two
holes. Moreover, from Figure 9, it can be seen that the swirling flows created behind the
inserted swirl generation are a combination of the following two different swirling flows:
(i) vortices produced by the holes of the conical sector and (ii) the vortex flows produced
by the flow over the blades. In fact, the collision of the vortices created from the two outlet
ducts of the turbulator leads to the rotating flow being drawn towards the wall and the
boundary layer of the wall collapses, and the temperature gradient in the boundary layer
increases; as a result, the heat transfer rate between the internal fluid and the pipe wall
rises, and subsequently, further heat can be transferred rate among both streams.

The profiles of the pressure loss and friction factor against mass flow rate for various
lengths of the swirl generator are shown in Figure 10a,b. As can be seen in Figure 10a,
the pressure loss increases with increasing mass flow rate. In addition, the pressure loss
increases as the swirl generator is used, and this growth in pressure loss is amplified as the
length of the swirl generator decreases. It should be noted that a swirl generator with a
shorter length blocks the flow more and consequently causes a further pressure loss. On
the other hand, a swirl generator with greater length causes the fluid flow to adapt to the
passage so that the pressure loss decreases.

Figure 10b shows that the evolution of pressure loss and friction factor against mass
flow rate is exactly the opposite. As the mass flow rate increases, the friction factor rises;
however, the pressure loss rises.

The temperature curves at the outlets (of both streams) of the inserted heat exchanger
for different lengths of the inserted swirl generator are displayed in Figure 11. It must
be noted that the temperature at the outlet is further unified by using a swirl generator
with a shorter length, which has better heat transfer. As the length of the swirl generator
increases, the secondary streams are centralized only in the central region of the spiral tube.
This reduces the contact area between the flow and the partition, resulting in lower heat
transfer. The discrepancy among the temperature contours for the models with L1 = 100
and 200 mm is small. However, the differences between the above cases with L1 = 300 mm
are significant, which can be clearly seen in Figure 11.

The most important parameter for analyzing the effects of a method of improving heat
transfer is thermal performance (Equation (6)), where the improvement in heat transfer
and the pressure loss associated with the method used are calculated simultaneously. It is
worth noting that a value for thermal power greater than one means that the application
of the proposed heat transfer enhancement method demonstrates a much larger influence
on heat transfer compared to the detrimental impact on pressure loss. Thus, the proposed
heat transfer enhancement method is feasible. The deviations of thermal performance
versus mass flow rates for different lengths are shown in Figure 12. Accordingly, the
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thermal performances of the swirl generator with L1 = 100 and 200 mm are greater than
the unity for all values of the flows. Moreover, the used swirl generator with L1 = 100 mm
at

.
m = 0.008 and 0.05842 kg/s (as the lowest and highest mass flow rates considered)

has a thermal power higher than the model without swirl generator by 100% and 20%,
respectively. On the other hand, the model with L1 = 100 mm demonstrates the maximum
thermal performance.
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.
m = 0.043 kg/s.
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swirl generator at n = 12, θ = 180 degrees, and S = 0.3π mm.

3.4. The Influence of the Position of the Suggested Swirl Generator (S)

Here, the influences of the position of the swirl generator (S) on the increase in heat
transfer are investigated. Three different positions with S = 0.1π, 0.3π, and 0.5π mm are
investigated here. According to the last section (Section 3.3), the used swirl generator
with L1 = 100 mm is considered here. The schematics of the computational domain with
different positions of the swirl generator used in this study are shown in Figure 4. The
swirl generator position parameter (S) is clearly shown in Figure 13.
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Figure 13. The definition of swirl generator position parameter (S).

The profiles of the average Nusselt number against mass flow rate for different posi-
tions of the vortex generator used are displayed in Figure 14. It must be noted that there is
no continuous trend for the average Nusselt number and heat transfer coefficient. In con-
trast, increasing or decreasing the distance between the inlet ports and the position of the
swirl generator does not increase or decrease the average Nusselt number and heat transfer
coefficient with a continuous trend. Moreover, it may be observed that the maximum heat
transfer coefficient and the average Nusselt number apply to the model with S = 0.3π mm
for all mass flow rates evaluated. The case with S = 0.1π mm is located in the second plane
in Figure 14. The lowest average Nusselt number and the lowest heat transfer coefficient
are obtained for the model with S = 0.5π mm for all mass flows studied. In other words, the
placement of the swirl generator used near the inlet or outlet ports results in a poor heat
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transfer rate, and it should be placed at a specific position approximately in the middle of
the distance between the inlet and outlet ports.
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Figure 14. The deviations of average Nusselt number versus mass flow rates for various positions of
the proposed swirl generator at θ = 180 degrees, n = 12, R0 = 19 mm, r = 8.4 mm, L1 = 100 mm, and
.

m = 0.043 kg/s.

The contours of temperature at the exits for different positions of the employed swirl
generator are demonstrated in Figure 15. Accordingly, a more uniform temperature can
be achieved by employing the swirl generator with S = 0.3π mm. Moreover, it is depicted
that a case with S = 0.1π mm is placed at the second level. The differences between cases
S = 0.1π and 0.3π mm with S = 0.5π are significant (as same as the presented results in
Figure 14).
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Figure 15. The contours of temperature at exits for different position of proposed swirl generator at
θ = 180 degrees, n = 12, R0 =19 mm, r = 8.4 mm, L1 = 100 mm, and

.
m = 0.043 kg/s.

The profiles of pressure loss and friction factor against mass flow rate for various
positions of the swirl generator used are shown in Figure 16a,b. As can be seen from
Figure 16a, all the studied cases depict greater pressure loss than the case without a swirl
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generator. Among the considered models, the model with S = 0.3π mm has the highest
pressure loss for all evaluated mass flow rates. The model with S = 0.1π mm is in the second
stage, and the difference between it and the case with S = 0.5π mm is small. Figure 16b
shows the same trend in the models with the different positions of the used swirl generator.
In contrast, the maximum and minimum coefficient of friction among the evaluated models
are obtained in the cases S = 0.3π mm and S = 0.5π mm, respectively.
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The profiles of thermal performance against mass flow rates for different positions
of the swirl generator used are presented in Figure 17. It may be observed that for two
models, including S = 0.1π mm and S = 0.3π mm, all thermal power values are greater
than 1, indicating the advantages of the used swirl generator for hydrothermal power
enhancement in the spiral double pipe heat exchanger in these positions. However, the
case with S = 0.5π mm shows a thermal performance below unity (η < 1) for all mass flow
rates considered except

.
m = 0.008 kg/s.
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4. Conclusions

In this study, the influence of a novel curved vortex generator on the hydrothermal
behavior in a helical double-tube heat exchanger was investigated. The utilized swirl
generator contains some blades to generate secondary flows (swirl flows). Moreover,
two holes were made in the conical part of the swirl generator to produce more swirl
flows. In this work, the influences of two geometrical factors, which contain the length
of the proposed swirl generator and the position of the inserted swirl generator, on the
thermal performance of the proposed heat exchanger were studied. The obtained results
are as follows:

• The generated secondary flows (swirls) were a mixture of the swirls caused by the
holes of the conical sector and the secondary streams caused by the blades;

• The shorter length of the employed swirl generator resulted in higher thermal performance;
• The maximum thermal performance belonged to the model with L1 = 100 mm at

.
m = 0.008 kg/s by 17.65, 53.85, and 100%, respectively, compared to the models
L1 = 200, 300 mm, and the model without swirl generator;

• The best thermal stratification was obtained at L1 = 100 mm, and the temperature
contour showed a uniform temperature field distribution for this case;

• Among the different studied positions of the inserted swirl generator, the maximum
heat transfer coefficient and the average Nusselt number in all mass flows were found
at the position S = 0.3π mm;

• Only two positions of the inserted swirl generator, including S = 0.1π and 0.3π mm,
illustrated more thermal performance compared to the model without a swirl generator;

• The thermal performance of the case with position S = 0.3π mm was higher than that
of the case S = 0.1π mm, S = 0.5π mm, and the case without swirl generator by about
11.11, 53.84, and 100%, respectively.
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