
Citation: Pełka, G.; Jach-Nocoń, M.;
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Abstract: Wood pellets play an important role among biomass materials used as fuel. At the same
time, today’s economic, environmental, political and social realities, as well as other circumstances
related to fuels used for heat generation, mean that there is demand for increasingly efficient and en-
vironmentally friendly combustion sources. As is well known, each combustion source has a different
efficiency due to its intended use, design, principle of operation and the type and composition of the
fuel burned. The amount of pollutants emitted into the environment during combustion also largely
depends on these factors. The aim of this study was to compare the flue gas emissions and efficiency
of two pellet burners of different design, burning certified A1 wood pellets from different suppliers.
The emission requirements were met during the combustion of wood pellets in a boiler with the two
burners tested (one with a moving grate and an overfed burner). The analyses and studies carried
out aim to improve the capability of managing the efficiency and environmental performance of
the heat source (i.e., a boiler or a burner) and the fuel (type of wood pellets). This is done in the
context of demonstrating a better combustion source when selecting the right burner and fuel in
terms of efficiency and emissions. In this paper, comparisons of flue gas emissions are presented
along with characteristics in the form of graphs, as well as thermal and combustion efficiencies for
the corresponding solid fuel used in the form of wood pellets. After comparing the emissions, it was
found that the statistical averages of CO, NOx, dust and VOCs were similar for combustion at full
power using the burners tested. Taking into account the pollution levels at combustion, it can be said
that the difference in CO emissions at full and minimum combustion is lower for the experimental
burner compared with the moving grate burner (reference burner). In summary, it can be concluded
that the experimental overfed burner under consideration can be successfully used as a solid fuel
boiler to burn wood pellets.

Keywords: wood pellets combustion; wood pellets; emissions; combustion efficiency; efficiency of
pellet boiler; pellet burners

1. Introduction

Reducing the use of fossil fuels is a key challenge of the modern world. This is also
important because it is estimated that by 2050, only about 14% of proven oil reserves, 72%
of proven coal reserves and 18% of proven gas reserves will remain [1]. This reduction is
extremely difficult because continued population growth also brings with it an increase
in the consumption of energy and natural resource, thus counteracting the improvement
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of energy efficiency measures and the continued growth of the renewable energy indus-
try [2–4]. At the European Union level, a new development strategy, the ‘Green Deal’, was
adopted in 2019 to achieve climate neutrality by 2050 [5]. In this strategy, great importance
is given to increasing the use of renewable energy and improving energy efficiency [6]. The
Commission proposes to increase the binding target for renewables in the EU energy mix
to 40%. Furthermore, the Commission wants to achieve an overall 36–39% reduction in
final and primary energy consumption by 2030 [7]. The use of biomass is one of the keys to
achieving climate neutrality in 2050, as well as in global energy demand projections [8].

Energy from biomass is one of the main sources of renewable energy in the EU. Ac-
cording to Eurostat data [9], the share of renewables in gross final energy consumption
was 22.1% in 2020. In turn, in 2020, the share of biomass energy in RES was 57.1% [10]. It
has been demonstrated that biomass is an energy source capable of meeting the growing
demand for clean energy sources that can last for a long time [11]. Furthermore, among
renewable energy sources, biomass is one of the least dependent on prevailing weather
conditions (unlike photovoltaics or wind turbines); at the same time, it does not require sub-
stantial investments (unlike hydropower, geothermal or wind energy). According to some
studies, the availability of forest biomass in Europe from a mapped area of 10 km × 10 km
is between 357 and 551 Tg of dry matter per year [12]. Furthermore, biomass is a low-
emission energy carrier in terms of carbon dioxide (CO2). Therefore, the CO2 balance of
biomass in the atmosphere is at zero, according to the assumptions of the Paris Agreement
on the planning to reduce carbon dioxide (CO2) emissions through the increased use of
biomass for energy [13–15]. Pellets are the most convenient of the biomass solid fuels
available. They are characterised by a higher energy density than wood chips, which
means that the requirements for transport and storage capacity are lower. Compared
with non-densified biomass, pellets are characterised by lower moisture content, higher
calorific value, uniform shape, pronounced combustion and reduced ash [16–22]. Recent
geopolitical developments have caused significant market disruption both in terms of price
and supply. Nevertheless, wood pellets remain competitive as compared to almost all other
energy sources and could become even more attractive with a series of targeted measures
(e.g., VAT reductions, in line with what applies to other energy sources) [23]. The increase
in prices and limitations in the supply of pellets may be factors limiting their practical use
as fuel.

The current political and economic situation in the world causes a reduction in the
supply of hydrocarbons (coal, oil and gas), especially in the European market. As a result,
individual buyers in Poland are experiencing problems with purchasing good-quality coal
to heat their homes. In addition, this fuel is very expensive. Moreover, the tense situation
in the world due to, inter alia, the war in Ukraine, causes great uncertainty as to the future
supply of hydrocarbons. All these indications point to the need for an increasing share of
good quality wood pellet boilers in the Polish heating market.

This is important, especially because coal combustion remains one of the main sources
of household heating, being the most common energy carrier in the Polish country-
side [24,25]. In 2018, solid fuels (hard coal and firewood) were used in 45.4% of households
in Poland. The use of hard coal for heating occurs to the greatest extent in the Polish
countryside. As of 2018, as many as 71.3% of detached houses in rural areas used coal for
heating, compared with 20.0% in urban areas [26].

The Energy Policy of Poland until 2040 assumes that the use of biomass, both thermal
and anaerobic in biogas plants and for the production of liquid biofuels, will increase. It
is important to use biomass as close to the place of its production as possible [27]. The
document presents a projection of a 62% increase in biomass production in 2040 compared
with 2015 using mainly domestic potential. Demand for biomass will increase in all
sectors. Along with the increase in prices of CO2 emission allowances, the profitability of
biomass use will increase in the electricity and district heating sectors. In households and
services, greater use of biomass than so far will involve replacing old coal-fired boilers with



Energies 2023, 16, 1695 3 of 18

modern pellet-fired ones [27]. This is the most efficient and cleanest use of biomass for
domestic heating.

In 2018, Poland launched the ‘Clean Air’ programme, the main objectives of which
are to improve the energy efficiency of buildings and reduce emissions of dust and other
pollutants into the atmosphere, mainly from the heating systems in detached houses
which not infrequently still use old, low-efficiency solid fuel boilers that also burn low-
quality fuel [28–30]. Changing the structure of consumption of energy carriers by replacing
fossil fuels with energy from renewable sources may result in savings of fossil energy
carriers, as well as a reduction in the emissions of pollutants to the atmosphere, resulting in
improvement of air quality [4,31,32]. As of 2019, Poland used approximately 70.4% of all
solid fossil fuels consumed for domestic heating in the European Union in [33]. Over the
past 10 years, there has been a gradual decline in the use of coal-fired boilers [34].

Particulate matter pollution in Poland is mainly caused by low stack emissions (emis-
sions from chimneys less than 40 m high) from household heating [35–37]. This is a very
important argument for replacing outdated solid fuel boilers with environmentally friendly
energy sources. Pellet boilers are a good solution in this respect. The phasing out of coal
and oil boilers and, in a further phase of decarbonisation, also of gas boilers, creates a
market potential for biomass heating appliances (in particular, pellet boilers). The greatest
such potential exists in Poland, Ireland, Belgium, Italy, Germany and the Netherlands [38].
Compared with wood boilers, pellet boilers have automatic feeders, automatic cleaning
systems and automatic ignition systems.

Pellet boilers are becoming increasingly popular on the Polish heating market. They
are mostly replacing the older generation of omni-fuel boilers, which are very inefficient
especially when burning wood logs [39]. The share of biomass boilers in total solid fuel
boilers sold in 2018 was 35–40% and had already reached 80% by 2020 [34]. The share of
biomass boilers in the total Polish market for household heating appliances between 2014
and 2019 was 20% [40]. Pellet boilers are the appliances that produce the lowest emissions
of air pollutants compared with other solid fuel boilers [39]. However, the problem of
emissions in the flue gas cannot be completely eliminated [41–43]. All currently available
pellet boilers are class 5 according to the PN-EN 303-5:2012 standard [44] and comply
with the Ecodesign requirements [45]. The minimum thermal efficiency of a 20 kW pellet
boiler in class 5 is 88%. According to the PN-EN 303-5:2012 [46] standard, the maximum
CO emissions for automatic biomass boilers are 500 mg·m−3, the maximum emissions
of organic gaseous compounds (OGCs) are 20 mg·m−3 and the maximum emissions of
dust are 40 mg·m−3 (each value was converted to 10% oxygen concentration in the flue
gas). These boilers also meet the requirements of the Ecodesign Directive [47] and are in
energy efficiency class A+ according to the Commission Delegated Regulation (EU) No
811/2013 [48].

In Poland, not all manufacturers currently comply with the relevant standards for
the quality of pellets placed on the market. Pellet producers are highly dispersed, and
many of them depend on the amount of sawdust and wood chips generated in their core
business of sawmilling. If the market conditions are tough for sawmill products, then the
supply of wood pellets decreases. Only the largest manufacturers, with a daily production
of over 24 tonnes, opt for certification. The most popular is the ENplus certification. This
certificate is a pan-European standard for wood pellets based on the quality requirements
of EN ISO 17225-2 (with three classes of wood pellets A1, A2 and B, where class A1 is
the best-quality pellet). The scope of certification includes pellet parameters regarding
pellet dimensions, ash and trace element content, mechanical resistance and calorific value.
There is a national certificate provided for small-scale producers which guarantees product
compliance with EN ISO 17225-2 but is not recognised in other countries. It enables them to
sell wood pellets locally at a price lower than the European average, which increased from
about 25 euro-cent·kg−1 in 2020–2021 to about 65 euro-cent·kg−1 in November 2022 [49].
At a time of Poland’s energy transition and a shift away from fossil fuels, particularly coal
and lignite, the stable and affordable price of wood pellets offers Poland a chance to remain
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on the decarbonisation pathway adopted in its commitments to the EU Commission and to
ensure the security of fuel supply to the household and municipal sector where coal played
such a role for decades.

The aim of this study was to compare the flue gas emissions and efficiency of two pellet
burners of different design, burning certified A1 wood pellets from different suppliers. The
analyses and studies carried out increase the capability of managing the efficiency and
environmental performance of the heat source (i.e., a boiler or a burner) and the fuel (type
of wood pellets). This is done in the context of demonstrating a better combustion source
when selecting the right burner and fuel in terms of efficiency and emissions.

2. Materials and Methods

In order to carry out the tests, we used a 16 kW boiler with automatic fuel feeding
designed for burning wood pellets. The appliance in question belongs to a series of low-
temperature steel boilers designed for open and closed systems. In the boiler, the air flow
into the combustion chamber is supplied by a blower fan. The operation of the individual
boiler components is supervised by a controller with specialised software. The boiler has a
vertical flue gas flow through two-pass fire tube heat exchangers with spring turbulators
(flue gas swirlers) in each tube. This design makes it possible for the boiler to achieve
a high level of efficiency, Figure 1. Due to the nature of the testing and the fact that a
heat exchanger that was not thermally insulated was used as a prototype, heat loss to the
environment was noticeable.
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This paper compares the effects of the combustion process for two pellet burners of
different designs and three brands of commercially available wood pellets. The aim was to
check the effect of the wood pellets being combusted on the emissions for a boiler meeting
class 5 requirements, as well as to determine what emission effects can be achieved using
burners of different designs. The first of the burners tested was a moving grate burner,
characterised and described in the article [51]. This pellet burner is very popular on the
market in Poland. As shown, it is also suitable for operation with agro pellets, such as
miscanthus grass pellets.

The effects of the operation of the abovementioned burner with a horizontally fed
burner and a moving grate were compared with those of an overfed burner. The overfed
burner (Figure 2) is characterised by the cyclic feeding of pellets from above (dropping
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them in) so that they fall onto the grate by gravity. The grate in this appliance is in the form
of a movable drawer. Upon completion of the operation in the heating mode, or at specified
intervals, ash removal from the burner is carried out by pulling the grate out, which results
in the ash falling into the ash pan drawer. An automatic control system ensures that the
fuel is fully combusted on the grate before the grate is opened, and then the ash naturally
falls into the ash pan. Table 1 shows the comparison of the technical specifications of both
tested burners.
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Table 1. Comparison of the technical specifications of tested pellet burners.

Parameter Moving Grate Burner Experimental Burner

Feeding system horizontally with stoker over-fed (gravity)

Ash removing system moving grate (deashing possible during
working stage)

movable drawer (deashing possible
extinguishing mode)

Firing-up Electric heater Electric heater

Air supply system
blower fan with speed modulation (the
air stream is divided for primary and

secondary stream)

blower fan with speed modulation (the
air stream is divided for primary and

secondary stream)
Fire check-up system photodiode photodiode

Both burners tested had a ceramic igniter and an air supply fan. Air was supplied to
both burners in the form of a primary and secondary flow.

In the first stage of testing, a pellet burner with a moving grate (Uni-Max; the reference
burner) was installed in the boiler. The fuel was supplied from a hopper by means of a
shaftless screw conveyor from the bottom of the hopper to the top, from where the fuel
slid by gravity through the backflow preventer into the stoker chamber. Then, the stoker
transported the pellets onto the grate.

Next, the experimental burner was installed. In this solution, a fan draws in ambient
air (air form the room where the boiler is installed) and blows it into the air chamber of
the burner. From the air chamber, the air is then supplied to the fuel through some nozzles
located in the burner, and the fuel combustion process takes place. The fuel in the form of
wood pellets is transported from the hopper in the same way as for the reference burner. In
the case of an overfed burner, the pellets fell directly onto the hearth.

Regulation of the boiler heat output was carried out automatically by an electronic
temperature controller. This controller controlled the operation of the feeder, blower,
circulation pump, domestic hot water circulation pump, igniter and ash removal system.
The following operation stages occurred for both burners tested:

• Ignition—At this stage, the fan first removed the ash from the grate after annealing
of the char from the previous operating cycle. The initial dose of pellets was then fed
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onto the grate, and the electric igniter and fan were started. During this stage, the
pellets heated up on the grate to the ignition temperature. The igniter operated until
a flame appeared and was detected by a photocell installed in the burner. When the
flame appeared, the boiler switched to heating mode.

• Operation—During fuel combustion on the grate, the fan operated continuously, and
the fuel was cyclically fed in small doses. At this stage, the fan, screw conveyors
(in both cases, the screw conveyor installed in the hopper is in operation, and the
reference burner had an additional feeder, i.e., a stoker) and ash removal system were
all in operation. For the reference burner, the ash removal system operated cyclically
during burner operation at intervals of several minutes. For the test burner, the ash
removal system operated at longer intervals (before the ash is removed from the
grate, the fuel residue must burn out). With the controller used, both burners could
operate at three power levels. For each of these levels, the burner manufacturer has
implemented appropriate settings for the fuel feeding time, fan output and grate ash
removal frequency.

• Shutting down—At this stage, the fan was in operation to provide air for full combus-
tion of the pellets on the grate. For the reference burner, the moving grate system was
also activated to transfer ash to the ash pan. For the experimental burner, the grate
drawer was opened only after the pellets were fully burned out.

The comparative study of the burners and wood pellets was carried out at a solid fuel
boiler testing facility located at the Centre of Sustainable Development and Energy Saving
AGH WGGiOŚ ‘Miekinia’. The testing equipment consisted of:

• A heating loop for the stabilization of temperature in the boiler and measures water
flow, inlet and outlet temperature and pressure. The was installed for the electromag-
netic flow meter, and for the inlet and outlet temperature, the measurements were
user temperature transducers with PT100 sensors;

• A flue gas draft stabilization system with a draft fan and draft sensor;
• The flue gas analysing system with analysers Sensonic IR-1 and Sensonic MANOX-

CLD, which continuously monitored O2, CO, CO2 and NOx in the flue gas. For the O2
measurement, a para-magnetic sensor was used; for CO and CO2, user NDIR sensors
were used; and for NOx, the CLD method was used. For VOCs measurement, an
instrument was used with the FID method, which was produced by LAT company.
Dust in the flue gas was measured using a Testo 380 fine particle analyser (with
measuring ranging from 0 to 300 mg·m−3 and a measurement uncertainty of 40%);

• A platform scale for pellet weighting with the range 0–60 kg, with resolution 20 g;
• The SCADA PROCES2 system was used to set the test parameters (the flow, outlet

temperature, flue gas draft) and read and record data from analysers and sensors [51].

Thermal efficiency was calculated using Formula (1):

ηth =
P

B·NCW
[%] (1)

where

P—heating capacity of the boiler (kW), calculated according to Formula (2);
B—fuel consumption rate (kg·h−1);
NCW—net calorific value of fuel (kWh·kg−1).

P =
v·ρ·(T2·T1)·cw

3600
[kW] (2)

where

V—volumetric flow rate (l·h−1);
ρ—water density (kg·l−1);
T2—boiler outlet temperature (◦C);
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T1—boiler inlet temperature (◦C);
cw—water specific heat capacity (kJ· (kg·K)−1).

The thermal efficiency of the boiler was measured for a thermally uninsulated heat
exchanger (Figure 3), so it can only be used for illustrative purposes. Actual thermal
efficiencies for pellet boilers can be as high as 90%. Combustion efficiencies were also
compared for the individual fuels and burners.
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The combustion efficiency was calculated using Formula (3) [53]:

ηc = 100 − qA [%] (3)

where

qA—stack loss [45] calculated according to Formula (4) (%).

qA = (Tgas − Tamb) ∗ (
A1

CO2
+ B)[%] (4)

where

Tgas—flue gas temperature (◦C);
Tamb—boiler inlet air temperature (ambient temperature) (◦C);
CO2—carbon dioxide concentration in flue gas (%);
A1, B—Siegert’s coefficients characteristic of pellets (dry wood), A1 = 0.65, B = 0.

Each measurement for all the types of the wood pellets in the test was started by
stabilising the boiler inlet and outlet water temperatures. The feeding and break parameters
for the pellet feeders were then set in the controller. Setting these parameters was important
in order to achieve the assumed heating output, regardless of the size and bulk density of
the pellets tested. The boiler was assumed to operate at a nominal output of approximately
16 kW and a minimum output of approximately 4.8 kW (with the experimental burner
installed), which was 30% of the nominal output. It was also necessary to adjust the fan
capacity to ensure the correct supply of primary and secondary air to the burner. Each
test was assumed to last 60 min. To calculate the fuel consumption rate, each pellet was
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weighted at scale before the test, and after test, the rest of pellet was weighted from fuel
hopper; the difference (for 60 min of boiler operating) provided the fuel consumption rate.

The tests were carried out for certified class A1 wood pellets produced in accordance
with the requirements of EN ISO 17225-2, acquired from three different producers. The fuel
tested is widely available to individual customers on the domestic, i.e., Polish market. The
fuel was delivered and stored in its original commercial packaging. For the purpose of this
article, the pellets were described as A, B and C. Pellets A are produced from the sawdust
of coniferous wood, mainly pine, larch, fir and spruce. The wood is first debarked so the
feedstock used in the production does not contain any bark (Figure 4). In the production of
pellets B, only conifer sawdust is used. The wood is also debarked prior to the production
process (Figure 5). The last fuel used was pellets C. This fuel also uses pre-barked, dry
conifer sawdust (Figure 6).
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3. Results and Discussion

Net calorific values for each type of tested pellets were calculated based on gross
calorific values measured in bomb calorimeter KL-11. The highest net calorific value was
17.53 MJ·kg−1 for pellets C and the lowest, at 17.21 MJ·kg−1, was found for pellets B. Pellets
A and pellets B had similar moisture contents of 8.2% and 8.4%, respectively. Pellets C
had a slightly lower moisture content (7.5%). Pellets C had the lowest ash content (0.31%),
pellets B had a higher content (0.41%) and pellets A had the highest ash content (0.53%).
As for the volatile matter content, it was approximately 85% for all the pellets tested. The
volatile matter content values were 84.72% for pellets A, 85.14% for pellets B and 85.87%
for pellets C. Pellets A had the highest bulk density (670 kg·m−3), followed by pellets B
with 630 kg·m−3 and pellets C with 610 kg·m−3. The measured parameters of the pellets
tested are shown in Table 2.

Table 2. Characteristics of the wood pellets tested.

Parameter Unit Pellets A Pellets B Pellets C Testing Method

Net calorific value MJ·kg−1 17.23 17.21 17.53 PN-EN ISO 18125:2017-07
Moisture content % 8.2 8.4 7.5 PN-EN ISO 18134-1:2015-11

Ash content % 0.53 0.41 0.31 PN-EN ISO 18122:2016-01
Volatile matter % 84.72 85.14 85.87 PN-EN ISO 18123:2016-01
Bulk density kg·m−3 670 630 610 PN-EN ISO 17828:2016-02

Before each test, the fuel feeding and airflow parameters were adjusted to achieve the
set outputs independently for each burner and fuel. For both the boiler with the moving
grate burner and the experimental burner, the combustion process parameters and settings
were adjusted, including the fuel feeding time, fuel feeding break time, fan output and
blower aperture width (see Table 3 for a summary of the parameters). These adjustments
were made in order to achieve the set value of heating power:

• 16 kW (+/−10%) nominal heating capacity (100% output)—moving grate burner and
experimental burner;

• 4.8 kW (+/−10%) minimum heating capacity (30% output)—experimental burner.

Table 3. Boiler settings during combustion; full and minimal load.

Type of Wood Pellet
and Heating Capacity Fuel Feeding Time [s] Fuel Feeding Break

Time [s] Fan Output [%] Blower Aperture
Width [cm]

Type of pellet burner Moving grate burner

Pellets A 100% 8 6 40 full
Pellets B 100% 8 6 40 full
Pellets C 100% 8 6 40 full

Type of pellet burner Experimental burner

Pellets A 100% 8 8 22 full
Pellets A 30% 2 10 5 5
Pellets B 100% 8 6 34 3
Pellets B 30% 2 9 5 5

Pellets C 100% 8 6 34 3
Pellets C 30% 2 9 4 5

In the next step, the emissions of CO, NOx, dust and volatile organic compounds
(VOCs) were measured during the combustion of pellets A, B and C in the boiler with the
integrated reference burner and the experimental burner. Then, the statistical averages
for the obtained emission measurement results were calculated. Further, each value of
the abovementioned emissions was converted to a 10% concentration of oxygen in the
flue gas. Emissions were compared at nominal heating capacity (100%) for the boiler with
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the reference burner (Uni-Max) and the experimental burner in the course of burning the
three types of pellets. In the case of carbon monoxide emissions, higher pollution levels
were recorded for the experimental burner for all the pellet types tested. The highest CO
concentration of 201.2 mg·m−3 was measured for the experimental burner when burning
pellets C. In contrast, the lowest CO level for the experimental burner was recorded at
78.5 mg·m−3 when pellets B were combusted. For the Uni-Max burner, the CO pollution
level for pellet A was approximately 62 mg·m−3, and for pellet B, approximately 55 mg·m−3.
The lowest CO value for this burner was 37 mg·m−3—pellets B (Figure 7). All CO emissions
measured for the pellets at full load were well below 500 mg·m−3, which is the limit for
class 5 boilers according to PN-EN 303-5:2012.
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Figure 7. Comparison of average statistical CO emissions from the combustion of three types of
wood pellets in two different burners at full load.

Higher NOx emission values were recorded in the course of comparing the combustion
of type A, B and C pellets for the Uni-Max burner. The highest values were measured for
pellets C (Uni-Max burner, approx. 204 mg·m−3; the experimental burner, approximately
186 mg·m−3). For pellets A and B, similar emission values were recorded, i.e., approxi-
mately 180 mg·m−3 in both cases for the Uni-Max burner and approximately 150 mg·m−3

for the experimental burner, see Figure 8. With regard to the particulate dust emissions
for pellets A, lower emissions were found for the experimental burner (18.5 mg·m−3) than
for the Uni-Max burner (21.6 mg·m−3). The opposite was true for pellets B and C, where
lower dust emission values were measured for the Uni-Max burner (12.4 mg·m−3 with
13.6 mg·m−3, respectively) than the experimental one (Figure 9). The highest volatile
organic compound emissions were recorded when pellets C were combusted in the ex-
perimental burner (2.9 mg·m−3). The VOCs emissions for pellets A and B combusted in
the boiler with the experimental burner were at the same level, i.e., 2.5 mg·m−3. For the
boiler with the Uni-Max burner, the lowest VOCs emissions were recorded for pellets
B (1.2 mg·m−3), and the highest emissions were recorded for pellets A at 1.7 mg·m−3

(Figure 10).
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Figure 8. Comparison of average statistical NOx emissions from the combustion of three types of
wood pellets in two different burners at full load.
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Figure 9. Comparison of average statistical dust emissions from the combustion of three types of
wood pellets in two different burners at full load.
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Figure 10. Comparison of average statistical VOCs emissions from the combustion of three types of
wood pellets in two different burners at full load.

Emissions were also compared at the nominal (100%) and minimum (30%) heating
capacity for the boiler with the experimental burner in the course of burning the three
types of pellets. In the case of carbon monoxide emissions for the experimental burner,
higher pollution levels were recorded during combustion at the minimum load than at full
load for all three types of pellets. This is due to lower temperatures in the burner in the
minimum load condition, which leads to incomplete combustion, leading to the production
of CO [54]. For both the nominal and the minimum heating capacity mode, the emission
of carbon monoxide when burning wood pellets A, B and C met the requirements of the
PN-EN 303-5:2012 standard. It is worth noting that when combusted in the boiler with
the experimental burner, CO emissions for all three pellet types were slightly higher at the
minimum load compared with the nominal load. CO emissions were 1.2-times higher for
pellets A, 2.3-times higher for pellets B and 1.3-times higher for pellets C.

When comparing the above results with the test results for the combustion of wood
pellets in the boiler with a moving grate burner from Uni-Max, there is little difference
between the CO emissions at minimum and nominal loads. In the testing carried out
for wood pellets at the minimum load of the boiler (30%) with a moving grate burner
(Uni-Max), CO emissions were 370 mg·m−3. This was 4.1-times higher than at full boiler
load (100%), where the emission was 90.5 mg·m−3 [51].

Considering NOx emissions for pellets A and B for both the full boiler load and mini-
mum load, similar levels were measured at approximately 150 mg·m−3. For pellets C, the
emissions from combustion were lower at the minimum load (approximately 174 mg·m−3)
than for nominal combustion at approximately 186 mg·m−3. Particulate dust emissions
during operation at nominal boiler load were higher than at the minimum load. The highest
emissions were measured when burning pellets B and C at full load (27.8 mg·m−3—pellets
B and 32.3 mg·m−3—pellets C, respectively). In contrast, the lowest dust emissions were
measured for pellets A at the minimum load (15.2 mg·m−3). Regarding volatile organic
compounds (VOCs), higher emission values were found for the boiler operating at the
minimum load; the highest emission value for the boiler operating at the minimum load
was measured when combusting pellets C (7.4 mg·m−3). In contrast, very similar VOCs
values of 2.5–2.9 mg·m−3 were recorded the boiler operating at the full load when burning
all three pellet types (Figure 11).
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Figure 11. Comparison of average statistical emissions from the combustion of three types of wood
pellets in experimental burners.

During the test combustion, the thermal efficiency of the ηth boiler was calculated
according to Formula (1). The thermal efficiencies when burning pellets A, B and C,
respectively, for the boiler with the experimental burner (72.9% for pellets A, 77.0% for
pellets B and 74.0% for pellets C), were compared with the thermal efficiencies when the
reference burner was fitted (73.5% for pellets A, 74.8% for pellets B and 76.7% for pellets
C) (Figure 12). The efficiencies obtained for pellet combustion using two burners were not
high because the boiler was not thermally insulated during the operation and had high
heat losses to the laboratory room.
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Figure 12. Thermal efficiency of the boiler for two burners when burning three types of commercial
wood pellets at full load.

The combustion efficiencies ηc for the reference burner were as follows: 93.1% for
pellets A, 93.7% for pellets B and 93.6% for pellets C. For the experimental burner, these
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efficiencies were 94.7% for pellets A, 93.6% for pellets B and 92.4% for pellets C) (Figure 13).
The combustion efficiencies obtained for each of the burners and fuels were at a similar
level, i.e., approximately 93.5%. For the experimental burner and pellets A, the efficiency
was about 1% higher, and for pellets C, the efficiency was about 1% lower. The average
boiler performance parameters for the two burners, as well as the emissions and efficiencies
in connection with combustion of the three pellet types, are shown in Table 4.
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The test compared the studied pellet burners (moving grate and overfed experimen-
tal burner) to other pellet burners on the market, showing that the tested burners have
emissions on a similar level. During the combustion of wood pellets, the underfed pellet
boiler (with a heating capacity of 27 kW), described in [55], had 32 mg·m−3 CO emission,
260 mg·m−3 NOx emission and had a combustion efficiency of 93%. During the test, the
moving grate burner boiler for the pellets (with a heating capacity of 51.5 kW) remitted
195 mg·m−3 CO and 243 mg·m−3 NOx with a combustion efficiency of 94% [55]. For the
overfed state-of-the-art boiler with 15 kW heating capacity, the CO emission was really low
at 5.5 mg·m−3, with 0.55 mg·m−3 for VOC emission, 230 mg·m−3 for NOx emission and
33 mg·m−3 of dust emission [56]. That boiler had significantly lower CO emission compar-
ing to the tested ones. For the 20 kW rotary furnace pellet boiler, for the nominal capacity,
the CO emission was 695 mg·m−3 and NOx emission was 156 mg·m−3 [57]. The research
described in [58] shows that emissions strictly depend on the burner and boiler specific
construction. The description of two overfed boilers (15 and 20 kW heating capacities)
showed significant differences in the measured emissions. For the 15 kW boiler with an
overfed pellet furnace, the CO emission was 609 mg·m−3, NOx emission was 36 mg·m−3

and dust emission was 5 mg·m−3. For the 20 kW boiler with an overfed pellet furnace,
the CO emission was 78 mg·m−3, NOx emission was 88 mg·m−3 and dust emission was
3.6 mg·m−3. The above results have been converted to the 10% O2 reference.

The results obtained during testing of moving grate and experimental overfed pellet
burner may be an introduction to work on improving the quality of combustion and thus
reducing pollutants.

4. Conclusions and Remarks

As part of the testing, the statistical averages of emissions were compared when
burning at full power for a reference burner and a test burner. Three brands of commercial
wood pellets commonly found in Poland were used as fuel. The obtained results led to the
following conclusions:

• The levels of CO, NOx, dust and VOCs were similar for combustion at full power
using the burners tested;

• Taking into account the pollution levels at combustion, it can be said that the difference
in CO emissions at full and minimum combustion was lower for the experimental
burner compared with the moving grate burner (reference burner);

• It is worth noting that the requirements of EN 303-5:2012 were met by all the samples
and configurations tested (pellets A, B and C experimental burner and Uni-Max, and
100% and 30% boiler loading). The combustion efficiencies ηc obtained of pellets A, B
and C for each of the burners were at a similar level, i.e., approximately 93.5%;

• For the experimental burner and pellets A, the efficiency was 1% about higher, and for
the experimental burner and pellets C, the efficiency was about 1% lower.

In summary, it can be concluded that the experimental overfed burner under consid-
eration can be successfully used as a solid fuel boiler to burn wood pellets. The results
were particularly advantageous with regard to emissions from burning a minimum load
(30%) of wood pellets with the experimental burner as compared with the Uni-Max burner.
Appropriate management of the selection and purchase process of the heat source (boiler
and burner) and the choice of fuel purchased and used (type, from a specific manufacturer)
can significantly influence the effectiveness (efficiency) of the combustion process, the costs
incurred by users and the amount of pollutants emitted during the combustion process.

In addition, the carried out experimental tests and measures allow us to look at
positive expectation on the decarbonisation and the goal of achieving climate neutrality
by 2050. Furthermore, new rationale has emerged in EU countries implying even greater
use of alternative energy sources. One of the reasons is the low supply of fossil fuels
(hydrocarbons) due to the difficult and complex political and economic situation. Another
reason is the high uncertainty about the future supply of hydrocarbons associated, inter
alia, with the war in Ukraine. In Poland, the use of modern and ecological boilers adapted
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to burning wood pellets is becoming an increasingly interesting alternative in the context of
the problem of air pollution caused mainly by the household and municipal sector, which
uses outdated designs of coal-fired boilers, as well as using low-quality coal and the large
increase in the price of this fuel.
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24. GUS. Energy Consumption in Households in 2015-Zużycie Energii w Gospodarstwach Domowych w 2015r; GUS, Departament Produkcji:
Warszawa, Poland, 2017.
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