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Abstract: In the development of unconventional shale resources, production forecasts are fraught
with uncertainty, especially in the absence of a full, multi-data study of reservoir characterization.
To forecast Duvernay shale gas production in the vicinity of Fox Creek, Alberta, the multi-scale
experimental findings are thoroughly evaluated. The relationship between shale gas production and
reservoir parameters is assessed using multiple linear regression (MLR). Three hundred and five core
samples from fifteen wells were later examined using the MLR technique to discover the fundamental
controlling characteristics of shale potential. Quartz, clay, and calcite were found to comprise the bulk
of the Duvernay shale. The average values for the effective porosity and permeability were 3.96% and
137.2 nD, respectively, whereas the average amount of total organic carbon (TOC) was 3.86%. The
examined Duvernay shale was predominantly deposited in a gas-generating timeframe. As input
parameters, the MLR method calculated the components governing shale productivity, including
the production index (PI), gas saturation (Sg), clay content (Vcl), effective porosity (F), total organic
carbon (TOC), brittleness index (BI), and brittle mineral content (BMC) (BMC). Shale gas output was
accurately predicted using the MLR-based prediction model. This research may be extended to other
shale reservoirs to aid in the selection of optimal well sites, resulting in the effective development of
shale resources.

Keywords: unconventional shale productivity; mineralogy; petrophysics; geochemistry; geomechanics;
multiple linear regression

1. Introduction

With the success of the shale gas revolution in the United States, the competition and
trade pattern of the global natural gas market have undergone significant changes in recent
years. This has had a significant impact on the global oil and gas supply pattern, as well as
geopolitics [1–3]. According to worldwide production data, shale gas production reached
7688 × 108 m3 by the end of 2020, accounting for 19.6% of the total natural gas output
(i.e., 39,180 × 108 m3) [4]. The shift from conventional to unconventional resources was ac-
complished with the development of shale resources [3]. Canada is the second nation, after
the United States, to effectively explore and extract shale gas as an essential component of
the North American unconventional energy sector [5]. Canada’s shale gas output reached
58 × 108 m3 by the end of 2021, ranking it fourth in the world after the United States
(7572 × 108 m3), China (228 × 108 m3), and Argentina (128 × 108 m3). Among basins con-
taining shale gas, the Duvernay shale basin plays a major role in shale gas
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production [6,7]. In recent decades, the widespread use of multistage hydraulic frac-
turing technology [8] has transformed the Duvernay shale deposit into a world-class
unconventional resource play.

Numerous studies on the development of shale gas in North America have been un-
dertaken, covering the major technologies of shale gas production [9,10], shale gas resource
appraisal [11,12], and the governing factors of shale gas sweet spots [13]. In addition,
several studies have been conducted to anticipate shale production. Several geological
factors, including preservation conditions (e.g., burial depth, temperature, pressure, and
sedimentary thickness of shale), organic matter quality (e.g., the type, content, and maturity
of organic matter), mineral quality (e.g., the content of brittle minerals and clay), petrophys-
ical features (e.g., porosity, permeability, free gas, and adsorbed gas content), and organic
matter quality (e.g., the and type and content [1,14,15]). In addition to the aforementioned
geological factors, operational factors (e.g., the shale brittleness index (BI), derived from
Poisson’s ratio and Young’s modulus) and operational parameters (e.g., number of fractur-
ing stages, horizontal length, fracturing fluid injection volume, and proppant placed mass
for horizontal wells) have also had a significant impact on shale gas production [14,16–18].
Some researchers have also presented a system that combines thin-section observations,
three-dimensional (3D) seismic data, and picture logs to assess reservoir parameters and
anticipate probable development sites [19]. Consequently, it is essential to measure the
effects of these geological and operational factors on shale gas resource development.

However, there are few feasible scenarios for the development of a single shale reser-
voir based on a complete, multi-data analysis, especially the integration of mining, geo-
chemistry, petrophysics, and geomechanics assessments. In addition, a comprehensive
data analysis is often conducted to establish the criteria for the magnitude range of the
selected regulatory components that contribute to the shale sweet spot. The sweet spot
zone is then predicted based on these criteria [18,20]. However, the subjectivity (e.g., re-
searcher bias) and unpredictability of the selection of elements governing shale output
reduce the accuracy of the sweet spot zone projection. Nonetheless, as a method of mass
-information data mining, machine learning algorithms (e.g., regression algorithm, neural
network method, decision learning, and the Bayesian method) can identify the controlling
factors that contribute the most to shale sweet spot prediction by detecting the hidden
relationships between various controlling factors. The use of machine learning in oilfield
development, based on massive geological and operational data, has revealed a variety
of potential growth benefits [11,17,21,22]. Some researchers provided a deep learning
technique (e.g., the construction of a deep-feed neuro-network model) for predicting shear
velocity from traditional logging curves in a confined sandstone reservoir [23]. Other re-
searchers proposed an integrated method of petro-physical, mineral composition, well-log
facies, and horizon attribute analyses, as well as an unsupervised vector quantizer artificial
neural network (UVQ-ANN) and sequential indicator simulation (SIS) modeling, which
was used to evaluate the prospect of a gas reservoir [24].

However, production forecasts for the exploitation of unconventional shale resources
are fraught with uncertainty, especially in the absence of a full, multi-data analysis of
reservoir characterization. In this work, an integrated reservoir characterization method
was suggested in order to assess the shale productivity of Duvernay shale. Mineralogy,
geochemistry, petrophysics, and geomechanics evaluations were included in the entire
reservoir characterization. Multiple linear regression (MLR) was used to quantify the
relationship between shale productivity and reservoir features and to determine the most
influential components that contribute to shale productivity. Finally, a prediction model of
shale productivity was created, providing the groundwork for the future efficient develop-
ment of shale gas resources in this region.

2. Field Background

The Western Canadian Sedimentary Basin (WCSB) deposited the Duvernay Formation
during the Upper Devonian period (Figure 1a) [25,26]. In addition, the Duvernay Formation
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is a significant source of oil and gas for the Leduc and Swan Hills reservoirs (Figure 1b,d).
The Grosmont carbonate platform divides the Duvernay shale into two sections: the
Western Shale Basin (WSB) and the Eastern Shale Basin (ESB) (ESB). Rokosh et al. (2012)
calculated the sediment thickness and contoured the net shale thickness distribution by
setting the gamma line cutoff to 105 API (Figure 1c) [7]. Resources are abundant in the
Duvernay shale, and the production of oil and gas is enormous. The overall area of the
Duvernay shale is roughly 2.43 × 104 km2, and its natural gas, liquid hydrocarbon, and
crude oil reserves are 23.22 × 1012 m3, 115.54 × 108 t, and 250.5 × 108 t, respectively [27,28].
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Figure 1. The geological information of the Duvernay formation. (a) Location of the West Shale
Basin (WSB) and East Shale Basin (ESB). The examined region is marked by the small magenta box.
(b) Stratigraphy of the studied region. The magenta polygon marks the Duvernay formation with the
black shale lithology. (c) The logging response of associated formations. GR—Gamma ray; DT—Acoustic
sonic; and RT—Formation resistivity. (d) The cross-sectional stratigraphy for lines A-A’ in (a).

The kerogen of the Duvernay shale has been classified as type II, with total organic
carbon (TOC) and VR values ranging from 0.1 to 11.1 and 0 to 2.0 (wt%), respectively. In
addition, from the northeast to the southwest, the age of the organic matter (i.e., kerogen)
increases gradually. The upper Duvernay Formation is typically located between 1000 and
5500 m below the surface. According to previous evaluations, the Duvernay Formation in
the Kaybob region is the most commercially significant shale formation in the WCSB [5,7,22].
Throughout the logging reaction, the Duvernay shale exhibits low gamma ray, moderate
acoustic log, and high formation resistivity (Figure 1c) [29].

The Kaybob part of the western shale basin contains the Duvernay shale, also known
as the Fox Creek shale, which is located close to the Fox Creek region (Figure 1a). This
study collected data on geology, completion, logging, testing, and fracturing treatments
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using the Geoscout database (https://www.geologic.com/products/geoscout accessed on
1 November 2022). One hundred and thirty horizontal wells were drilled and hydrauli-
cally fractured in the Duvernay formation (Figure 2). Experiments including mineralogy,
geophysics, and geochemistry, and geomechanics made use of core samples from thirteen
coring wells (Figure 2). A typical horizontal well had 39 fracturing phases and a horizontal
section that measured 2127 m. Moreover, the average volumes of proppant deposited and
fluid pumped were 5650 tons and 39,273 m3, respectively. The average fracture depth was
3317 m beneath the surface. As a consequence of fracturing stimulation, the initial one-year
shale gas production equivalent per stage ranges from 2.6 to 48 MMcf (i.e., the total of dry
gas plus condensate gas), with an average of 19.9 MMcf (Figure 2).
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Figure 2. Locations of fractured horizontal wells and coring wells. The black line denotes the
trajectory of horizontal wells. Coring wells are labeled with red color. The yellow circle represents
the magnitude of the one-year gas production equivalence per stage for horizontal wells, scaled by
production magnitude. The left black curve denotes the boundary line of the Duvernay formation.

3. Methodology

In this work, an integrated reservoir characterization technique was presented to
estimate the productivity of Duvernay shale. Integrated assessments of mineralogy, geo-
chemistry, petrophysics and geomechanics were used to undertake a full reservoir charac-
terization. Using X-ray diffraction mineralogy measurements, the lithology characteristics
of the shale were determined. The storage and flowability of the shale were determined
using a tight rock analysis. The geochemical parameters of Rock-Eval Pyrolysis described
the quality of organic materials. The rock’s compressibility was determined by uniaxial and
triaxial compression. MLR was used to quantify the relationship between shale productiv-
ity and reservoir features and to determine the most influential components contributing
to shale productivity. Finally, a model of shale productivity prediction was built. Figure 3
depicts the process flow.

https://www.geologic.com/products/geoscout
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3.1. Experimentally Based Reservoir Parameters

Mineralogy experiments. The X-ray diffraction process experiments were carried out
using a thin section apparatus and a field emission scanning electron microscope (FESEM).
The mineralogy of core materials was then identified using peak-profile and whole-pattern
fitting techniques. Finally, a semi-quantitative evaluation of the whole rock was performed
to determine the overall mineralogy and clay content (Vcl) of the bulk samples [22].

Petrophysics experiments. The effective porosity and grain density of crushed samples
were evaluated, and the bulk density of entire samples was determined. Interstitial water
was collected after the samples were weighed, placed in a retort, heated to the temperature
of formation, and cooled. The bulk and grain density, effective porosity (Φ), and gas satura-
tion (Sg) were eventually estimated based on pre- and post-retorting measurements [30].

Geochemistry investigations. For analyzing rock samples, a Rock-Eval instrument was
required. A sample was pyrolyzed at a predetermined temperature under nitrogen, the
produced hydrocarbons were identified, and CO and CO2 were continually detected by the
infrared detectors. The sample was then oxidized in air at the desired temperature while
infrared detectors continuously measured CO and CO2. Geochemical parameters were
derived from this data [11,31].

Geomechanics experiments. Uniaxial and triaxial compression tests were performed.
Under conditions of unlimited compression, the maximal compressive strength of the
core samples was determined. On vertical, 45 degree, and horizontal samples, triaxial
compression tests were performed in combination with ultrasonic velocity data. To calculate
the applied stress, it was necessary to measure the applied pressure and load with a
calibrated pressure gauge. The static Young’s modulus and Poisson’s ratio were then
immediately calculated during each test [32]. Using these two variables, the brittleness
index was computed [33–35].

After collecting these four types of core measurements from coring wells, the average
value of such a measurement was derived to indicate the distinct reservoir characteristic
of each coring well. The distribution of these reservoir properties was then calculated
using the sequential Gaussian stochastic (SGS) model. The SGS method is a stochastic
interpolation approach based on the Kriging algorithm that may be used to produce maps
containing information on sites (i.e., wells) with a certain reservoir feature. The technique
for its computation is thoroughly detailed in our prior paper [36].
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3.2. Multiple LINEAR Regression Approach

Given that various linked parameters have separate units, it is necessary to execute
data standardization to reduce the units’ disparities. For factors that are positively con-
nected to gas production, the following equation is employed for data standardization:

xi =
ai − amin

amax − amin
(1)

where xi is the ith standardized independent variable; ai is an original independent vari-
able at one site; and amax and amin are the maximum and minimum value among all “a”
values, respectively.

Moreover, for parameters that are negatively related to gas production, the equation
of data standardization is shown as:

xi =
amax − ai

amax − amin
(2)

MLR is a statistical approach that forecasts the distribution of a dependent variable
using a number of independent factors [37]. The objective of the MLR method is to establish
the linear connection between the independent and dependent characteristics that impact
a given event. MLR is an extension of classic least-squares regression since it employs
multiple explanatory factors.

y = β0 + β1x1 + · · · βixi + · · ·+ βnxn + ε, (3)

where y is the dependent variable; x1 . . . xn are independent variables; β0 is the y-intercept;
βi is the regression coefficient of the ith independent variables; ε is the model error, also
known as the residuals.

The determination coefficient (R2) and magnitude of a squared error (MSE) can be
used to evaluate the prediction performance of the MLR-based model by

MSE =
∑n

j=1 (yj − ŷj)
2

n
, (4)

R2 = 1 −
∑n

j=1 (yj − ŷJ)
2

∑n
j=1 (yj − yj)

2 , (5)

where yj is the jth parameter after normalization; ŷj is the predicted jth parameter; yj is the
mean value of predicted parameters; and n is the number of parameters.

Reservoir characteristics derived from core experiments, such as the mineral contents
and shale content (mineralogy), porosity, permeability, and gas saturation (petrophysics),
total organic carbon and production index (PI) (geochemistry), and the brittleness index
derived from Young’s modulus and Poisson’s ratio (mechanical properties), were the input
variables for this study (geomechanics). In addition, the output variable contains the initial
one-year equivalent gas production per stage [21]. Using MLR, the relationship between
the shale productivity and the reservoir parameters was quantified further.

4. Results
4.1. Characterization of Reservoir Properties
4.1.1. Mineralogy Characterization

The thin section findings of two typical cores are shown in Figure 4a,b. Figure 4a
depicts a quartzose siltstone that is fairly laminated and abundant in fossils and pyritic
and argillaceous material. Feldspars, silt-sized detrital quartz grains, and abundantly
comminuted bioclasts are also reported to exist within a densely packed, silty, clay-rich
matrix. It was also discovered that dolomites, pyrite, and marcasite partially replace fossils
and matrices. Sub-horizontal discontinuous laminae are represented by biological waste,



Energies 2023, 16, 1639 7 of 18

micas, clay minerals, and detrital silt. The fact that bitumen fills interparticle micropores
was also established, as measured by FESEM. Overall, the thin section includes 43% silt,
24% clay, and 24% carbonate, in that order.
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Figure 4. (a,b) Mineralogy features of two representative thin sections.

The interlaminated siltstone and silty mudstone shown in the small slice of Figure 4b
is another example. Large numbers of silt-sized detrital quartz and feldspar grains produce
siltstone laminae that are densely packed and cemented with calcite. In addition, mudstone
laminae, alternating pyrite, calcite, and Fe-dolomite/ankerite with a dense, clay- and
organic-matter-rich matrix are exhibited. Notable characteristics include the organization
of organic waste, micas, dolomite, and silt in discontinuous, sub-horizontal laminae. The
photograph with the higher magnification appears to be illuminated by polarized light that
has been reversed. The final mineralogy measurements for this thin section are as follows:
45% silt, 19% clay, and 14% carbonate.

X-ray diffraction measurements of core samples from thirteen coring wells were
collected, and the results are depicted in Figure 5 [29]. Quartz ranged from 32.4% to 50.9%
(43.2% on average) in the Duvernay shale of the investigated region, whereas clay ranged
from 14.2% to 34.5% (23.6% on average) and calcite ranged from 5.2% to 39.3% (14.3% on
average). As brittle minerals include quartz, feldspar, and calcite, we would estimate the
brittle mineral content (BMC) by analyzing the concentrations of these three minerals in
the region under investigation.
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Utilizing the SGS technique outlined in Section 3.1, the spatial characteristics of brittle
minerals and clay minerals were determined. The correlation’s one-year gas production
equivalency is depicted in Figure 6a,b. In contrast to clay minerals, brittle minerals have a
distinct distribution pattern. In the northeast sector of the investigated region, brittle min-
erals have low values that correlate to low one-year gas production equivalences, whereas
the other region has comparatively high values and high gas production equivalences. As a
result of the clay material’s opposing geographical properties, a high value is seen towards
the northeast. As one of the input variables, information on mineralogy will be utilized to
discover the parameters that affect shale productivity.
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Figure 6. Map view of (a) brittle minerals (%) (i.e., quartz plus feldspar and calcite minerals) and
(b) clay content (%). The grey circle represents the 1-year gas production equivalence per stage for
horizontal wells, scaled by production values.

4.1.2. Petrophysics Characterization

The FESEM observation first established the pore type of the Duvernay shale in the
study region. It is known that the Duvernay shale contains five basic types of pore structure,
including the organic pore, the intergranular pore, the intragranular pore, the dissolved
pore, and the grain edge pore [22]. Figure 7a illustrates the organic pore that encompasses
the organic material. The organic material reveals minute fractures. In the northeast section
of Figure 7b, the intergranular and intragranular pores of clay aggregates were illustrated.
In addition, Figure 7c depicts a series of holes that have been dissolved in calcite rocks. The
disintegration of these holes reveals the existence of organic substances. Figure 7d depicts
the grain edge pore near quartz crystals.

The findings of the petrophysical measurements of the tight rock analysis for
11 coring wells are displayed in Figure 8 [29]. The effective porosity of the shale ranged from
1.55 to 6.12 percent, with a typical value of 3.96 percent. The core’s permeability varied
from 0.26 nD to 335.6 nD, with a mean of 137.2 nD. The measured range of gas saturation
was between 28.98% and 78.6%, with an average of 59.74%.

In Figure 9a,b, the SGS approach was utilized to illustrate the spatial characteristics
of petrophysical parameters. It is demonstrated that the northern and eastern portions of
the region have low porosity and gas saturation, which is compatible with the area’s poor
one-year gas equivalent production. It is feasible that the region with the highest porosity
and gas saturation will have the highest gas output equivalent. Similarly, petrophysical data
is used as one of the input factors to discover the variables that impact shale productivity.
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4.1.3. Geochemistry Characterization

Eleven Rock-Eval Pyrolysis tests from coring wells were employed to collect the
geochemical results. The range of total organic carbon (TOC) was 2.32 to 5.0%, with a
mean of 3.86%. The maximum pyrolysis yield temperature (Tmax), free and adsorbed
hydrocarbons (S1), and kerogen pyrolysis (S2) varied from 0.05 to 4.23 mg/g, 1.89 to
9.94 mg/g, and 449 to 482 ◦C, respectively. The relative ranges of the hydrogen index
(HI), the oxygen index (OI), and the production index (PI) were 48.2–198.7, 0.76–16.04, and
0.02–0.64, respectively. The bulk of Duvernay shale belongs to the Type III gas-prone type
and is located in the condensate-wet gas & dry gas zone, based on relationships between
the geochemical features of coring wells (Figure 10a,b). The one-year shale gas equivalent,
which comprises dry gas and condensate gas, is therefore assigned to our target shale
production variable.
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It was demonstrated that the Duvernay shale was created predominantly in an oxygen-
free saltwater environment. In addition, such shale fell inside the window for gas generation
since the vitrinite reflectance varied between 1.8% and 4.1%. The SGS method was used
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to extract spatial geochemical characteristics from the research region. The findings are
depicted in Figure 11a,b. It can be observed that the northern region has low TOC and PI
values, which are suggestive of a poor equivalent o-year gas production. Other regions of
the analyzed area demonstrate high outputs, which are accompanied by elevated TOC and
PI levels.
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4.1.4. Geomechanics Characterization

The measurements of triaxial compression tests for coring wells are shown in
Figure 12 [33]. It was established that the axial strain and radial strain deviatory stresses
varied for distinct core samples. As a result, these core samples’ identified rock mechanical
characteristics are equally unique. Table 1 shows a statistical breakdown of the vertically
interpreted geomechanical data [29,30]. The static Young’s modulus was demonstrated
to have an average value of 25.68 GPa and a range of 19.51–41.26 GPa. The average static
Poisson’s ratio was 0.21, with a range of 0.17 to 0.25.
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Table 1. Statistics of the geomechanical measurements with vertical direction for coring wells.

Well Name Sample
Number

Depth
(m)

Static Young’s Modulus
(GPa)

Static Poisson’s
Ratio

Brittleness
Index

4-2-62-23
5 3615.28 21.20 0.23 0.41

11 3632.94 22.60 0.23 0.45
14 3639.62 21.90 0.23 0.43

4-29-64-20
FD1 3315.32 29.79 0.24 0.67
FD2 3326.36 24.29 0.23 0.48

16-36-63-25
FD1 3548.93 24.44 0.22 0.43
FD2 3550.4 22.74 0.21 0.32

13-1-64-26

361-8 3664.42 34.16 0.19 0.46
361-10 3671.3 24.51 0.18 0.18
361-5 3675.85 28.31 0.17 0.20
361-2 3681.66 41.26 0.19 0.63

12-27-64-23
1FD 3338.92 24.32 0.18 0.17
2FD 3343.97 25.75 0.2 0.33

16-33-62-24
6 3549.69 23.79 0.25 0.60

FD1 3555.73 19.51 0.19 0.13
FD2 3576.1 22.38 0.25 0.57

The Duvernay shale’s brittleness was then assessed using the brittleness index (BI),
which is based on both values [39,40]. The BI value for the sixteen core samples in Table 1
ranges from 0.13 to 0.67, with a mean of 0.40. Figure 13 illustrates the regional distribution
of the BI according to the SGS method. The southern area has a high BI value, which
indicates a substantial annual gas production. As a result, the BI value influences gas
output in a beneficial manner.
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4.2. MLR-Based Prediction Model

According to the geographical correlations between the one-year gas production
equivalence and the seven corresponding reservoir variables, the brittle mineral content,
porosity, gas saturation, total organic carbon, production index, and brittleness index are
six types of features with positive associations. Only the clay content had a negative
correlation with the creation of comparable gas. Equation (1) was applied to six positive
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traits in order to normalize the data, whereas Equation (2) was used with the negative
features. The MLR data-mining algorithm was then executed using Equation (3) through
Equation (5). Finally, the outcomes of data mining for shale productivity using MLR were
obtained. The weight coefficients of each input variable were computed, and the results are
reported in Table 2.

Table 2. The MLR results for shale gas production equivalence in the studied region.

Type Variables Weight Coefficient Rank

Input

Mineralogy Brittle mineral content (BMC) 0.073 7
Clay content (Vcl) 0.161 3

Petrophysics Porosity (Φ) 0.136 4
Gas saturation (Sg) 0.188 2

Geochemistry Total Organic Carbon (TOC) 0.115 5
Production index (PI) 0.229 1

Geomechanics Brittleness index (BI) 0.098 6

Output one-year gas production equivalence

It is notable that the PI, Sg, Vcl, F, TOC, BI, and BMC input parameters are listed in
descending order. Shale geochemistry, petrophysics, mineralogy, and geomechanics are,
therefore, essential for shale production. Using these input characteristics, a prediction
model of the one-year shale gas output per stage was developed using an MLR-based
technique. Figure 14 depicts the distribution of predicted shale output equivalents. It can
be demonstrated that the predicted shale gas production per stage during the following
12 months closely matches the actual production in this region, confirming the accuracy
of our prediction model. This strategy can guide the future selection of horizontal well
drilling locations and result in the efficient and cost-effective exploitation of shale resources.
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5. Discussions
5.1. Data Quality

The core experiment data served as the primary input for the MLR-based prediction.
The correctness of this data is, in part, dependent on how effectively the operators recorded
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and comprehended the linked experiments. In addition, the depth of the straight well’s
core sample is essential since only measurements taken at the level of the high-quality
shale layer can correctly reflect the true properties of shale reservoirs. In addition, as
indicated in Section 3.1, the average value of such a measurement is obtained after collecting
four distinct types of core measurements from coring wells to reflect the unique reservoir
attributes of each coring well. Due to the diversity of the shale or other geological factors,
it is vital that the data quality of the average value precisely reflect the peculiarities of this
coring well.

Similar to the input data, the output data was produced using statistical data from
the comparable one-year shale gas production per stage for each horizontal well. The
recordings produced by field operators have an effect on the data’s quality. In addition, a
number of operational factors, such as the shut-in, well testing, and other field operations,
might influence this data [39]. Some quantitative and subjective factors restrict the overall
quality of the employed data. In order to increase the data quality of this approach, future
research would need include additional information.

5.2. Reservoir Properties

This research quantifies the effects of brittle mineral content, clay content, porosity,
gas saturation, total organic carbon, production index, and brittleness index on shale pro-
ductivity. Only data from thirteen wells were available for the area under examination, and
the SGS method was used to estimate the spatial features of these properties. Additional
information is required to properly appreciate these characteristics in future investigations
and to define the reservoir parameters in their entirety. For example, reservoir charac-
teristics might be obtained using the findings of a 3D seismic reflection interpretation,
particularly in areas without well drilling [41–43]. Using the horizontal resolution of 3D
seismic interpretation, the vertical resolution of logging interpretation, as well as core
experiments [22], it is possible to more precisely define the reservoir’s characteristics.

In this study, the SGS approach was used to generate a spatial picture of reservoir
characteristics. We also compared it against a variety of interpolation methods, including
the moving average, convergent interpolation, isochore interpolation, minimum curvature,
and Kriging interpolation. Using the SGS method, the findings revealed a tight link between
the regional features of shale output and the spatial distribution of reservoir properties.

In addition, the six input parameters (brittle mineral content, porosity, gas saturation,
total organic carbon, production index, and brittleness index) were the parameters selected
following the varied screening. Permeability, for instance, had a positive relationship with
porosity; hence, it was not considered an input variable in the prediction model.

5.3. Data-Mining Methods

Recently, a range of machine-learning approaches has been used for data mining in or-
der to determine the elements influencing shale production. These techniques often employ
multiple linear regression, neural networks, and tree-based methods. Neural networks
and tree-based techniques often require a large amount of training and testing data for im-
proved prediction performance [38,43–47]. In this field scenario, such methodologies were
unable to construct a substantially accurate model for estimating the shale gas production
from a dataset of 130 wells. In this paper, we exclusively employed the MLR method. In
future projects, we will include more data from new horizontal wells and experiment with
sophisticated computational approaches to enhance the performance of our predictions.

Nonetheless, the MLR approach performs significantly better in terms of prediction
when insufficient data is available [37]. On the basis of the findings of Section 4.2, it
is possible to infer that the MLR-based prediction model is credible since the projected
one-year shale gas output per stage nearly matches the actual output. Future studies will
develop a huge number of datasets and investigate more machine-learning approaches to
provide accurate predictions. In general, this paper’s methodology may be used to direct
the development of unconventional shale resources in various shale basins.
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5.4. Regional-Level Assessment

The distinctive patterns of shale gas production in the studied region are shown
in Figure 2, in which the production is influenced by many reservoir features. For the
regional-level assessment of such a Duvernay shale resource near Fox Creek, previous
researchers used geological or operational parameters to predict shale productivity in this
region [48,49]. This work, however, conducted a comprehensive, multi-data analysis of
reservoir characterization and proposed an integrated approach to reservoir character-
ization to evaluate the shale productivity of Duvernary shale. This work will lay the
foundation for the future efficient development of shale gas resources in this region.

6. Conclusions

In this work, the gas output of the Duvernay shale play is determined through a
comprehensive evaluation of many experimental data pertaining to reservoir properties.
MLR is utilized to assess the relationship between annual output and reservoir param-
eters. Appropriate conclusions are drawn: (1) according to mineralogy data, the most
abundant minerals in Duvernay shale are quartz, clay, and calcite; (2) the average values
for effective porosity and permeability are 3.96% and 137.2 nD, respectively, whereas the
average amount of total organic carbon (TOC) is 3.86%. The examined Duvernay shale
was predominantly deposited in a gas-generating timeframe; (3) according to four triaxial
compression investigations, the static Young’s modulus ranges from 19.51 to 41.26 GPa,
whereas the static Poisson’s ratio ranges from 0.17 to 0.25; (4) the MLR method identifies
the factors governing shale productivity, including PI, Sg, Vcl, F, TOC, BI, and BMC; and
(5) the MLR-based prediction model accurately anticipates the output of shale gas. This
research may be extended to other shale reservoirs to aid in the selection of optimal well
locations, resulting in the effective exploitation of shale resources.
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Nomenclature

BI brittleness index
BMC brittle mineral content
ESB Eastern Shale Basin
FESEM field emission scanning electron microscope
HI hydrogen index
MLR multiple linear regression
OI oxygen index
PI production index

https://www.geologic.com/geoscout/
https://www.geologic.com/geoscout/
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S1 adsorbed hydrocarbons
S2 kerogen pyrolysis
Sg gas saturation
SGS sequential Gaussian stochastic
Tmax maximum pyrolysis yield temperature
TOC total organic carbon
Vcl clay content
VR vitrinite reflectance
WCSB Western Canadian Sedimentary Basin
WSB Western Shale Basin
Φ effective porosity
ai an original independent variable at one site
amax maximum value among all “a” values
amin minimum value among all “a” values
n number of parameters
xi ith standardized independent variable
Y dependent variable
yj jth parameter after normalization
yj mean value of predicted parameters
ŷj predicted jth parameter
β0 y-intercept
βi regression coefficient of the ith independent variables
ε model error
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