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Abstract: Hydraulic fracturing is a complex nonlinear hydro‑mechanical coupled process. Accurate
numerical simulation is of great significance for reducing fracturing costs and improving reservoir
development benefits. The aim of this paper is to propose an efficient numerical simulation method
for the fracturing‑to‑production problem under a unified framework that has good convergence and
accuracy. A hydro‑mechanical coupled fracturing model (HMFM) is established for poroelastic me‑
dia saturated with a compressible fluid, and the local characteristics of the physical field are fully
considered. Each fracture is explicitly characterized using the discrete fracture model (DFM), which
can better reflect the physical characteristics near fractures. Based on the extended finite element
method (XFEM) and the Newton–Raphson method, a fully coupled approach named Unified Ex‑
tended Finite Element (UXFEM) is developed, which can solve the nonlinear system of equations
that describe the solution under a unified framework. UXFEM can accurately capture the local phys‑
ical characteristics of different physical fields on the orthogonal structured grids. It realizes the grid‑
fracture decoupling, and fractures can propagate in any direction, which shows greater flexibility
in simulating fracture propagation. The fully coupled approach can better reflect the essential re‑
lationship between pressure, stress, and fracture, which is beneficial to studying hydro‑mechanical
coupled problems. To validate the UXFEM, UXFEM is compared with the classical KGDmodel, ana‑
lytic solution, and COMSOL solution. Finally, based on UXFEM, the interference phenomenon and
fracturing‑to‑production study are carried out to prove the broad practical application prospect of
this new fully coupled approach.

Keywords: hydro‑mechanical; fracture propagation; production; fully coupled; stress interference

1. Introduction
Fracturing, as an effective technicalmeans, can significantly improve the development

efficiency of low‑permeability and ultra‑low‑permeability reservoirs, such as shale and
tight sandstone. The reservoir often develops various discontinuous structures such as
natural fractures, faults, and caves, resulting in significant multi‑scale characteristics of
the reservoir [1–3]. Moreover, all physical processes in the subsurface are highly nonlinear
and complexmultiphysics problems [4,5], which poses considerable challenges to studying
fracture propagation and other related research.

As the most traditional research method, experiments have played a considerable
role in promoting the study of fracture propagation [2,3,6–10]. However, the limitations
of physical simulation are also prominent, especially for complex multiphysics coupling
problems. The experimental cost is relatively high, and the results are often obtained at
the laboratory scale, which cannot accurately reflect the underground situation. Further‑
more, some complex problems are often unable to be experimentally studied. In this con‑
text, numerical simulation technology is applied to the design before fracturing, monitor‑
ing during fracturing, and post‑fracturing dynamic production studies. Many scholars
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have conducted extensive and meaningful research on the fracture propagation problem
in petroleum engineering and proposed some numerical simulationmethods. Thosemeth‑
odsmainly include the finite elementmethod (FEM) and its derivativemethods, the bound‑
ary element method (BEM), and the discrete element method (DEM).

FEM is a flexible, effective, and widely used numerical method [11–17]. Fractures are
highly coupled with grids, and fractures must be set along the boundary of mesh grids.
Therefore, fractures must propagate along the grid boundary or continuously reconstruct
mesh grids, which requires tremendous calculation. At the same time, the shape function
of FEM is continuous. It is often difficult to accurately describe various discontinuities
when describing the fluid pressure and the solid displacement fields. Thus, it is often
necessary to use local mesh refinement to achieve high‑accuracy calculations, which also
increases the calculation burden. The characteristics of fracture geometry and physical
field are challenging to characterize efficiently and accurately in traditional FEM, and the
limitations of FEM are significant.

Some FEM‑based extension methods have been proposed successively, such as node‑
splitting FEM [18,19], generalized FEM [20,21], and XFEM [22–27]. Node‑splitting FEM
allows FEM to describe the fracture width simply. Still, the fracture propagation path
must follow the grid boundary, which cannot accurately describe the fracture propaga‑
tion and interaction. XFEM is a method based on the partition of unity method (PUM),
which uses enrichment functions to capture the physical characteristics of fracture walls
and fracture tips. XFEM is an efficient method for solving discontinuous problems, which
canwell solve strong andweak discontinuity problems. The core idea is to capture various
discontinuities with the help of enrichment functions constructed based on analytical solu‑
tions or asymptotic analytical solutions, and fractures and grids are independent of each
other. XFEM, based on the discrete fracture model, can explicitly characterize each frac‑
ture. Many scholars have constructed enrichment functions to describe fracture surfaces,
fracture tips, and intersecting fractures based on physical field characteristics and analyt‑
ical solution characteristics, which can efficiently deal with complex fracture mechanical
behavior. However, most of the current XFEMmodels cannot accurately consider the fluid
flow and exchange between fractures and matrix, usually ignoring the fluid leak‑off term
during fracturing stimulation or replacing it with an empirical leak‑off equation, which
cannot meet the simulation requirements. Moreover, XFEM also has considerable trou‑
bles in the numerical simulation of complex fracture flow, and it is difficult to achieve a
fully coupled approach under a unified numerical framework.

BEM [28–34] is a dimensionality reduction researchmethod based onGreen’s formula.
It can calculate fracture aperture and stress more accurately and conveniently than FEM
and is suitable for simulating fracture propagationwith complex topologies. However, this
method faces two main problems. One is that it cannot accurately describe the influence
of fractures on fluid/solid physical fields. The other one is that it is difficult to consider the
leak‑off during fracture propagation [35,36].

DEM [37] is a numerical simulationmethod specially used to solve the problem of dis‑
continuous media. It can deal with fracture intersecting, branching, merging, and kinking
problems. However, calibrating/updating particle properties remains a complex technical
challenge. The particle number needs to be large enough to achieve sufficient accuracy,
which prevents this technique from being widely used in large‑scale models [36].

Different methods have different advantages and different defects. In order to syn‑
thesize their advantages and compensate for each other’s weaknesses, some hybrid nu‑
merical simulation methods are also widely used. Recently, Li et al. [36,38–40] developed
a meaningful thermal/hydro‑mechanical (THM) model. They solved it using the hybrid
numerical simulation method, realizing the two‑dimensional and three‑dimensional sim‑
ulation of the construction of a complex fracture network. Settgast et al. [41] developed
a fully coupled finite element/finite volume approach for simulating field‑scale hydrauli‑
cally driven fractures in three dimensions. Guo et al. [42] adopted the mixed finite ele‑
ment/displacement discontinuity method to solve for the spatial–temporal evolutions of
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pore pressure and in situ stress because of parent‑well production and injection and mod‑
els the fracture propagation during infill‑well completion based onupdated heterogeneous
in situ stresses. Recently, a coupled simulation strategy combining the embedded discrete
fracture method (EDFM) and the XFEM has been developed to simulate the fluid‑driven
fracture propagation process in porous media. EDFM and XFEM are used to simulate
fracture‑related fluid mechanics and solid mechanics, respectively, with information ex‑
changed under the iterative numerical coupling scheme, and it realizes two‑dimensional
and three‑dimensional hydraulic fracturing fracture propagation simulation [43–45]. Liu
et al. [46] developed a hydro‑mechanical model for non‑planar hydraulic fracture propaga‑
tion in ductile formations, which is solved by the hybrid extended finite element/finite vol‑
ume method. Zhang et al. [47] combined the extended finite element/phase‑field method
to solve the discontinuous and continuous hydraulic fracturing formulations.

However, there are still many insurmountable problems in developing realistic sim‑
ulation tools for the hydraulic fracturing process. The problems of numerical simulation
of fracture propagation are mainly reflected in the contradiction between calculation effi‑
ciency and calculation accuracy, reflected explicitly in several aspects: (1) There are strict
requirements for grid division; (2) The fracture propagation path is not arbitrary, and the
fracture morphology of simulation results is distorted; (3) Matrix flow, fracture flow, and
solid deformation coupling are challenging, and the leak‑off term during the fracturing
process is often ignored or simplified; (4) The nonlinearity is strong, and the fully coupled
approach is scarce; (5) There are still risks and challenges in the convergence and stabil‑
ity of numerical calculation. The reasons for this contradiction are complex and diverse,
such as rock heterogeneity, unclear mechanism of fracture propagation, and aggravation
of heterogeneity caused by the intersection of fractures and artificial stimulation measures.
In recent years, some new methods and models have been proposed and achieved good
results, such as Peridynamics [48–51].

This paper uses the discrete fracturemodel (DFM) to characterize each fracture [52–56].
A fully coupled numerical approach for solving nonlinear hydro‑mechanical coupledmod‑
els is established based on XFEM. In this method, the solid rock deformation obeys quasi‑
static linear elasticity, characterized by the stress balance equation. Thematrix flow follows
Darcy’s law, and the fracture fluid flow obeys the cubic law. In the derivation, this paper
uses the normal flow velocity discontinuity term in the weak form of matrix and fracture
flow equations to automatically characterize the fluid leak‑off term. This paper uses XFEM
to compile a fully coupled UXFEM solver for the abovementioned HMFM. This approach
solves the fluid pressure field and the solid displacement field under the same framework,
realizing the unification and full coupling of the model and solving.

According to the different physical characteristics of solid deformation and fluid flow,
UXFEMadopts different enrichment functions and successfully realizes the numerical sim‑
ulation of hydro‑mechanical fracture propagation. The advantages of XFEM are entirely
inherited in UXFEM. Fractures are decoupled from mesh grids, and fractures are allowed
to propagate in any direction and can be deflected at any angle without mesh reconstruc‑
tion or other special processing. In this paper, the maximum circumferential tensile stress
criterion is used as the fracture propagation criterion, the displacement‑based method is
used to calculate the stress intensity factors (SIFs), and fractures always propagate along
the direction of themaximum circumferential stress. WhenUXFEM solves nonlinearmath‑
ematical models, it adopts Newton–Raphson iterative linearization to deal with nonlinear
systems. With the advantages of XFEM, UXFEM can achieve the balance between calcu‑
lation efficiency and accuracy to a certain extent, which has practical significance for the
actual engineering‑scale fracturing simulation research.

2. Unified Extended Finite Element Method
2.1. Fracture Description

This paper uses pair of orthogonal level set functions f (x), g(x) to describe each frac‑
ture explicitly, and some enrichment functions are constructed based on level set func‑
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tions. The fracture surface is defined as f (x) = 0, and the fracture tip is defined as
f (x) = 0, g(x) = 0.

The core of XFEM is to capture the discontinuity of the physical field by using enrich‑
ment functions with discontinuous properties and enriched degree of freedoms (DOF) on
the basis of FEM, whichmakes the description of the physical field characteristics indepen‑
dent of grids, bringing a lot of conveniences. The fracture is a strong discontinuity for the
displacement field, while the fracture is a weak discontinuity for the fluid pressure field.
That means the pressure on the two sides of the fracture is continuous, but the pressure
derivative is discontinuous. In this paper, the set of all nodes is denoted as Nall , and the
enriched nodes, including surface nodes and tip nodes, are denoted as Ns and Nt, respec‑
tively (Figure 1).
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2.2. Solid Displacement Field Approximation and Enrichment Functions
In the XFEM framework, the displacement approximation is written as:

u(x) = ∑
i∈Nall

Ni(x)ui + ∑
j∈Ns

Nj(x)(H( f (x))− H(( f (xj)))aj + ∑
q∈Nt

Nq(x)
4

∑
l=1

(Fl(x)− Fl(xq))bl
q (1)

where Ni(x), Nj(x), Nq(x) are standard FEM shape function; ui is standard displacement
degrees of freedom (DDOF) for nodes Nall ; an

j , bm
ql are added enriched DDOFs for nodes Ns

and Nt respectively; H(·) is the Heaviside step function; Fl(·) is fracture tip displacement
enrichment function.

For expression brevity, we combine the last two terms in Equation (1) and rewrite
Equation (1) as:

u(x) = ∑
i∈Nall

Ni(x)ui + ∑
j∈Nenr

Ψj(x)ũj = N ·U (2)

where Nenr = {Ns, Nt × 4}; Ψj and ũj denote enrichment functions and its added enriched
DDOFs;N is the combination of standard FEM shape function Ni and enrichment function
Ψj; and U is the combination of standard DDOFs and added enriched DDOFs.

For the element completely penetrated by the fracture, the displacement field is dis‑
continuous on both sides, which is a strong discontinuity. The Heaviside step function is
used to enrich the surface nodes.

H( f (x)) =
{

1, f (x) ≥ 0
0, f (x) < 0

(3)
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For fracture tips, the stress has the singularity of O(r−
1
2 ). For isotropic linear elas‑

tic materials, tip nodes can be enriched by the fracture tip displacement enrichment func‑
tion [22,57,58]:

[Fl(r, θ), l = 1, 2, 3, 4] = [
√

r sin
θ

2
√

r cos
θ

2
√

r sin
θ

2
sin θ

√
r cos

θ

2
sin θ] (4)

where r, θ are polar coordinates with origin at the fracture tip and x1 axis oriented into the
body and parallel to the fracture surfaces (Figure 2).

Energies 2023, 16, x FOR PEER REVIEW 5 of 23 
 

 

For the element completely penetrated by the fracture, the displacement field is dis-
continuous on both sides, which is a strong discontinuity. The Heaviside step function is 
used to enrich the surface nodes. 

1,        ( ) 0
( ( ))

0,       ( ) 0
f

H f
f

≥
=  <

x
x

x
 (3)

For fracture tips, the stress has the singularity of 
1
2( )r

−
Ο . For isotropic linear elastic 

materials, tip nodes can be enriched by the fracture tip displacement enrichment function 
[22,57–58]: 

[ ( , ),  1, 2,3,4] [ sin   cos   sin sin   cos sin ]
2 2 2 2lF r l r r r rθ θ θ θθ θ θ= =  (4)

where ,  r θ  are polar coordinates with origin at the fracture tip and 1x  axis oriented into 
the body and parallel to the fracture surfaces (Figure 2). 

 
Figure 2. Polar coordinate of a fracture tip. 

2.3. Fluid Pressure Field Approximation and Enrichment Functions 
In the XFEM framework, the pressure approximation is written as: 

( ) ( ) ( )( ( ) ( )) ( )( ( ) ( ))
all s t

m
i i a s s a a b t t b b

i N a N b N
p N p N x x p N x x pφ φ φ φ

∈ ∈ ∈

= + − + −   x x x x  (5)

where ( ),  ( ),  ( )i a bN N Nx x x  are standard FEM shape function; ip  is standard pressure de-
grees of freedom (PDOFs) for node a llN ; ,  n m

j qla b  are added enriched PDOFs for nodes 

sN  and tN  respectively; ( )sφ ⋅  is the modified level set absolute value function; ( )tφ ⋅  is 
fracture tip pressure enrichment function. 

For expression brevity, we combine the last two terms in Equation (5) and rewrite 
Equation (5) as: 

( ) ( ) ( )
all enr

i i j j
i N j N

p N p p
∈ ∈

= + Φ = ⋅  x x x H P  (6)

where { },enr s tN N N= ; jΨ  and ju  denote enrichment functions and their added en-
riched PDOFs; H  is the combination of standard FEM shape function iN  and enrich-
ment function jΦ ; and P  is the combination of standard PDOFs and added enriched 
PDOFs. 

For the fracture surface, the pressure is continuous, but the pressure gradient is dis-
continuous. Moës [59] uses the modified level set absolute value function to capture the 
fluid pressure characteristics, avoiding the appearance of blending elements. 

Figure 2. Polar coordinate of a fracture tip.

2.3. Fluid Pressure Field Approximation and Enrichment Functions
In the XFEM framework, the pressure approximation is written as:

p(x) = ∑
i∈Nall

Ni(x)pi + ∑
a∈Ns

Na(x)(ϕs(x)− ϕs(xa)) p̃a + ∑
b∈Nt

Nb(x)(ϕt(x)− ϕt(xb)) p̃m
b (5)

where Ni(x), Na(x), Nb(x) are standard FEM shape function; pi is standard pressure de‑
grees of freedom (PDOFs) for node Nall ; an

j , bm
ql are added enriched PDOFs for nodes Ns

and Nt respectively; ϕs(·) is the modified level set absolute value function; ϕt(·) is fracture
tip pressure enrichment function.

For expression brevity, we combine the last two terms in Equation (5) and rewrite
Equation (5) as:

p(x) = ∑
i∈Nall

Ni(x)pi + ∑
j∈Nenr

Φj(x) p̃j = H · P (6)

where Nenr = {Ns, Nt}; Ψj and ũj denote enrichment functions and their added enriched
PDOFs;H is the combination of standard FEM shape function Ni and enrichment function
Φj; and P is the combination of standard PDOFs and added enriched PDOFs.

For the fracture surface, the pressure is continuous, but the pressure gradient is dis‑
continuous. Moës [59] uses the modified level set absolute value function to capture the
fluid pressure characteristics, avoiding the appearance of blending elements.

ϕs(x) = ∑
j

∣∣ f (xj)
∣∣Nj(x)−

∣∣∣∣∣∑j
f (xj)Nj(x)

∣∣∣∣∣ (7)

According to the study by Chen et al. [60], the pressure gradient has the singularity
of O(r−

1
2 ). A new enrichment function was constructed based on the asymptotic analytic

solution [61–63].

ϕt(x) =
√

r cos
θ

2
(8)
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2.4. XFEM Discretization
This paper only considers the quasi‑static process with infinitesimal strain in porous

media, which is homogeneous, isotropic, and linearly elastic. The porous medium do‑
main Ω, with boundary Γ, Γt, Γu (Figure 3). The fracture Γ f consisting of two surfaces is
embedded in the domain Ω. In this paper, fluid flow and matrix deformation are coupled
based on poroelasticity [64], matrix and fracture flow are coupled based on discontinu‑
ous flow on the fracture surface, and fracture deformation and fracture flow are coupled
using the cubic law. The coupled governing equations are Equation (A4) and (A21) in
Appendix A. For the detailed formula derivation, please refer to the Appendix A.
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According to the basic theory of XFEM, the fracture opening can be expressed as:

w f = JuK · n f =

(
∑

i∈Ns

Ni(x)ai + 2 ∑
q∈Nt

√
rNq(x)bq

)
· n f = JNK ·U · n f (9)

where JuK denotes the displacement jump across the fracture; ai and bq are discontinuous
enriched DDOFs; JNK denotes the discontinuous shape function matrix.

By substituting the displacement and pressure approximation expressions into the
weak form of the governing equations, the discrete calculation format can be obtained
as follows:

0 0 0 0
0 0 0 0

Muu Muũ Mpp Mpp̃
Mũu Mũũ Mp̃p Mp̃ p̃




.
U
.

Ũ
.
P
.
P̃

+


Kuu Kuũ Kpp Kpp̃
Kũu Kũũ K p̃p K p̃ p̃

0 0 KKpp KKpp
0 0 KKpp KKpp




U
Ũ
P
P̃

 =


F1
F̃1
F2
F̃2

 (10)

Equation (10) can be simplified to the following form:[
0 0
Mu Mp

][ .
U
.
P

]
+

[
Ku Kp
0 KKp

][
U
P

]
=

[
F1
F2

]
(11)

where
Ku =

∫
Ω
BT : C : BdΩ

Kp = −
∫

Ω
BTαςTHTdΩ −

∫
Γ f

JNKn fHTdΓ

F1 =
∫

Γt
N · σdΓ −

∫
Ω
N · (σ0 + αp0I)dΩ



Energies 2023, 16, 1601 7 of 23

Mu =
∫

Ω
αρHςBdΩ +

∫
Γ f

ρHn f JNKTdΓ

Mp =
∫

Ω
ρQ−1HHTdΩ +

∫
Γ f

ρw
Kl
HHTdΓ

KKp =
∫

Ω

ρkm

µ
DTDdΩ +

∫
Γ f

ρw3

12µ
DsDs

TdΓ

F2 =
∫

Γ f

HQmdΓ −
∫

Γq
HqdΓ

ς = [1, 1, 0]

N = [NuNũ]
T

, B = [∇Nu ∇Nũ]

H = [Np Np̃]
T

, D = [∇Np ∇Np̃]

where Hs is the total shape function at the point source, Ds is the directional derivative
of Hs along the tangential direction of the fracture, i.e., Ds = ∂Hs/∂s. The superscripts
“u” and “ũ” correspond to standard DDOFs and enriched DDOFs, respectively, and the
superscripts “p” and “p̃” correspond to standardPDOFs and enrichedPDOFs, respectively.
Equation (11) is a set of coupled nonlinear equations, which are solved by the Newton–
Rapson method.

3. Fracture Propagation and Solution Strategy
3.1. Fracture Propagation Criterion

In practice, the hydraulic fracture usually propagates in a mixed mode. The maxi‑
mum circumferential stress criterion is adopted as the fracture propagation criterion. It
is assumed that the fracture propagates when the effective stress intensity factor Ke along
that direction reaches the fracture toughness KIC, and it will deflect by an angle of [65]:

θ = 2arctan

 −2KI I/KI

1 +
√

1 + 8(KI I/KI)
2

 (12)

The effective stress intensity factor Ke is expressed as:

Ke = cos
θ

2

(
KI cos2 θ

2
− 1.5KI I sin θ

)
≥ KIC (13)

The displacement‑based approach is used to calculate the SIFs. KI and KI I are de‑
termined by the discontinuous displacement of the fracture tip element. The relational
equation is [66]. KI =

0.806
√

πEDn
4(1−ν2)

√
r

KI I =
0.806

√
πEDs

4(1−ν2)
√

r

(14)

where E is Young’s modulus, ν is Poisson’s ratio, Dn and Ds are normal and tangential
discontinuous displacements of fractures. It should be noted that the calculation models
in this paper are all under the plane strain condition.

3.2. HMFM Fracturing Simulation Process
Fracture propagation is a highly nonlinear hydro‑mechanical coupled process. In this

paper, the fully coupled approach is implemented. The fully coupled approach forms a sin‑
gle large system of equations that solve for all of the displacement/pressure unknowns at
once. Figure 4 summarizes the fully coupled implementation of the solution of the HMFM.
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4. Results and Discussions
4.1. Validation 1: Comparison between UXFEM and KGD Model

The KGD model is one of the most commonly used fracturing models. The viscosity‑
dominated hydraulic pressure is calculated using the approximate solution of the KGD
model derived by Detournay [67]. Table 1 lists the parameters used by the model. The
fracture length and width at the wellbore position are compared with those calculated
by UXFEM and plane strain KGD model, as shown in Figure 5. It can be seen that the
evolution of fracture length and width calculated by UXFEM in this paper can well fit the
KGD model. The calculation error increases with the fracture length because the infinite
reservoir assumption cannot be satisfied with the fracture propagation.

Table 1. Parameters for validation 1.

Parameters Value Unit

Young modulus 60 GPa
Poisson ratio 0.25 /

Fracture toughness 1.2 MPa·m0.5

Fluid viscosity 50 mPa·s
Injection rate 0.01 m2/s

Convergence tolerance 0.01 /
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4.2. Validation 2: Comparison of KI and KII in Numerical Simulation and Analytical Solution
Rice [68] deduces the analytical expressions of the SIFs at the fracture tip under hy‑

drostatic pressure and horizontal stress. For the single fracture propagation in an infinite
domain, the SIFs are expressed as: KI =

√
πL f

[
p −

(
σH sin2 β + σh cos2 β

)]
KI I =

√
πL f
2 [σH − σh] sin 2β

(15)

where L f is the half length of the fracture; p is hydrostatic pressure in the fracture; S is the
inclination angle of fracture and maximum horizontal principal stress. σH and σh are the
maximum horizontal stress and the minimum horizontal stress, respectively.

In order to approximate the infinite formation and eliminate the influence of the bound‑
ary, the model size is set to 200 × 200 m, the initial half‑length of the fracture is 5 m, and
the domain is discretized into structured grids (159 × 159). Table 2 lists the parameters
used by the model. Calculate the SIFs (KI and KI I) of different inclination angles, and the
results are compared, as shown in Figure 6. By comparison, the SIFs calculated by UXFEM
in this paper can well fit the analytical solution. Themaximum error of KI is not more than
2%, which proves the method’s accuracy.

Table 2. Parameters for validation 2.

Parameters Value Unit

Young’s modulus 60 GPa
Poisson’s ratio 0.25 /

Maximum horizontal in‑situ stress 60 MPa
Minimum horizontal in‑situ stress 55 MPa

Hydrostatic pressure applied to the fracture surface 65 MPa
Half‑length of the fracture 5 m
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4.3. Validation 3: Comparison between UXFEM and COMSOL Multiphysics® 5.6
The purpose of this section is to show the accuracy and feasibility of our fully coupled

approach. We consider a quasi‑static mud loss case of a shale oil reservoir. The simulation
parameters are shown in Table 3. The geometry (Figure 7) is built to carry out the simu‑
lation process. The domain is discretized into 25,860 unstructured grids in COMSOL and
3481 structured grids in UXFEM. Figure 8 shows the displacement field, effective stress
component σ′

y, and pressure field calculated by COMSOL and UXFEM. In Figure 8, the
results calculated by UXFEM and COMSOL are in good agreement. From Figure 8a,d, the
displacement at the injection point is the largest, implying that the fracture width is the
largest at the injection point. Figure 8b,e shows that there is an obvious stress concentra‑
tion at the fracture tip. Figure 8c,f shows that the pressure is higher along the fracture, and
a small low‑pressure area appears around the tips. Figure 9 shows that fracture widths
calculated by UXFEM and COMSOL can be matched. Calculating the L2 error norm:

∥∥∥F − Fh
∥∥∥

L2
=

∫
Ω

(F − Fh)dΩ

0.5

(16)

where Fh is the COMSOL solution and F is the UXFEM solution.
The displacement L2 error, effective stress component σ′

y L2 error, and pressure L2
error are 0.0083%, 0.041%, and 0.078%, respectively. A very good agreement between the
results proves the effectiveness and accuracy of this fully coupled approach.

Table 3. Parameters for Validation 3.

Parameters Value Unit

Initial reservoir pressure 10 MPa
Pressure at injection point 25 MPa

Maximum horizontal in‑situ stress 20 MPa
Minimum horizontal in‑situ stress 15 MPa

Young’s modulus 40 GPa
Poisson’s ratio 0.2 /

Matrix permeability 1 × 10−18 m2

Initial matrix porosity 0.15 /
Bulk modulus of the solid 50 GPa
Bulk modulus of the fluid 2.5 GPa

Fluid density 1000 kg/m3

Fluid viscosity 10 mPa·s
Biot coefficient 0.85 /
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y and pressure at 1000 s,

(a) Displacement distribution calculated by COMSOL, (b) Effective stress component σ′
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calculated by COMSOL, (c) Pressure distribution calculated by COMSOL, (d) Displacement distri‑
bution calculated by UXFEM, (e) Effective stress component σ′

y distribution calculated by UXFEM,
(f) Pressure distribution calculated by UXFEM.
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4.4. Case Study1: Propagation of Three Parallel Fractures
A 200 m × 200 m two‑dimensional model is established to study the fracture deflec‑

tion propagation caused by the stress shadow effect. The initial half‑length of the fracture
was 5 m, the distance between the three fractures was 14 m or 21 m, and the midpoints of
the three fractures are the injection points. The injection rate at injection points is 0.01 m2/s.
Other parameters are listed in Table 4.

Table 4. Parameters for case study.

Parameters Value Unit

Initial reservoir pressure 50 MPa
Maximum horizontal in situ stress 60 MPa
Minimum horizontal in situ stress 55 MPa

Matrix permeability 1 × 10−17 m2

Initial matrix porosity 0.1 /
Initial fracture length 10 m

Injection rate at injection points 0.01 m2/s
Bulk modulus of the fluid 2.5 GPa

Fluid density 1000 kg/m3

Fluid viscosity 50 mPa·s
Fracture toughness KIC 5 MPa·m0.5

Biot coefficient 0.85 /

Thefinalmorphology of the simulated fracture, displacement field, and effective stress
component σ′

y are shown in Figure 10. For themodel of three fractures, themiddle fracture
is squeezed and suppressed by the same on both sides. The middle fracture almost propa‑
gates along a straight line, and its length is significantly shorter than the other two fractures.
Due to the stress interference between fractures, the side fractures deflect in the opposite
direction, away from the middle fracture [69]. Fractures will actively choose to propagate
along the path with the least resistance. As the fracture spacing is smaller, the fracture de‑
flection angle is larger, indicating that the fracture spacing is an important factor affecting
the stress interference intensity.
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4.5. Case Study2: Propagation in Multiple En Échelon Fractures
En échelon fractures are common in geology and are caused by the mechanical in‑

teraction between their near‑tip stress fields [36,70]. To study the evolution of En éche‑
lon fractures, a 200 × 200 m geometry model is built. The model contains three prefab‑
ricated fractures, with an initial fracture length of 10 m and a vertical spacing of 16 m.
The initial parameters of the three fractures are completely the same. The injection point
is located at the midpoint of the fracture (The red points in Figure 11), and the injec‑
tion rate is set to 0.01 m2/s. Other parameters of the model are the same as those in 5.4
(Table 4). See Figure 11 for the calculation results. It can be seen that after the fractures
overlap, the propagation of the middle fracture is restrained, and the tendency of mutual
attraction between adjacent fractures is becoming more and more obvious. Enhancement
or impediment of the growth ahead of an individual fracture front leads to asymmetric
fracture geometry [36].

The stress interference of parallel fractures has been studied previously, and the frac‑
tures tend to mutually repel each other. However, for such parallel fractures with incom‑
plete left‑right overlap, the stress shadow effect will cause the stress direction to change,
and the overlapping tips will appear as a phenomenon of mutual attraction. In the pro‑
cess of hydraulic fracturing, we hope that hydraulic fractures can form complex shapes.
However, this phenomenon may lead to fracture collision and reduce the fracturing effect,
which needs to be avoided. Therefore, the optimization of the overlapping length and
spacing of fractures is an important job.
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Figure 11. Sequential growth of En échelon fractures: trajectory, pressure, and effective stress com‑
ponent σ′

y after 20 s, 70 s, and 170 s.

4.6. Case Study3: Multi‑Well and Multi‑Cluster Simultaneous Fracturing and Production
The problem considered here is the fracturing‑production problem of 7 hydraulic frac‑

tures generated by two horizontal wells (#1 and #3) and one vertical well (#2), numbered
1 to 7, respectively. The schematic diagram of the initial fractures and the model is shown
in Figure 12. The size of the model is 200 m × 100 m. Two horizontal wells are along the
straight‑line x = 60 m and x = 140 m, respectively. The vertical well is located in the middle
of the model. Table 4 lists the detailed parameters.
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This study aims to analyze the interaction between evolved multi‑fractures and local
stress‑field‑pressure fields and help explore the interference phenomenon’s influence on
fracture morphology and production. Taking well #1 as an example, it can be seen that the
fractures are subject to obvious stress interference from Figures 13 and 14, and the stress
interference is manifested in two points:

(1) The fractures will undergo obvious diversion. For well #1, Frac. 1–3 have different
degrees of deflection. The deflection of the two Frac. 1 and 3 are more prominent.
In the early stage, the middle fracture Frac. 2 does not deflect obviously due to the
interference of superimposed stress. In the later stage of fracturing, Frac. 2 and 4
attract each other, showing En échelon fracture morphology [69].

(2) There are noticeable differences in fracture length and width. The length of Frac. 2
and 6 of the two horizontal wells is shorter, followed by Frac. 3 and 5, and the longest
is Frac. 1 and 7. Frac. 4 cannot propagate far enough and even the front edge of the
fracture tends to close. Although Frac. 1 and 7 have propagated long enough, one
side of the fracture tends to close under the effect of stress shadow. These phenomena
are very likely to lead to the reduction of fracturing efficiency and cost waste.

The complex morphology of fractures is the result of stress interference. Studies have
found that 25–30% of the fractures do not bring production [71,72], indicating that 25–30%
of the fractures are not opened or closed after being opened, which is also the effect of
stress interference. Therefore, stress interference has both positive and negative effects.
Numerical simulation can be used to find the best design for well placement, perforation,
and fracturing so that the fractures can be fully opened and stabilized to maximize the
benefits of fracturing.
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Figure 13. Displacement field after 20, 50, 70, and 100 s. 
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Change the bottom hole condition to a constant pressure of 25 MP, and proppant in‑
stead of the hydraulic pressure supports the fracture. Assuming that the fracture has high
conductivity and obeys Darcy’s law, it is only necessary to change the fracture flow coef‑
ficient w2

12µ in Equation (A4) into the hydraulic fracture permeability. The stress‑sensitive
parameters are brought into the governing equation for calculation during production. For
the estimation method of stress‑sensitive parameters, see the study of Lu et al. [73]. The
pressure change in the production process is shown in Figure 15, which shows that there
is almost no production interference between fractures andwells within 30 days, and obvi‑
ous interference can be observed after 300 days. The calculated cumulative production is
shown in Figure 16, which clearly shows the rising pattern of the cumulative production.
The early production increases rapidly because the reservoir near the well is fully stimu‑
lated. However, the reservoir’s extremely low permeability makes it difficult to maintain
rapid production.

Energies 2023, 16, x FOR PEER REVIEW 16 of 23 
 

 

Figure 14. Fracture trajectory, effective stress component yσ′ , and fracture width distribution after 
fracturing. 

Change the bottom hole condition to a constant pressure of 25 MP, and proppant 
instead of the hydraulic pressure supports the fracture. Assuming that the fracture has 
high conductivity and obeys Darcy’s law, it is only necessary to change the fracture flow 

coefficient 
2

12
w

μ  in Equation (A4) into the hydraulic fracture permeability. The stress-sen-

sitive parameters are brought into the governing equation for calculation during produc-
tion. For the estimation method of stress-sensitive parameters, see the study of Lu et al. 
[73]. The pressure change in the production process is shown in Figure 15, which shows 
that there is almost no production interference between fractures and wells within 30 
days, and obvious interference can be observed after 300 days. The calculated cumulative 
production is shown in Figure 16, which clearly shows the rising pattern of the cumulative 
production. The early production increases rapidly because the reservoir near the well is 
fully stimulated. However, the reservoir’s extremely low permeability makes it difficult 
to maintain rapid production. 

 
Figure 15. Pressure field after 30, 300, 600, and 900 days. 

 

Figure 15. Pressure field after 30, 300, 600, and 900 days.

Energies 2023, 16, x FOR PEER REVIEW 16 of 23 
 

 

Figure 14. Fracture trajectory, effective stress component yσ′ , and fracture width distribution after 
fracturing. 

Change the bottom hole condition to a constant pressure of 25 MP, and proppant 
instead of the hydraulic pressure supports the fracture. Assuming that the fracture has 
high conductivity and obeys Darcy’s law, it is only necessary to change the fracture flow 

coefficient 
2

12
w

μ  in Equation (A4) into the hydraulic fracture permeability. The stress-sen-

sitive parameters are brought into the governing equation for calculation during produc-
tion. For the estimation method of stress-sensitive parameters, see the study of Lu et al. 
[73]. The pressure change in the production process is shown in Figure 15, which shows 
that there is almost no production interference between fractures and wells within 30 
days, and obvious interference can be observed after 300 days. The calculated cumulative 
production is shown in Figure 16, which clearly shows the rising pattern of the cumulative 
production. The early production increases rapidly because the reservoir near the well is 
fully stimulated. However, the reservoir’s extremely low permeability makes it difficult 
to maintain rapid production. 

 
Figure 15. Pressure field after 30, 300, 600, and 900 days. 

 
Figure 16. Cumulative production curve during the hydro‑mechanical coupled production process.

Four calculation examples with different well‑spacing (40 m, 60 m, 80 m, and 100 m)
are simulated for comparison to verify the effect of well‑spacing on fracture morphology
and production. After 60 s injection, the fracture morphology and displacement field are
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as Figure 17. The final morphology of fractures under the stress interference is different
with different well‑spacing. Then, realize conversion from hydraulic fracturing to produc‑
tion, as shown in Figure 18, and the cumulative production curve after 2000 days is plotted
in Figure 19. Figure 18 shows that small well‑spacing will lead to slow pressure drop near
boundaries, resulting in a low production rate. Thus, the cumulative production of small
well‑spacing is smaller than that of largewell‑spacing, which can be explained by the small
well‑spacing leading to a poor fracturing effect. Therefore, reasonablewell‑spacing is a cru‑
cial factor affecting the formation of a complex fracture network and efficient production.
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paring it with the results of classical KGD models, analytical solutions, and COMSOL 
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after simultaneous fracturing, this paper also successfully realized the fracturing-to-pro-
duction analysis. The research shows that hydraulic fractures are interfered with by the 
stress between wells and fractures, which plays an essential role in forming the final frac-
ture network morphology and cumulative production. Proper well location design, per-
foration plan, and production plan are the keys to determining whether the stress inter-
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ment efficiency. This research has certain practical significance for fracturing design and 
production prediction. 

Author Contributions: Data curation, D.W.; Methodology, Y.D.; Supervision, Y.J. and Y.X.; Writ-
ing—Original draft, Y.D. All authors have read and agreed to the published version of the manu-
script. 

Funding: This work was financially supported by the National Natural Science Foundation of China 
(Grant NO. U19B6003-05 and 51874321). 

Data Availability Statement: Not applicable. 

Acknowledgments: The financial support provided by the National Natural Science Foundation of 
China is highly appreciated. 

Conflicts of Interest: The authors declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work reported in this paper. 

Appendix A 

For a quasi-static process, ignoring the effect of gravity, the stress balance equation 
of the rock matrix is [74]: 

Figure 19. Comparison of cumulative production curves with different well‑spacing.

5. Conclusions
Aiming at solving the fracturing‑to‑production problemunder the unified framework,

a fully coupled approach UXFEM for solving the HMFM under the same framework is es‑
tablished based on the extended finite elementmethod andNewton–Rapsonmethod. This
technology inherits all the excellent characteristics of XFEM and can fully reflect the me‑
chanical mechanism of fracture propagation. Meanwhile, it also avoids some potential
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the results of classical KGDmodels, analytical solutions, and COMSOLMultiphysics® 5.6.
To study the interference problem during the fracturing process, three examples are used
to illustrate the effect of stress shadow on fracturing. At the same time, after simultaneous
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Appendix A
For a quasi‑static process, ignoring the effect of gravity, the stress balance equation of

the rock matrix is [74]:
∇ · σ = 0 (A1)
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where σ is the Cauchy stress tensor. Considering the effective stress, the Cauchy stress
tensor σ can be written as:

σ = σ′ + σ0 − α(p − p0)I (A2)

where σ0 is the initial total stress; p0 is the initial pressure; α is the Biot coefficient; I is the
identity matrix; σ′ is the effective stress; σ′ = C : ε. C is the elasticity tensor;ε is the strain,
which can be calculated from the geometric equation.

The boundary condition is:
u = u
σ · n = σ
σ · n f = −pn f

on Γu
on Γt
on Γ f

(A3)

where Γu, Γt and Γ f are displacement boundary, traction boundary, and fracture surfaces,
respectively; n and n f are the normal direction to the related boundary.

Taking δu as the trial function, the weak form of the solid matrix deformation govern‑
ing equation can be obtained from Equations (A1)–(A3),∫

Ω

∇δu · (C : ε + σ0 − α(p − p0)I)dΩ −
∫
Γ f

JδuK · pn f dΓ −
∫
Γt

δu · σdΓ = 0 (A4)

The governing equation for mass conservation of a compressible‑fluid flow is:

dm
dt

+∇ · (ρvm) = 0 (A5)

where m denotes the fluid mass, vm is the matrix flux. ρ is the fluid density.
The constitutive relations for poroelasticity material are written as [64]

δm = ρ(αδe +
δp
Q

) (A6)

where e is the volumetric strain, e = ∇ · u; Q is the Biot modulus, Q =
[

ϕ
Kl

+ α−ϕ
Ks

]−1
.

where Kl is the fluid modulus; ϕ is the porosity of the matrix.
Combine Equation (A5) and (A6), the matrix fluid flow governing equation can ex‑

press as:

αρ∇ · .
u +

ρ

Q
∂p
∂t

+∇ · (ρvm) = 0 (A7)

The boundary condition is:{
ρvm · n = q on ΓqJρvm · n f K = ρvd on Γ f

(A8)

where Γq is the flow boundary, q is the mass flux; Jρvm · n f K denotes the normal discontin‑
uous flow on the fracture surface; vd denotes the fluid transfer from the fracture into the
matrix, which can be interpreted as the leak‑off effect.

Taking δp as the trial function, the weak form of the matrix flow governing equation
can be obtained from Equations (A7) and (A8),∫

Ω
αρδp∇ · .

udΩ +
∫

Ω
ρQ−1δp

.
pdΩ +

∫
Γq

δpqdΓ −
∫
Γ f

δpρvddΓ −
∫

Ω
∇(δp)ρvmdΩ = 0 (A9)

Matrix flow obeys Darcy’s law, vm = − km
µ ∇p. Thus, Equation (A9) can be rewrit‑

ten as:
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∫
Γ f

δpρvddΓ =
∫

Ω
αρδp∇ · .

udΩ +
∫

Ω
ρQ−1δp

.
pdΩ +

∫
Γq

δpqdΓ +
∫

Ω

ρkm

µ
∇(δp)∇pdΩ (A10)

Compressible fluid flow in fracture satisfies mass conservation and cubic law [75]:

∂(ρw)

∂t
+∇ · (ρq f ) = Qm (A11)

q f = − w3

12µ

∂p
∂s

= v f w (A12)

where q f is the fluid flux in the fracture; w is the fracture aperture; v f is the average fluid
velocity of fracture section; and Qm is the mass source term in the fracture.

∂(ρw)

∂t
=

∂ρ

∂t
w + ρ

∂w
∂t

=
ρw
Kl

∂p
∂t

+ ρ
∂w
∂t

(A13)

where 1
Kl

= 1
ρ

∂ρ
∂p . Combine Equation (A11) and (A13):

ρw
Kl

∂p
∂t

+ ρ
∂w
∂t

+∇·
(

ρq f

)
= Qm (A14)

The boundary condition is:
q f · n f = wvd (A15)

Taking δp as the trial function, the weak form of the fracture flow governing equation
can be obtained from Equation (A14),∫

Ω f

δp
ρw
Kl

∂p
∂t

dΩ +
∫

Ω f

δpρ
∂w
∂t

dΩ +
∫

Ω f

δp∇ · (ρq f )dΩ −
∫

Ω f

δpQmdΩ = 0 (A16)

The third term in Equation (A16) can be rewritten as:∫
Ω f

δp∇ · (ρq f )dΩ =
∫

Ω f

∇ · (δpρq f )dΩ −
∫

Ω f

∇δp · ρq f dΩ =
∫
Γ f

δpρq f · n f dΓ +
∫

Ω f

∂(δp)
∂s

· ρw3

12µ

∂p
∂s

dΩ (A17)

For fluid flow in the fracture, the fluid exchange (leak‑off) term can be written as:∫
Γ f

δpρq f · n f dΓ =
∫
Γ f

δpρwvddΓ (A18)

Thus,∫
Γ f

δpρwvddΓ = −
∫

Ω f

∂(δp)
∂s

· ρw3

12µ

∂p
∂s

dΩ −
∫

Ω f

δp
ρw
Kl

∂p
∂t

dΩ −
∫

Ω f

δpρ
∂w
∂t

dΩ +
∫

Ω f

δpQmdΩ (A19)

Since the fracture aperture is much smaller than its length, the variation of fluid pres‑
sure across the fracture width can be ignored. The fracture flow governing equation can
be obtained from Equation (A19).

∫
Γ f

δpρvddΓ = −
∫
Γ f

∂(δp)
∂s

· ρw3

12µ

∂p
∂s

dΓ −
∫
Γ f

δp
ρw
Kl

∂p
∂t

dΓ −
∫
Γ f

δpρ
∂w
∂t

dΓ +
∫
Γ f

δpQmdΓ (A20)
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Based on Equation (A10) and (A20), the weak form of the coupled matrix‑fracture
flow governing equation is:∫

Ω αρδp∇ · .
udΩ +

∫
Ω ρQ−1δp

.
pdΩ +

∫
Γq

δpqdΓ +
∫

Ω
ρkm

µ ∇(δp)∇pdΩ+∫
Γ f

∂(δp)
∂s · ρw3

12µ
∂p
∂s dΓ +

∫
Γ f

δp ρw
Kl

.
pdΓ +

∫
Γ f

δpρ ∂w
∂t dΓ −

∫
Γ f

δpQmdΓ = 0 (A21)
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