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Abstract: Building energy efficiency has grown strong in a context of soaring energy prices, especially
in Europe. The use of energy-saving devices strongly influences its improvement, but in many
cases, it is far from sufficient., especially if the energy comes from renewable sources with forced
production. In the case of buildings, these are usually photovoltaic (PV) sources. For this reason,
energy management systems (EMS) are becoming increasingly popular as they allow the increase in
self-consumption and reduce the size of energy storage. This article presents analyses of historical
energy consumption profiles in selected small- and medium-sized buildings powered by renewable
energy sources. The implementation limitations of this type of systems, depending on the profile of
the building, were identified and guidelines were presented to assess low-cost solutions dedicated to
small buildings and considering the actual conditions of existing systems. Statistical analyzes were
conducted for the energy demand profiles of 15 different buildings. The analyzes consisted of the
preparation of box plots for each hour of working days and the calculation of the relative standard
deviation (RSD) index for annual profiles of 60 min periods. The analyzes showed that the RSD
index has low values for commercial buildings (e.g., hospital 7% and bank 15%) and very high values
for residential buildings—even over 100%. On this basis, it can be concluded about the usefulness
of energy profiles for demand forecasting. The novelty of the proposed method is to examine the
possibility of using measurement data as data to forecast energy consumption based on statistical
analysis, dedicated to low-cost EMS system solutions.

Keywords: electrical energy management; energy system; renewable energy sources; reduction in
electrical energy consumption; low-cost electrical power systems; energy strategy; energy efficiency;
strategic management; analysis of methods of energy management; electrical energy consumption;
limitation of probabilistic method; integrated approach; transformation; European Green Deal

1. Introduction

The continuous increase in the price of electrical energy makes the issues of saving
energy and proper energy management extremely important to ensure uninterrupted
operation of power systems, thus ensuring the appropriate quality of electricity for con-
sumers. Implementing the European Green Deal strategy is also crucial [1]. Energy-saving
mechanisms include a number of activities that aim to rationalize the use of resources
and increase the share of renewable energy sources in total production and activities that
lead to a reduction in the consumption of these resources [2–4]. The energy market cannot
function properly without proper management of energy consumption at every level, from
a single household to an integrated power system. This order was used not without reason
as the widespread use of distributed energy sources (especially renewable sources) requires
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changing the place of managing and forecasting electricity demand to the lowest level -
this is especially true for prosumer installations [5].

The management of electricity in buildings is becoming increasingly important, mainly
due to the rapid increase in energy purchase costs. Cost reduction can be achieved by
reducing consumption or using cheap, prosumer renewable sources, such as photovoltaics
or micro biogas plants. Cheap prosumer renewable sources are sources with limited supply,
most of which are limited by weather conditions. The energy management of a single
building or premises requires reliable forecasting of energy production and consumption,
which, together with the appropriate model, allows one to make the right decisions about
its use. This article analyses the demand side because of the possibility of using simple
methods to predict production. There are many models that use Industry 4.0 technologies,
the integration of IoT (Internet of Things) technologies, artificial intelligence and modelling
supported by a digital twin, enabling the creation of intelligent environments that increase
energy efficiency [6–8].

There are many available devices on the market that provide the ability to manage
and monitor nonintelligent loads, such as Fibaro, Sonoff, Pacific Sun, Ocean ABB or Xiaomi
MI Smart plugs. There are also many works showing the use of these smart plugs in energy
management systems [9–11]. Smart plugs enable the retrofitting of electrical resources
and provide basic functions, such as planning or creating rules. However, smart plugs, in
addition to their capabilities, are not able to acquire and transfer information regarding the
context of the resource, i.e., where and how users use the resource. The implementation
of inexpensive and generally available solutions is relatively simple, but the problem
is the limitations in the information on the use of the resource by the user. The energy
management system is highly dependent on available data on the context of the object. To
be able to forecast and optimize energy consumption, general knowledge of the building
context is necessary and partial information provides limited possibilities for forecasting
consumption and appropriate energy management. Moreover, the aggregation of several
systems and devices of different brands and their different standards of output data is also
a big challenge.

Several solutions are used to connect energy loads in buildings with the energy man-
agement system defined by the IEC 61970 standard. The first concerns the modification of
individual loads by adding measuring and communication units, making them intelligent;
such solutions have been proposed in works [12–15]. The second solution concerns the
incorporation of intelligence into the power line, which requires modification of the elec-
trical infrastructure of the building [16–18]. The third approach presented, among others,
in [19,20] uses DR and intelligent measurement units connected between the power supply
and the load. Currently, there are many relatively inexpensive hardware solutions that
enable the creation of an EMS system and the control of loads, but the challenge is to use
and adapt these systems to forecast demand. They provide limited possibilities and the
forecasting itself is possible to a limited extent. That is why in the article we present the
problems of deployment such solutions in various EMS systems implemented in several
projects completed in recent years. The implementation of these systems in buildings with
an annual consumption of several MWh is debatable because high hardware requirements
are associated with high investment costs and thus, the solution can be uneconomical.

The importance of predictive methods in forecasting electricity demand is dictated by
the fact that both the price of energy and the quality of the forecast depend on the precision
of the prediction. An additional factor of growing interest in prediction methods is the
increasing competitiveness of the electricity market, which forces its participants to look
for alternative tools. The large-scale increase in the share of renewable energy sources does
not make the pattern of energy consumption more random or orderly, but the prediction
itself becomes increasingly complex [21]. Therefore, various prediction methods have been
adapted, considering many input variables, such as energy price and energy demand,
or other external factors, such as weather conditions. Prediction methods are based on
econometric and statistical models using various analysis techniques to achieve the goal in



Energies 2023, 16, 1536 3 of 21

a specific time period. In short-term forecasting for large data sets, artificial intelligence
and machine learning methods are mainly used, such as support vector machines (SVM),
logistic regression (LR), naive Bayes (NB), K-nearest neighbor (KNN), decision tree classifier
(DTC) and neural networks (NNs); works [22–26] can be cited here.

For smaller data sets, statistical methods that use time series [27–29], exponential
smoothing [30,31] and linear and dynamic regression models [32] are much better. The
main advantage of statistical methods are simple predictive models and high computational
efficiency [33]. In the research conducted, we have been dealing with time series.

One of the methods of improving the stability of the power system operation is
demand side response (DSR) programs, whose undoubted advantage is the possibility of
shaping energy prices during the day. Programs introduce appropriately selected tariffs for
electricity prices [34,35]. Dynamic pricing in the local power grid aims to activate consumers
and assess their behavior [36,37]. Since individual residential prosumers represent a
significant percentage of the total local load, price flexibility creates significant opportunities
for peak load management and demand response programs. Various methods have been
developed to allow dynamic pricing based on a comparison of consumer and prosumer
load profiles settled according to time tariffs of electricity [38,39]. The key role in the
dynamic shaping of the local energy price plays in the determination of changes in energy
consumption in individual short time intervals. An excellent tool is the statistical analysis
of a prosumer load profiles, which quantifies their responses to price signals [40,41].

Buildings have a huge potential to reduce global carbon emissions. This leads to the
need to analyze the efficiency of energy management. Energy management in buildings is
primarily about forecasting demand and generation. The economic yield, which is the result
of forecasting demand and matching the generation profile, depends on the accuracy of
the forecast [42]. However, it should be remembered that in small buildings, the volume of
energy consumption is relatively small. Therefore, the economic gain will also be relatively
small. Therefore, the investment and operating cost of the energy management system
must be adequate for the expected effects. In this case, it may turn out that the cost of
investing in an energy management system (EMS) will not be balanced with the savings
resulting from its use.

2. Problem Statement

The aim of this article is to justify a methodical approach to evaluating the effective-
ness of implementing energy management in small- and medium-sized buildings using
statistical methods and mathematical modeling tools. Energy management in buildings
requires short-term forecasting of the electricity demand. The quality of the forecast de-
pends on the available data on the basis of which the forecast will be made. Our goal was
to check whether the available electricity demand profiles are useful and sufficient to be
used to forecast electricity demand in small and medium-sized buildings. To this end,
we performed a statistical analysis of the available electricity demand profiles of selected
buildings, checked the participation of individual receivers in the building’s energy con-
sumption and determined the following indicators: relative standard deviation (RSD) and
participation of random devices (PRD) in total energy demand in the building, described
in Section 3. Industrial and service buildings were compared to residential buildings.

3. Materials and Methods

The data used for the analysis are the result of the implementation of several inde-
pendent projects. One of the projects involved the development of energy management
solutions in small and medium-sized buildings on the basis of available data from the
distribution network operator (DNO), the other in the implementation of its own solu-
tions along with measurements in selected facilities. In buildings where we conducted
the measurements ourselves, the measurement system was a limitation and the challenge
was the use of data collected by the measurement system, which is an integral part of a
typical building automation system. For this reason, both the method of obtaining the
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data and the time interval and the time of acquisition are not the same. However, the
same conditions are provided for the calculation of the RSD and PRD factors. Data from
the DNO operator were used for statistical analyzes and calculation of the RSD indicator.
Data from EMS systems were used to analyze the energy consumption of devices and PRD
factor calculations. Results obtained for both periods are not compared with each other, the
analyzes conducted are independent and do not affect each other.

In statistical methods, small power systems (micro installations) are also a limitation,
where there are many devices that consume small volumes of energy. In these lists, there are
usually dominant devices, characterized by much higher energy consumption compared
to other devices. This affects the quality of the forecasts. However, the use of statistical
methods is a cheap solution, where there is no need to use complex computing systems.

This paper discusses the possibility of using historical electricity demand profiles,
which can be easily downloaded from DNO or local EMS systems. For this purpose,
statistical analyzes of such profiles were conducted. The analysis includes 15 specific build-
ings according to the demand profile, including 8 medium-sized buildings (commercial
buildings) and 7 residential buildings with different annual demand.

To determine the quality of available data for forecasting purposes, box plots were
prepared and RSD values were calculated. To determine the possibility of using additional
data in the form of electricity demand profiles of individual devices in buildings, the Pareto
principle was checked for devices and consumed energy.

During data recording using the Fibaro distributed measurement system, techni-
cal limitations of this type of measurement systems were defined. This chapter shows
these limitations.

3.1. Methods of Obtaining Measurement Data

The research conducted as part of two projects required the acquisition of electricity
demand profiles of end users belonging to groups of small and medium buildings. Data
acquisition was conducted in two ways:

• obtaining 15 min demand profiles from the DNO operator. Data obtained for 2017.
Data used for statistical analysis and calculations of RSD coefficient;

• measurements of energy demand in buildings using a Fibaro distributed energy
management system (EMS) Fibaro. Data registered in the period: April 2021–December
2022. Data used to analyze the energy consumption of buildings and devices.

3.1.1. Profiles Obtained from the DNO Operator

One of the ways to obtain data on the electricity demand profile is to obtain them
from the DNO operator. Anonymous 15 min electricity demand profiles were obtained for
selected groups of recipients from the SME (small–medium enterprises) sector. The profiles
were aggregated to hourly profiles and used in this form in further statistical analysis of
each element. To test the possibility of forecasting consumption in individual hours, data
from selected characteristic commercial buildings were used. When selecting facilities, the
opening hours, the type of service provided and the annual demand for electricity were
considered. Objects selected for analysis were collected in Table 1.

Electricity demand profiles of residential buildings, single-family houses were also
obtained. The method of heating was used as the selection criterion because electric heating,
if it exists, is usually the device with the highest energy demand. The buildings selected for
the analysis were gathered in Table 1.

For this set of buildings, the year 2017 was selected for the analysis, for which the
authors have a rich database of profiles. This is very important from the point of view
of statistical analysis because the data did not cover the period of the epidemic. During
the COVID-19 epidemic, there was a significant change in the use of buildings and, conse-
quently, a change in the demand profile. Example hourly profiles used of the analysis for a
hospital and a home without electric heating are shown in Figures 1 and 2, respectively.
Without an analysis, and only on the basis of a visual assessment, it can be concluded
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that the profile of a residential building will be much more difficult to predict. Periodic
repetition of the shape of the demand profile is visible for the hospital.

Table 1. Characteristics of SME sector and residential buildings. Source: compiled on the basis of
data obtained from the DNO operator. Anonymous data.

No. Type
Annual Energy
Consumption,

(MWh)
Description

1 bank 30 open from 8 am to 5 pm

2 hotel 70 24-h reception

3 shopping center 300 open from 9 am to 9 pm, textile industry

4 kindergarten 40 with care from 6:30 to 16:00, with the largest
group of children between 8:00 and 13:00

5 restaurant 35
open from 12:00 to 22:00, with high energy

demand during the preparation phase
08:00–12:00

6 petrol station 120 open 24/7

7 hospital 3500 multi-specialty

8 house without
electric heat 2.5 usable area of 190 m2, 3 persons, gas heating

9
house with

air-to-air heat
pump

3.2 usable area of 70 m2, 3 persons, heat pump as
an additional source of heating

10
house with

ground source
heat pump

7.5 usable area of 200 m2, 3 persons, heat pump
as the main source of power, recuperator
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Figure 2. Hourly demand for electricity in building 8–house without electric heating. Source:
compiled on the basis of data obtained from the DNO operator. Anonymous data.

3.1.2. Profiles Obtained from Fibaro Systems Installed in Buildings

Profiles obtained from DNO operators are characterized by data continuity, but their
main limitation is the reading frequency, which is 15 min. The limitation is the inability to
observe changes in the values of active power. Therefore, an alternative way to obtain mea-
surement data (as part of one of the research projects) was to install our own measurement
systems with full access to the measurement data. The Fibaro measurement and control
system was selected [43,44]. This system enables monitoring and recording of electricity
flow for the entire building and selected devices and photovoltaic source. Fibaro Wall-plug
and Fibaro wall-switch measurement systems and AEOTEC meters communicated with the
Fibaro control panel via the Z-wave interface [45,46]. The measurement system is shown in
Figure 3. It should be noted that the Fibaro measurement systems were installed in other
buildings than those described in Section 3.1.1.
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Figure 3. Scheme of the Fibaro measurement system in the building. Source: author’s development.

The biggest problem with the measurements was the inability to synchronize the
measurements for all devices in the building. Fibaro measurement systems and AEOTEC
meters send data to the aggregator only when the power value or energy counter changes.
For the AEOTEC meter, it is visible in the form of N/A in Table 2, there was no change
in power in the specified time. For this reason, the data was recorded asynchronously,
without a specific sampling period. This is a significant limitation in the case of the need
to perform analyzes; additional data preparation is necessary. It also turned out that the
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Fibaro power measurement systems (measuring power and energy for individual devices)
sent a random "zero" value when the power value did not change. The data from the
Fibaro control panels was read by periodic polling. Table 2 shows exemplary results of the
active power consumed by the dishwasher: measurement with the Fibaro wall plug system
(measures the energy consumed by the dishwasher) and the AEOTEC meter (measuring the
energy consumed by the building). The waveforms of active power for both measurement
systems are shown in Figure 4.

Table 2. Exemplary results of measuring the active power consumed by the dishwasher. Source:
author’s development.

AEOTEC Fibaro Wall-Plug

Time Power (W) Time Power (W)

19:38:48 88 19:38:48 17

19:38:49 N/A 19:38:49 0

19:38:58 N/A 19:38:58 0

19:39:19 91 19:39:19 0

19:39:25 N/A 19:39:25 0

19:39:48 2258 19:39:48 2221

19:39:49 N/A 19:39:49 0

19:39:56 N/A 19:39:56 0

19:40:19 2239 19:40:19 2203

19:40:20 N/A 19:40:20 0

19:40:28 N/A 19:40:28 0

19:40:49 2246 19:40:49 2208

19:40:50 N/A 19:40:50 0

19:40:55 N/A 19:40:55 0

19:41:19 2254 19:41:19 2214
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an AEOTEC meter (active power consumed by the whole building); 60–data logged using Fibaro
wall-plug. Source: author’s development.

The measured values of active power and energy were saved in the Influx DB database
and supported by the Grafana application [47–49]. The Grafana system makes it possible
to standardize recorded electricity waveforms to 15 min, 60 min and 24 h values [50]. In
principle, the Grafana system made it possible to adjust the recorded electricity data to any
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chosen sampling period. Figure 5 shows an example graph of the Grafana application of
60 min energy waveform for a selected building, a flat used by 2 persons. Energy meters
record and send to the database the increasing value of the counter. To obtain values, e.g.,
60 min, it was necessary to use the differential recording function.
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Figure 5. An example graph from the Grafana application of 60 min energy from 1–30 April 2022, for
a flat used by 2 persons. Source: author’s development.

The measurement data used in the article come from real buildings and were recorded
from April 2021 to December 2022. As part of the project, in selected buildings, mea-
surements of electricity demand for almost all devices connected to the network were
conducted. Most of the devices were permanently connected to sockets through measuring
devices located in mounting boxes. Example photos of installed measurement systems are
shown in Figure 6.
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Figure 6. Photographs of sample installed measurement systems: (a) AEOTEC meter installed in the
building’s switchboard; (b) Fibaro switch in flush-mounted socket; (c) Fibaro wall-plug; (d) Fibaro
switch in the housing of the ceiling lamp. Source: author’s development.

The network of measurement points provided data to the Fibaro Home Center via
a wireless Z-wave connection. Each element of the system, interconnected with other
points of the MESH network [51], globally reduces electricity consumption due to its
dispersed nature. Each of them is both a transmitter and receiver, enabling information
transmission from further sensors. These devices do not emit as much radio power as
standard networks, and therefore consume relatively little energy, with an extensive range.
Smart-home systems use specialized networks, such as ZigBee [52] and Z-wave [53].

The measurement of global electricity and power is conducted using the AEOTEC
ZW095 m, in which the current measurement is conducted using the attached measuring
transformer with a maximum measuring range of 200 A. The measurement class of the
device was in the range of 1%.

The influence of the measurement class on the results of the statistical analysis was
also checked. The inaccuracy of the measurement affects the proposed indicators. In any
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case, this influence is below the accuracy of the measuring devices (Table 3). In any case, it
should be used to obtain the best possible measurements, but this is not critical, especially
since measuring devices are usually characterized by a class below 5%. Therefore, the
influence of the device measurement class on the statistical analysis results is not considered
in further analysis.

Table 3. Average Relative Standard Deviation (%) for measurement accuracy of the device.

Measurement Class No
Consideration 1% 5% 10%

Bank 15.29 15.28–15.31 15.54–15.68 16.32–16.58

House with air-to-air
heat pump 111.56 111.50–111.58 111.44–111.95 111.32–112.24

The receiver profile was measured using Single Fibaro Switch (1 channel with a
maximum current of 10 A) or Double Fibaro Switch (2 channels with a maximum current
of 6 A). Their choice depended on the type of load, location and mounting possibilities. In
cases where the measurements concerned non-stationary devices (for example, a vacuum
cleaner) or when it was not technically possible to install the measuring devices in the
boxes, the measurements were made with Fibaro Wall-Plug. The manufacturer has defined
the measurement accuracy class of Fibaro Switch and Fibaro Wall-Plug at the level of 1%
for the power consumption above 5 W.

Acquisition of measurement data in the Fibaro central was conducted by polling
individual measurement systems. The aggregated information was transferred via JSON
format to database servers. Buildings with installed the Fibaro system, listed in Table 4.

Table 4. Characteristics of buildings with installed the Fibaro system. Source: author’s development.

No. Type
Annual Energy
Consumption,

(MWh)
Description

11 apartment 1.2
inhabitants: 2 adults, district heating;
number of measurement points: 65,
number of monitored receivers: 61

12 single-family
house 8.5

inhabitants: 2 adults + 1 child, electric heating
and a stove wood;

number of metering points: 85,
number of monitored receivers: 81

13 apartment in a
block of flats 1.5

inhabitants: 2 adults + 2 children, district heating;
number of measurement points: 35,
number of monitored receivers: 34

14 single-family
house 5.5

inhabitants: 2 adults + 2 children, gas heating;
number of measurement points: 121,
number of monitored receivers: 77

15 commercial
premises 2.0

number of employees: 5, gas heating;
number of measurement points: 55,
number of monitored receivers: 54

The shape of the profile of the electricity demand depends on the duty cycles of the
installed equipment. It should be noted that the work schedule of some receivers is user-
dependent and others are not. For example, devices, such as a refrigerator or a heat pump,
work depending on the set temperature parameters and weather conditions. In residential
buildings, household appliances are switched on depending on the user’s request, such as
an oven or dishwasher. Some receivers, depending on the type of building, are always used
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at a certain time, and others, depending on the user’s request. An example is a computer
that will be turned on in the office during working hours and at home as needed.

To assess the share of user-controlled receivers in energy consumption, the participa-
tion of random devices (PRD) indicator was introduced:

PRD =
Eb
Erd

(1)

where: Eb is the annual energy consumed by all devices in the building; Erd is the annual
energy consumed by randomly switched-on devices.

3.2. Method of Statistical Analysis of Electricity Demand Profiles in Buildings

The statistical method is a low-cost method to forecast electricity demand, but depend-
ing on the type of the analyzed building, it can be characterized by low forecast accuracy.
The reason for the inaccuracy of forecasting based on statistical data is the behavior of
people and, especially for residential buildings, the power of individual household appli-
ances in relation to the connection power of buildings. Therefore, for example, random
(resulting from behavior) switching on of an electric kettle significantly affects forecasting.
The purpose of statistical analysis is to identify the limitations of such a method.

Building load profiles 1–10 were used as input for statistical analysis. Due to the need
to compare buildings of different character, it was assumed that the statistical analysis
would use data only for working days (without Saturdays, Sundays and holidays). Tukey’s
box plot [54] was used to visualize the statistical analysis, which allows for a detailed
presentation of statistical data.

The graphs were presented for each hour and calculated based on the demand for
individual hours in 2017. First, statistical analysis was performed for each month separately.
Box plots were created based on about 20 measurement samples. This is a representative
number of samples that does not require correction factors when calculating the standard
deviation. Monthly analysis in the general case allows for more accurate forecasting. There
are short-term forecast methods described in the introduction; however, statistical analysis
for the whole year is used in further analysis to assess the limitations resulting from the
use of statistical forecasting methods.

In the case of an analysis conducted for the whole year, the box plot was made on the
basis of approximately 250 samples per hour. To determine the accuracy of forecasting based
on statistical analysis, the percentage Relative Standard Deviation coefficient was adopted.

RSD =
σ
−
x
·100% (2)

where: σ is the standard deviation and
−
x is the average value.

This coefficient allows for normalization and comparison of buildings with different

annual energy consumption. An average factor
−

RSD, defined as the arithmetic mean of
the RSD factors for each hour, was also introduced. For the shopping center (Table 5), the

factor
−

RSD = 33%. This suggests that the use of forecasting based on statistical data in this
case is burdened with relatively high uncertainty.
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Table 5. Relative Standard Deviation (%) for shopping center each hour on a business day in 2017.
Source: built on the basis of author’s calculations and data from DNO operator.

Hour of the Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

January 5 5 5 5 5 5 5 10 17 14 15 15 15 16 16 17 18 19 13 6 6 6 5 5

February 2 2 2 2 3 3 8 4 16 6 4 5 4 5 5 5 6 9 4 3 4 2 2 2

March 1 2 2 1 2 9 6 2 15 4 3 4 6 4 6 6 7 7 10 15 3 2 2 2

April 2 2 2 2 2 16 5 13 28 9 4 4 5 4 7 6 7 7 6 5 13 3 3 2

May 34 30 27 21 17 25 23 26 27 29 34 32 35 27 32 36 37 39 48 59 59 44 37 39

June 30 26 26 22 26 27 30 26 29 20 22 25 22 20 20 22 26 25 27 36 36 33 29 26

July 22 22 16 16 20 21 21 21 19 18 18 22 18 19 18 17 17 16 22 19 25 22 26 23

August 34 26 28 28 23 27 26 30 35 23 24 22 21 22 22 19 24 25 25 29 31 28 26 29

September 27 26 25 21 25 16 26 34 43 15 15 19 17 18 21 26 25 31 31 34 20 21 27 20

October 7 6 6 6 7 6 13 14 16 5 5 7 7 7 6 9 8 10 14 16 22 22 22 22

November 3 3 3 3 4 4 7 3 10 7 15 17 17 15 16 17 22 20 20 5 3 3 3 3

December 7 6 6 6 6 6 6 11 15 14 12 6 5 5 5 4 4 4 9 21 9 7 7 7

Year 36 31 30 28 26 23 29 37 43 24 25 28 28 28 29 29 34 36 38 47 45 40 42 39

4. Results

The described methodology of statistical research allows to assess the possibility of
using historical energy demand profiles for forecasting purposes. The presentation of the
results in the form of a box plot allows of a rough comparison for the accuracy of the
forecasting. The presence of outliner data is also very important. The more there are, the
more the forecast can increase the error. The reason may lie in a very high dependence of
energy demand on a random factor, e.g., the presence of people in the hotel. The methods
described in Section 3 were used to calculate the values of the comparative indicators RSD
and PRD.

4.1. Statistical Analysis of the Electricity Demand for Individual Months of the Year

Examples of box plots for a shopping center in selected months are shown in Figure 7.
It can be seen that better forecasting in this case, a smaller interquartile range (IQR), occurs
for months of “stable” sales, while high IQR for summer months in which air-conditioning
plays an important role.

From Table 5 it can also be seen that the annual hourly RSD is at a high level in
individual months. This is an additional argument in favor of using annual data in
comparative analyses.

Based on the analysis of data from Table 5, it can be seen that there is a possibility of
better forecasting, considering the forecasts for each month, but the annual value of the

coefficient is sufficient to compare different types of buildings. The average ratio
−

RSD for
shopping centers is presented in Table 6.

It can be seen that the annual value of the ratio (Table 6) is comparable to that of the
month with the highest volatility (May). Therefore, in the next part of the article, annual
modeling was adopted for statistical analyses and the determination of the possibility of

using statistical methods for analysis based on RSD and
−

RSD coefficients for the analyzed

buildings. Since the ratio
−

RSD takes values close to the worst from the monthly analysis,
this approach can be treated as an example of worst-case analysis.
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Figure 7. Month’s box plots of data for shopping center in day in 2017. Source: built on the basis of
author’s calculations and data from DNO operator.

Table 6. Monthly average Relative Standard Deviation (%) for shopping center on a business day in
2017. Source: built on the basis of author’s calculations and data from DNO operator.

Month
-

RSD

January 10

February 4

March 5

April 6

May 34

June 26

July 20

August 26

September 24

October 11

November 9

December 8

Year 33

4.2. Statistical Analysis of the Electricity Demand Profiles of Selected Buildings

The results of the statistical analysis presented using the box plot for the buildings,
described in Section 3.1.1, are shown in Figure 8. For each analysis building, there are
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outline values that indicate the occurrence of situations that strongly deviate from the
forecast value. One can also see in Figure 8, based on the data in Table 1 the higher the
annual consumption, the lower the uncertainty in the forecasting. This means that the IQR
is smaller (the size of the boxes is smaller) and there are no outline values.
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Based on the statistical analysis of the selected buildings, it is possible to determine
the hourly profile of the variability of energy demand for selected buildings. This profile
strongly depends on the functionality of the building. One can see that forecasting can be
performed with different accuracy. For example, the Bank has a repetitive demand profile
and forecasting in residential buildings is subject to high uncertainty. The forecast quality
was determined numerically using the RSD coefficient (Table 7).

Table 7. Relative Standard Deviation (%) for different types of buildings each hour on a business day
in 2017. Source: built on the basis of author’s calculations and data from DNO operator.

Hour of the Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Bank 11 10 10 10 10 10 12 12 24 26 22 23 21 22 22 20 18 26 10 10 11 11 9 10

Hotel 40 41 37 37 38 45 43 40 38 36 34 35 34 37 40 40 40 43 48 52 57 59 75 74

Shopping center 36 31 30 28 26 23 29 37 43 24 25 28 28 28 29 29 34 36 38 47 45 40 42 39

Kindergarten 20 21 19 19 20 40 45 36 33 36 35 32 33 35 34 36 54 47 34 31 25 18 18 20

Restaurant 36 36 35 37 34 30 34 51 89 46 29 23 30 25 27 30 35 36 43 56 63 66 54 37

Petrol station 14 14 14 13 19 27 30 30 21 21 19 18 19 19 19 22 28 33 31 27 21 15 13 13

Hospital 5 5 5 5 5 6 7 9 8 7 7 7 6 7 7 8 9 10 10 10 9 6 5 5

House without
electric heating 88 82 89 81 74 63 74 74 92 89 87 98 70 87 90 67 94 90 88 88 77 75 75 94

House with
air-to-air

heat pump
88 123 66 66 112 102 138 145 176 153 116 104 122 140 105 102 130 117 98 91 84 98 108 92

House with
ground source

heat pump
82 81 84 86 84 79 78 80 75 78 74 84 80 82 70 75 79 65 47 60 69 76 80 88

The annual
−

RSD factor was used for comparison (Table 8). This factor determines the
possibility of using the measurement data obtained from DNO operators as an input to the
forecasting. It can be seen that the accuracy of forecasting (based on measurements and
statistical analysis) is the greater the smaller the influence of the human factor. Therefore,
the hospital is the best predictor. This is due to the constant number of patients resulting
from the need to comply with admission limits, the repetitiveness of the activities performed
and the highest annual energy consumption.

Table 8. Annual Relative Standard Deviation (%) for different types of buildings on a business day in
2017. Source: built on the basis of author’s calculations and data from DNO operator.

Building
-

RSD

Bank 15

Hotel 44

Shopping center 33

Kindergarten 31

Restaurant 25

Petrol station 21

Hospital 7

House without electric heating 83

House with air-to-air heat pump 112

House with ground source heat pump 77

A bank, in which customer service does not require the participation of devices that
consume a large amount of energy, has good forecasting as does a 24 h gas station and a
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restaurant. An interesting example is the hotel, which has a very large share of outliers.
This is due to the strong dependence of energy consumption on the number of guests. It is
also the most difficult to predict building, apart from residential buildings. Kindergartens
and shopping centers can be predicted with average accuracy, where energy consumption
is strongly dependent on the presence and number of people.

Residential buildings have the greatest forecast uncertainties, especially when a high-
power device occasionally operates, such as in a house with an air-to-air heat pump.

4.3. Energy Consumption Analysis of Electrical Devices in Buildings

Based on the energy demand measurements of the receivers, described in Section 3.1.2,
an analysis of the energy consumption of individual receivers and their impact on the
annual energy demand was conducted. An aspect of the research was the estimation
of the impact of individual receivers on annual energy consumption. An analysis was
also conducted using the Pareto principle [55]. Tables 9 and 10 show the percentage
share in building electricity consumption of 20% of the receivers that consume the most
energy. Devices have been sorted according to the largest share of consumption. The
energy consumed by these receivers is in the range of 80–95% of the building’s annual
energy. Other devices have a negligible impact on energy consumption and the shape of
the demand profile.

The analysis confirmed the Pareto principle, that is, 20% of devices account for at least
80% of the demand.

Table 9. Percentage of annual electricity consumption, 20% of consumers using the most energy, part
1. Source: built on the basis of author’s calculations.

Building 11 Building 12 Building 13

Device Percentage Device Percentage Device Percentage

fridge 21.5% desk: computer +
lamp 18.8% electric boiler 35.7%

locker with rtv + audio +
lamp 16.8% bathroom lighting 13.3% bathroom radiator 1 17.3%

dishwasher 11.6% const lighting 9.2% tank hot water heater 13.4%
router + Fibaro control

panel 7.4% rtv 9.0% bathroom radiator 2 9.9%

system audio 5.0% kitchen lighting 8.5% fridge 1 3.1%
desk: computer + audio +

printer 4.2% wash machine 7.6% desk: computer +
printer 2.3%

microwave 4.1% router wifi 3.8% dishwasher 2.1%
air conditioner 3.8% desk socket 3.8% electric cooker 2.0%
coffee machine 3.0% rtv lighting 3.3% fridge 2 1.9%

phone 1.8% hood 2.9% locker with rtv 1.6%
iron 1.6% sum 80% desk: computer 1.5%

wardrobe lighting 1.4% vac 1.3%

main lighting 1.3% router + Fibaro control
panel 0.9%

sum 84% wash machine 0.9%
rekuperator 0.8%

kitchen sockets 0.7%
sum 95%
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Table 10. Percentage share in annual electricity consumption, 20% of receivers consuming the most
energy, part 2. Source: built on the basis of author’s calculations.

Building 14 Building 15

Device Percentage Device Percentage

fridge 2 13.7% server 22.8%
locker with rtv + audio 12.0% fridge 12.0%

dishwasher 11.8% desk: computer 11.8%
fridge 1 7.7% dishwasher 10.5%
dryer 7.2% lighting 8.4%

hot water tank with heater 4.2% gas boiler 7.6%
rtv-kitchen 3.7% desk: computer + lamp 4.1%

kettle 3.4% office computer
equipment 2.8%

desk: computer 2.8% kettle 2.8%
central heating boiler 2.7% office lighting 2.6%

alarm 2.6% hall lighting 2.2%
router 2.5% microwave 1.2%

desk: computer + lamp 2.3% sum 89%
solar panels 2.2%

garage lighting 2.1%
terrarium 1.9%

sum 83%

In Tables 9 and 10, in bold, are receivers whose activation time depends only on the
human, causing stochastic changes in the shape of the electricity demand profile. One can
see that in residential buildings (buildings 11–14) at least 50% are such receivers. In the
service building (building 15), the same receivers depend not only on the user, but also on
tasks performed during the day, conditioned by working hours. An example is a computer
that is turned on at home as needed and in the office, it is turned on during work hours.
An exception is building 13, where the largest share in electricity consumption is attributed
to heating devices, the operation of which depends on the season and weather conditions.
Four heating devices consume approximately 75% of the annual energy.

The values of the PRD indicator for particular buildings are presented in Table 11. The
higher value of the PRD indicator, the greater the share of receivers controlled freely by the
user in the building’s energy consumption. The difference is clearly visible for building 13,
where 20% of the devices consume 95% of the energy. However, if we do not take heating
devices into account, then the PRD indicator increases from 0.12 to 0.6.

Table 11. The PRD factor for buildings. Source: built on the basis of author’s calculations.

PRD

building 11 0.45
building 12 0.5
building 13 0.12/0.6 1

building 14 0.45
building 15 0.15

1 In the case of building 13, if the energy for heating purposes is not considered, the PRD indicator will be
approximately 0.6.

5. Discussion

The use of statistical methods to forecast the energy demand profile undoubtedly
has limitations, as indicated in the text of the article. However, by using the proposed
method, some dependencies can be found. The accuracy of the forecast (Tables 7 and 8)
turns out to be inversely proportional to the ability to control the building’s energy demand
profile. This is due to the human factor, which is minimized in public buildings in favor
of operating schemes, which at the same time translates into fixed power supply schemes.
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By design, its reconfigurability is limited. In contrast to public buildings, the greatest
volatility of electricity is revealed in residential buildings. This is due to the randomness
of the procedure; even if the activities are repeated every day, they result from habits,
employment method and age of residents. This is because how energy is used is affected
by a number of random variables, such as weather and even well-being. In addition, an
important aspect determining the nature of the profile is the analyzed day, which can be a
working day, Saturday, Sunday or holiday.

The relatively simple method allows for the use of data to control the demand profile.
For industrial and service buildings, the control of the demand profile is limited by the
operating scheme. However, the profile of this type of object is relatively well predictable.
This is in part due to the repetitive shape for the energy demand profiles of commercial
and industrial buildings, which are highly dependent on the building process. The energy
consumption of individual receivers was analyzed (e.g., building 15), which allowed to put
forward such a thesis. For this reason, it is possible to adjust the operation of the energy
source that cooperates with the storage.

The proposed ratio
−

RSD is a determinant that allows to calculate that with a probability

of 68.3% (σ) the demand will be within ±
−

RSD. The following levels of the possibility of

using statistical methods for forecasting are assumed, depending on
−

RSD:

• very good: <10%
• good: 10–30%
• average: 30–50%
• bad: >50%.

The assumptions adopted in this way result from the analysis of the possibility of
using energy storage, i.e., for the average projection of the forecasts, the level of battery
charge in the EMS system should be predicted, allowing the use of 50% more energy than
a forecast. If we want to ensure a probability of more than 95% (2σ), additional available
capacity should be foreseen to provide the average forecast twice the available energy for a
given hour. For example, for a demand forecast of 1 kWh in a given hour, for a very good
forecast, the available capacity should be 1.1 kWh for a 68% probability or 1.2 kW for a 95%
probability. For an average forecast, it will be 1.5 kWh and 2 kWh, respectively.

For residential buildings, the accuracy of the forecast is low, while controlling the
demand profile is much easier compared to industrial and service buildings. The accuracy
of the forecast can be improved by planning the profile by controlling the selected receivers.
The results of measuring the energy consumption of household appliances have shown that
appliances with a significant impact on energy consumption are usually controlled by users.
Some of them could work according to a fixed schedule, e.g., washing machine, dishwasher
or hot water tank. These are devices with medium or high energy consumption.

Forecasting and controlling the operation of devices requires measuring the power
consumed in order to determine the activation time and energy consumption. The greater
the number of measured devices, the better the building profile is reproduced. At the same
time, it should be remembered that each measuring system consumes electricity. Each
single Fibaro measurement point continuously consumes approximately 1 W of active
power. In one of the buildings, 85 metering points were installed, resulting in an additional
annual energy consumption of more than 700 kWh. In this case, the additional energy
consumption will not be compensated by the savings resulting from the load control.

When the measurement data, especially the annual energy consumption of individual
devices, the Pareto principle is confirmed. 20% of the devices in the building consume
energy in the range of 80% to 95% of the annual energy of all devices. For building 13,
excluding four heating devices, this share is in the range of 80–89%. In these 20% of devices
there are controllable devices that can work according to a given schedule. Therefore, it
makes no sense to conduct the measurement for all devices, but to limit the measurements
only to controllable devices and the total measurement.



Energies 2023, 16, 1536 18 of 21

This article presents measurement systems implemented with the use of standard
smart home devices. They enable the measurement of power and energy of individual
receivers and the implementation of their control. It should be considered that the use
of such systems does not guarantee high measurement accuracy. In many cases, the
manufacturer does not specify it. This may be the result of reducing the costs associated
with checking the devices during release for production, and then the finished products.

An important aspect of measuring is to estimate the accuracy required to correct the
results. In many cases, the aim is to ensure that the instrument accuracy is high enough
to obtain a reliable result. In the case described, the reference point is the accuracy of
the forecast of electricity demand, which is usually tens of percent. Therefore, it can
be assumed that the measuring devices of the worst accuracy are still sufficient for the
purposes provided.

An additional inconvenience with the use of these devices is the asynchronous trans-
mission of data to the aggregate. The result is unsynchronized device profiles, often
distortions. This leads to errors in the forecasting of electricity consumption by assigning
the energy count to a different time interval. The result is incompatibility with the main
electricity meter. Fibaro wall-plug additionally sends "zero" values randomly. For this
reason, the interpretation of this waveform is difficult, because it is not known whether
the zero value is true (the device does not consume power) or if it is a false value. This is a
significant limitation of using the Fibaro wall-plug to record active power waveforms.

The limitation of the statistical method Is the need to access historical data on energy
consumption, preferably at least an annual electricity demand profile. The advantage is
that a 15 min profile is sufficient. It is also possible to forecast based on incomplete data,
but in this case an additional random factor resulting from the variable demand for energy
in different months can be expected, which is observable in Table 6. At the same time,
very high volatility in successive periods is important. For example, a good consumption

forecast in April for a shopping center (
−

RSD = 6%), and a very strong deterioration of the

forecast in May (
−

RSD = 34%) make forecasting unreliable.
Further research will be conducted to determine the impact of selected factors on

the accuracy of the forecasts. However, the assumption will be that they must be easily
accessible and do not require large computational effort and costly data acquisition. Initially,
it is assumed to take into account the current temperature, the possibility of determining the
type of day (working, Saturday, Sunday, holidays, night work, etc.), e.g., by introducing a
schedule and using a moving average taking into account local conditions in the long-term
forecast. Correlations between the proposed indicators and additional data and those
achievable in real EMS systems will be analyzed to determine which of these data and
indicators are useful for forecasting. It is planned to increase the analyzed buildings,
including the study of the same type of buildings.

The forecast results obtained using statistical methods may be sufficient to imple-
ment demand profile control algorithms to achieve a set profile or reduce daily energy
consumption. The statistical method can determine the probable daily energy consumption.
Additional information on the consumption of electricity by selected controllable can deter-
mine the probability of turning the device on a specific day and the impact of these devices
on daily consumption. In this way, it is possible to prepare an energy guard algorithm,
considering probable daily energy consumption and the impact of connected devices on
the total demand profile.

6. Conclusions

For effective operation of EMS systems, a forecast of the energy consumption profile
is needed. The quality of the forecast depends, among other things, on the available data
based on which the forecast will be implemented.
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There are many forecasting methods [22–39], but many of them require complex and
efficient data analysis systems, often using artificial intelligence to determine the behavior
of energy consumers.

The proposed relative standard deviation (RSD) and participation from random de-
vices (PRD) coefficient to determine the feasibility of using measurement data obtained
from the DNO operator or own measurements (e.g., Fibaro) allows to determine the possi-
bility of using a forecast based on simply statistical analysis, dedicated to low-cost solutions
that can be implemented in small and medium-sized buildings with relatively low energy
consumption.

The obtained results made it possible to compare the quality of the forecast in selected,
characteristic buildings from the SME sector and residential buildings, and to introduce
forecast quality levels. The good quality of the forecast is for the annual average coefficient
−

RSD that is less than 30%, which allows for the calculation of hourly energy demand with a
probability of 68.3% with uncertainty ± 30%, which is sufficient to reduce the requirement
for large energy storage systems controlled by EMS.

The presented method allows to easily disclose limitations in the quality of data
used for forecasting. Based on the results obtained, it can be concluded that industrial and
service buildings can be effectively predicted using statistical methods. The situation is even
worse with residential buildings. However, it should be emphasized that the method of
obtaining data for analysis and forecasting is problematic because they come from devices
from different manufacturers and their quality is not fully known. We only know Fibaro
and AEOTEC solutions. Data obtained from the DNO are standardized. The proposed
method can be used with any EMS system where energy consumption measurement data
is available. Including profiles downloaded free of charge from the DNO operator, without
the need to install your own measuring devices.
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