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Abstract: International agreements support the modernization of electricity networks and renewable
energy resources (RES). However, these RES affect market prices due to resource variability (e.g.,
solar). Among the alternatives, Demand Response (DR) is presented as a tool to improve the balance
between electricity supply and demand by adapting consumption to available production. In this
sense, this work focuses on developing a DR model that combines price and incentive-based demand
response models (P-B and I-B) to efficiently manage consumer demand with data from a real San
Juan—Argentina distribution network. In addition, a price scheme is proposed in real time and by the
time of use in relation to the consumers’ influence in the peak demand of the system. The proposed
schemes increase load factor and improve demand displacement compared to a demand response
reference model. In addition, the proposed reinforcement learning model improves short-term and
long-term price search. Finally, a description and formulation of the market where the work was
implemented is presented.

Keywords: price-based demand response; incentive-based demand response; reinforcement Q-
learning; demand coincidence factor; replay memory exchange

1. Introduction

Electrical systems are constantly changing due to modern technologies that seek sus-
tainability, reliability, and safety. In addition, international agreements significantly support
the modernization of electricity networks trying to minimize environmental impact [1,2].
An example of these policies is the Sustainable Development Goals (SDG) initiative carried
out by the United Nations. Its goals are to promote the efficient use of electrical energy and
to establish guidelines to promote smart cities [3]. This commitment includes 17 principal
goals and more than 150 punctual tasks, which the member countries agreed to achieve by
2030; this translates into actions that directly motivate the implementation of smart grid
technologies and the insertion of RES in the electricity supply chain.

In this sense, implementing less predictable and controllable RES presents problems
for the electrical system. The system is mainly affected by the uncertainty of support-
ing the energy balance [4], the lack of flexible sources to cover the supply ramps [3,5,6],
and the imbalance in electricity market prices, which is originated from the variation of the
primary resource.

Therefore, through the demand response, signals (short and long-term) can be sent
from the wholesale market to consumers. In the context of smart grids, demand response
(DR) is presented as an alternative to responding to the demand, known as flexibility. It is
even more interesting because it offers an excellent cost–benefit ratio for its implementa-
tion compared to other alternative sources of flexibility, such as expanding the electrical
network [7]. Therefore, DR becomes a practical application alternative that can support
energy transition and grid modernization. DR can be defined as the adaptation of electric-
ity consumption to available production; with specific prices and incentives, consumers
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reduce or increase their consumption in particular periods. The variation in demand is
carried out through two schemes that differ in the type of economic signal received by
consumers. In the price-based scheme, electricity service providers offer a variable price to
consumers. On the other hand, in incentive-based DR, rewards and punishments are given
to consumers based on their degree of participation [8].

Consequently, with DR, final consumers achieve substantial savings on their electricity
bills, and electricity market prices tend to decrease in size due to the demand reduction
when there are peaks that increase the use of expensive and polluting energy sources [9].
Furthermore, it increases competition between energy providers and the reliability of the
electrical system. All these result in a system with modern strategies and the ability to
adjust energy intelligently and in real time.

To our knowledge, large-scale DR-smart grid solutions have not been implemented
in power systems yet due to a lack of tools to understand and predict future consumer
behavior and engagement. Furthermore, the researched articles consider price-based
or incentive-based methods independently. However, a combination of both has not
been contemplated yet from a short-long-term perspective, which would bring essential
advantages to the electricity system, such as reducing price volatility and strengthening
consumer participation in response programs to the demand in the distribution sector.

In this sense, this work focuses on developing a short- and long-term DR model
based on prices and an incentive proposal that maximizes the benefit of electricity service
providers and consumers. In addition, since artificial intelligence (AI)-based tools are used,
the best signals were formulated that can reinforce consumer participation by changing
power consumption efficiently. This work uses modern reinforcement learning methods
and the characteristics of these approaches, which allows an agent (electricity service
provider or aggregator) to constantly learn and adapt to the environment (consumer
consumption) over time, and in this way contributes significantly to the integration of DR
programs to the power grid while learning from consumer behavior.

2. Literature Survey

This section presents the state of the art of economic planning strategies and demand
response schemes in smart distribution networks. In addition, the main contributions of
this work are detailed.

• Demand response, appliances and classification;
• Price-based classification;
• Incentive-based classification;
• Solution methods;
• Reinforcement Learning background.

2.1. Demand Response, Appliances and Classification

Research to convert the traditional electric system into a more efficient one has in-
creased exponentially to reduce the environmental impact. Consequently, solutions can be
found in the generation and transmission sector and on the demand side. Studies on this
topic have focused on demand-side management and smart pricing as tools to motivate
consumers to use electricity intelligently and efficiently [10].

In this sense, the proposed solutions vary from the installation of energy-efficient
appliances and the efficient management of lighting fixtures to the expansion of the installed
capacity of the system with DER and the implementation of dynamic electricity price
systems in which the rate of consumption varies hour by hour [11]. This article is based on
the solid relationship between demand-side management and smart grid networks, which
requires permanent control and monitoring of the demand [12].

However, demand management indispensably requires involving the participation
of consumers to achieve success in demand management. This is why DR is one of the
strategies that had the most development due to the evolution of information and com-
munications technology (ICT) and the growing research in smart networks. Furthermore,
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this strategy was shown to support the balance between generation and load in electrical
systems. Finally, it improves market efficiency and generates mutual benefits not only for
electricity companies but also for consumers [13,14].

Regarding the research benefits of DR, works related to reducing peak demand [15] and
managing congestion in the distribution network are included in [16]. Thus, this researches
mainly seek support for auxiliary services and the prevention of blackouts. Innovative
solutions were also found, such as transactive energy control (TEC), for continuous response
to system imbalance through intelligent economic signals [17]. In this sense, the TEC
developed research includes advanced innovative data communication structures such
as “Blockchain” data in [18]. That shows the strong relationship between DR programs,
AI-based tools, smart grids, and ICT.

The works on DR show a precise classification of the economic signal used to manage
electricity demand. Consequently, for price-based DR (PB-DR) using the time of use (ToU)
method and appliance scheduling was found in [19]. Here, the author optimizes consumer
restrictions and price changes to obtain a system that improves device decision-making.
It is essential to point out that the master controller (MC) obtains the energy prices in the
studied system and sends the demand forecast to the clients. Then, according to the contrast
of information between consumers and the MC, the best schedule with minimum prices
based on the forking algorithm is decided. Furthermore, a comprehensive examination of
the various applications of demand response can be found in reference [20].

2.2. Price-Based Classification

Regarding the real-time price method RTP, it was seen that this has been the most
progressive approach at present due to the ability to send economic signals to consumers in
real-time under the smart network scheme [9,21]. In addition, within the sub-classification
of RTP methods, the mechanism that is part of the hourly market is the most effective
one in demand [22,23]. Thus, there are also demand response programs in the electrical
systems, which are being tested to verify and measure the effectiveness and responses
of consumers. For this reason, some examples found in the literature appeared below:
first, the Independent System Operator of New England (ISO-NE) has implemented a
scheme that offers three types of DR to its consumers: RTP, real-time charging, and DR
day-ahead [24]. Moreover, some cases of DR in the United States are the SmartAC program
of PG&E, the Smart Thermostat Program implemented by North California Edison, and the
Gas and Electric Company of San Diego [25]. Finally, several studies on demand response
are being carried out in China [26]. The price-based DR advantages and disadvantages are
included in Table 1.

Table 1. Price-based DR.

Classification Advantage Disadvantages

Time of Use (ToU) ToU allows good planning possibilities for
consumers, easy to implement.

ToU presents a limited impact on supply/demand
and limited support for RES integration.

Real-Time Price (RTP)
RTP presents good consumer planning

possibilities, supports RES integration and
reduces peak demand.

RTP requires communication and measurement;
under this scheme, it is difficult for consumers to

plan their electricity consumption.

Critical Peak Price (CPP) CPP reduces the peak demand of the system and
shows preset price levels.

CPP has a limited number of hours of use,
a minor impact on peak demand locally and no

support for integrating RES.

2.3. Incentive Based Classification

Incentive-based IB-DR programs were developed to focus on the security situation of
electrical systems and the economic needs of the market. For example, the electricity service
provider performs demand management under the smart grid concept by controlling
heating and water heating equipment (turning them off entirely or changing their operating
cycle) [10]. Therefore, load control is related to concepts such as home energy management
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systems (HEMS) [27–29]. Thus, for the direct load control (DLC) scheme, the solutions
found send signals to the consumer who manages the loads in exchange for incentives [9].
In the same way, in [26], it is highlighted that the abandonment rate of the demand response
scheme is high if the demand side management (DSM) is frequently executed.

Furthermore, in [30], a DR-DLC scheme is designed considering network congestion.
Additionally, the self-consumption of distributed energy resources (DER) or the backup
generator is considered in [31]. In the same way, as in PB-DR methods, the advantages and
disadvantages of implementing incentive-based schemes are presented below in Table 2.

Table 2. Incentive-based DR.

Classification Advantage Disadvantages

Direct Load Control (DLC) DLC is easy to implement and reduces
peak demand.

DLC features a Limited number of hours
of use and minimal impact on the

supply/demand balance.

Interruptible or Cuttable Load/
Emergency Response

Interruptible load reduces peak demand
and is helpful for system requirements in

contingencies.

Interruptible charging has a limited
number of hours of use, problems

recovering charge after a while, and its
use is uncertain.

Demand bidding/buyback

Demand bidding/buyback reduces peak
demand locally, offers good consumer
planning possibilities, and can reduce

total system losses.

Demand bidding/buyback has a limited
effect on peak hours and requires a

legal framework.

2.4. Solution Methods
2.4.1. Classical Methods

Various methods have been used to solve the demand optimization problem in DR
programs. Within the literature, several techniques have been found, from action sequences
to intelligent process automation. Consequently, a classification is made between classical
algorithms and modern algorithms. Within the classical view, there are works on linear
programming (LP) [32] and nonlinear programming (NLP) [33]. In addition, mixed integer
linear programming (MILP) [34] and mixed integer nonlinear programming (MINLP) [35]
have been used to control binary variables, such as the switching on and off of electronic
components or loads. For the first case, in [36], the DR problem is solved through linear
optimization, whose objectives are to minimize the bills of residential consumers and the
waiting time for household appliances. Under this scheme, by combining the RTP method
with incentives (IB-DR), savings and load reductions in waiting time are achieved [33,37–39].
Finally, in [40], a DLC scheme is designed to minimize demand peaks in the service
provider company.

Likewise, in [23], a ToU method is formulated to manage the consumption of electrical
appliances by different consumers. The results of the previous work show a notable load
reduction, specifically during peak hours. In [41], the author used MILP for cogeneration
networks with storage systems. This study considered optimization as a multi-objective
function of an economic-environmental nature. In [42], MILP is used to bid between
microgrid generators in the context of smart grids. The approximation to the uncertainty of
wind and photovoltaic generators is made.

Similarly, in [43], the author introduces a new pricing scheme to mitigate peak demand
and reduce associated electricity procurement costs by eliminating the accumulation of
deferrable loads during low-price periods of time of use (ToU) pricing. The proposed
scheme incorporates a peak-to-average ratio (PAR) incentive on energy consumption
charges for each TOU price period, which is incorporated into consumer home energy
management systems (HEMS) under mixed-integer linear programming (MILP) and the
supplier ToU pricing computation. The proposed PAR incentive scheme was implemented
in a sample of 200 households, and the results showed that it effectively avoids deferrable
load accumulation, decreases power procurement costs, and reduces consumer electricity
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bills. Finally, the author manifests that future research should focus on implementing and
investigating peak rebound in real-time pricing.

From the above, it was seen that in cost minimization problems using linear pro-
gramming, if the energy consumption of consumers is considered to be discontinuous,
the problem becomes more complex than even a MILP. Furthermore, the operation of DSM
systems is based on deterministic rules and abstract models [44]. Therefore, its composition
based on stationary rules cannot guarantee optimization in front of continuous variable
change. In contrast, the models for DR are general approximations of reality and, therefore,
may need to be more realistic compared to the electrical system. Moreover, these models
are strictly limited by the skill and experience of the modeler.

2.4.2. Modern Methods

About modern algorithms for solving DR optimization, game theory has become
one of the most widely used. This method models the interaction of agents or actors and
the benefits of each of them [45]. In addition, it has significant disadvantages. For ex-
ample, the method does not consider innovation or mutation between the agent and the
environment because each actor has a defined static function [46,47].

The modern approach uses a computational technique known as dynamic program-
ming. With this technique, a course of action is decided considering future stages without
the need for experiments; the emphasis is on planning. The complexity of modeling energy
and economic transactions between consumers and the electrical system requires the use of
this approach to deal with the DR problem.

Dynamic programming is also relevant for handling uncertainties in DR problems;
this is a credit assignment problem since a reward or punishment must be assigned to
each interacting decision set to optimize actions balancing immediate and future costs [48].
However, since this technique is not equipped with intelligence, the functions are calculated
recursively, and this causes memory to keep increasing. In contrast, these data are, in most
cases, not used again. One tool that supports the modern decision-making approach is
the Markov theory. This theory is defined as a simplified model of a complex decision-
making process and mainly addresses the time-varying parameters involved in DR, which
complements the dynamic programming approach to improve further performance in
solving the problem.

One of the AI-based tools currently used in solving the DR problem is reinforcement
learning (RL). This algorithm allows an agent to continuously learn and adapt to the
environment with unknown information. One of the most significant advantages of this
approach is that it works even if the structure in the underlying Markov chain changes.
Therefore, this tool is used to solve real-life problems. A widespread example is Google
algorithms [49]. Such successful cases have solved problems without being programmed
to fix them. This method has been massively developed in the video game industry, where
information is obtained from all the players. Then, the best decisions are obtained in the
environment [50]. The technique that has given the best results in solving RL problems is
the Q-Learning method.

In this sense, AI can contribute significantly to the DR problem as it can automate
energy systems while learning from human behavior to minimize consumer discomfort
and increase human–controller interaction. Therefore, one of the essential characteristics
of the RL algorithm is its easiness to obtain and learn from human feedback over time.
In addition, in some instances, the thermal comfort of consumers can be used as a reward
for the controller. In this context, the lack of satisfaction with consumer needs would
generate negative rewards for the learning process.

2.5. Reinforcement Learning Background

The reinforcement learning (RL) approach is based on object-directed learning from in-
teraction (agent–environment) much more than other learning approaches within machine
learning. Specifically, the learning algorithm has no specific actions to perform but must
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discover which actions will produce a more significant reward through trial and error. That
is the goal of the algorithm: to maximize the reward. Furthermore, such actions may affect
immediate and future rewards, as current actions will figure out future scenarios. Thus,
in each state, the environment makes available a set of actions from which the agent will
choose. The agent influences the environment through these actions, and the environment
can change state in response to the action of the agent. Next, the process mentioned above
is graphically summarized in Figure 1.

Reward

� ∈ �

a ∈ !  

"Environment Agent

Figure 1. Reinforcement Learning concept.

Accordingly, it was found that one of the techniques that best understands consumer
preferences in a dynamic environment is RL, which is in fact state-of-the-art approach
focused on this method. Consequently, articles that consider DR programs based on prices
and incentives, consumer satisfaction, RL, consumer classification, and application in
practical cases were analyzed in depth.

In [40], an RL architecture is proposed for the best control of HVAC air conditioning
systems of an entire building to save energy considering thermal comfort while taking
advantage of demand response capabilities. The work mentioned above achieves a max-
imum weekly energy reduction of up to 22% by applying RL compared to a reference
controller. In contrast, the feasibility of applying deep reinforcement learning to control an
entire building for demand response purposes is proven. Thus, average power reductions
(or increases) of up to 50% were achieved, considering the limits of acceptable comfort.
It has been found in these works that the use of applications is improved. For example,
in [8], a method is proposed for managing a multipurpose energy storage system (ESS)
to participate in response programs for the demand with RL. The work above focuses
primarily on industrial consumers to provide them the opportunity to obtain added profits
through market participation in addition to offering an improvement for the management
of electrical loads. This paper also explores the benefits of using ToU rates, explicitly
showing that consumers can obtain more benefits due to changing their consumption from
one-time slot to another with a lower price.

Similarly, a neural network is established in [51] to build a series of strategies to obtain
control actions in discrete time. For this, RL is used as support to determine a policy that
establishes the optimal point for the thermostat configuration. One of the noteworthy
features developed by the author is the development of a new objective function truncation
method to limit the size of the update step and improve the robustness of the algorithm.
In addition, a DR strategy was formulated based on electricity prices according to the
time of use, which considers factors such as the environment, thermal comfort, and energy
consumption; the proposed RL algorithm is used to learn the thermostat settings in DR time.

In [52], the author proposed a centralized control strategy utilizing a single-agent
reinforcement learning (RL) algorithm known as a soft actor critical for optimizing electrical
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demand across multiple levels, including individual buildings, clusters, and networks. This
approach diverges from traditional rule-based control methods, which typically focus on
optimizing the performance of individual buildings. Thus, the evaluation of the proposed
controller revealed a cost reduction of approximately 4%, with a maximum decrease of 12%.
Additionally, daily peaks in electrical demand were found to be lowered by an average of
8%, resulting in a decrease in the peak-to-average ratio of 6–22%. However, it is essential to
note that the study also highlights a possible issue with price-based programs, stating that
these approaches can sometimes lead to unintended increases in demand during periods
of low electricity prices. Despite this, the study also notes that the adoption of multi-agent
coordination in demand response applications has not been widely adopted in recent years,
possibly due to the lack of understanding of its potential benefits in reducing peak demand
or altering daily load profiles.

A DR algorithm based on dynamic prices for smart grids is presented in [53]. Further-
more, the development and formulation of prices to deal with high and highly variable bid
prices in the context of RL are shown in this paper. For this, an hourly real-time demand
response approach is used. One of the advantages pointed out by the author is that with this
algorithm, reliability support is provided to the system, and it achieves a general reduction
in energy costs in the market. At the same time, the approach allows flexibility for the
system to react quickly to supply demand and correct differences in the energy balance.
In addition, a method presented supplies incentives to reduce energy consumption; this
occurs when market prices are high, or if the system reliability is at risk.

One of the motivations presented by the author to choose RL is the solution to the
problem of making decisions that occur stochastically and thus being able to maximize an
immediate and cumulative reward. The scenario presented has a single centralized network
operator that keeps, installs, and manages the electrical system. In addition, an electricity
service provider is formed of residential, commercial, and industrial consumers. Therefore,
the supplier plays a fundamental economic role in the energy supply since it buys the
energy from the wholesale market and sells it to consumers at retail prices.

Likewise, [54] presents a multi-agent reinforcement learning (MARL) algorithm for ad-
dressing the challenges of community energy management, specifically, peak rebound and
uncertain renewable energy generation. The proposed method utilizes a leader-follower
Stackelberg game framework, in which a community aggregator serves as the leader, fore-
casting future renewable energy generation and optimizing energy storage scheduling,
updating a Q-table, and initializing a community load profile for all residential consumers.
Residential consumers, acting as followers, predict their own renewable energy generation,
and schedule home appliances through a sequential decision-making process, utilizing
their own individual Q-tables. The proposed MARL algorithm was extensively evaluated
against state-of-the-art methods and was shown to be more efficient, reducing peak load,
average cost, and standard deviation of cost while effectively addressing the uncertainty of
renewable energy generation.

A hybrid DR mechanism is developed in [38], which combines prices and incentives
in real-time. This hybrid DR mechanism is modeled under the approach of a Stackelberg
game. Within this approach, the agents that participate in the mechanism are the network
operator, a retailer that performs the functions of a demand aggregator, and finally, the end
consumers. Similarly, in [55], these theoretical RL practical feasibility of approaches is
shown by implementing an experimental setup. This work, however, does not consider an
incentive scheme that reinforces the participation of consumers.

In the same way, in [56], an online pricing method is proposed considering the response
of consumers as unknown, for which the RL approach is used as a tool for decision-
making, offering the best incentives. In this work, it is considered that the response
behavior of the consumers is unknown, which complicates the resolution of the problem
with economic incentives. Seven deep reinforcement learning algorithms (with a transfer
learning approach) are empirically compared in [3]. Limitations in the RL and DR studies
are highlighted here, including methods for comparing methodologies and categorizing
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algorithms and their benefits. In [57], the method is framed under the scenario in which
the long-term response of consumers is unknown, thus, the author proposes an online
pricing method, where long short-term memory (LSTM) networks are combined with a
reinforcement learning approach to perform the virtual exploration. In addition, LSTM
networks are used to predict the response of the consumer, and through reinforcement
learning, the response of the consumer is framed to find the best prices to maximize total
benefit and avoid the adverse effects of myopic optimization on RL.

The author in [58], focuses on solving the industrial consumer demand response prob-
lem; the need for these schemes is evident due to the size of consumption in the industrial
sector compared to the residential or commercial one. In this article, the author proposes a
demand response scheme based on multi-agent deep reinforcement learning for the energy
management of the components of a discrete industrial process. Here, the simulation
results showed that the presented demand response algorithm can minimize electricity
costs and support production tasks compared to a non-demand response benchmark.

The articles that include the theme of reinforcement learning are extensively reviewed
in [59], emphasizing those algorithms used to solve each problem. In addition, the contribu-
tion made by the research mentioned above is that of proposing a basic framework to help
standardize the classification of demand response methods. In this extensive investigation,
the author briefly deduces that although many articles have considered human comfort
and satisfaction as part of the control problem, most have investigated single-agent systems
in which electricity prices do not depend on electricity demand energy. These characteris-
tics do not represent the electricity real-world behavior of markets since electricity prices
strongly depend on demand. The maximum demand can be shifted instead of reduced by
modeling these characteristics.

Among the articles that concentrate their study on electric heating is [60], in which a
model that focuses on improving the reduction in carbon emissions and the use of RES is
presented. Therefore, this study uses the Weber–Fechner law and a clustering algorithm
to build quantitative models of demand response characteristics. In addition, a deep Q
network is used to generate dynamic prices for demand aggregators. Specifically, this study
considers the quantification of consumer behavior of demand response participants and
the differences between consumers. Finally, intelligent electric heating management can
provide a favorable environment for demand response.

As has been already mentioned, demand response improves grid security by supplying
flexibility to the electricity system through the efficient management of consumer demand
while supporting the real-time balance between supply and demand. Thus, with the
large-scale deployment of communication and information technologies, distributed dig-
italization, and the improvement of advanced measurement infrastructures, approaches
based on copious amounts of data, such as multi-agent reinforcement learning (MARL),
are widely relevant in solving demand response problems.

Due to the massive interaction of data, it is expected that these management systems
can lead to significant threats from an information security perspective. For this reason,
in [61], the author suggested a robust adversarial multi-agent reinforcement learning frame-
work for demand response (RAMARL-DR) with increased resilience against adversarial
attacks. Therefore, the process contemplates formulating a scenario in which the worst
case of an adversary attack is simulated. In this case, in addition to the benefits of demand
response, it is possible to improve the resilience of the electrical system.

The impact of demand response in a long-term scenario is evaluated in [62], using
a model from the Portuguese electricity system in the OSeMOSYS tool. Three scenarios
were analyzed to obtain the potential long-term demand response, which differs by the
carbon emissions restrictions. This work showed the potentiality of the demand response
algorithm to face the problems of optimal management of resources in scenarios with a
high penetration of RES derived from the energy transition.

Similarly, in [50], an incentive-based DR program with modified deep learning and
reinforcement learning is put forward. First, a modified deep learning model based on a
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recurrent neural network (MDL-RNN) was proposed, which identifies the future uncer-
tainties of the environment by forecasting the wholesale price of electricity, the production
of photovoltaic (PV) sources, and the consumer load. In addition, reinforcement learning
(RL) was used to obtain the optimal hourly incentive rates that maximize the profits of the
energy service of providers and consumers.

In the literature, there are also hybrid methods that combine the reinforcement learning
approach with methods such as those based on rules, a sample of them is [63]; this study
investigates the economic benefits of implementing a reinforcement learning (RL) control
strategy for the participation in an incentive-based demand response program for a cluster
of commercial buildings. The performance of the RL approach is evaluated through
comparison with optimized rule-based control (RBC) strategies, and a hybrid control
strategy that combines both is also proposed. The study results indicate that while the RL
algorithm is more effective in reducing total energy costs, it is less effective in fulfilling
demand response requirements. On the other hand, the hybrid control strategy, which
combines RBC and RL, demonstrates a reduction in energy consumption and energy costs
by 7% and 4%, respectively, compared to a manually optimized RBC and effectively meets
the constraints during incentive-based events. The proposed hybrid approach is discussed
as a trade-off between random exploration and rule-based expert procedures that can
effectively handle peak rebound and promote incentive-based demand response programs
in clusters of small commercial buildings.

Within the bibliography, approaches that contemplate the electrical restrictions of
networks, as in [64], have also been found where a demand response approach based on
batch reinforcement learning is formulated. This approach has the objective of avoiding
violations of restrictions to the distribution network. Consequently, through the adjusted Q
iteration, the author calculates a secure network policy through historical measurements
of load aggregators. Thus, the wide use of the reinforcement learning approach to deal
with frequency regulation problems is shown in this study. It is also interesting to mention
the vital adaptability for unknown electrical networks achieved by using these artificial
intelligence-based approaches.

The demand response methodology not only shows promising results for the electricity
market but some studies have also demonstrated its significant relevance to achieving
benefits for the actors involved in a supply process, as is the case of the natural gas market.
For example, in [65], the point mentioned earlier was demonstrated in this approach, like
the electricity market. Furthermore, demand response is used for predictive management
in the multilevel natural gas market. In this case, it is shown that it is possible to achieve a
better trade-off between supplier profits, gas demand volatility, and consumer satisfaction.
In addition, the author developed a model based on the Markov decision process to
illustrate the dynamic optimization of energy prices. In that way, the results indicated that
the proposed method can achieve the objectives of peak reduction and valley filling in
different periods.

Accordingly, a model that helps consumer contribution to DR programs is developed
in this paper by combining the price-based DR approach with an incentive proposal.
Furthermore, this model is framed within modern AI techniques, specifically reinforcement
learning (RL). Consequently, the contribution of this work to the state of the art is its
proposal of a novel DR model that combines prices and incentives (PB-IB-DR) to efficiently
manage the active response of the end-consumer demand with reinforcement learning.

2.6. Research Gaps and Contributions

This work draws its contribution to the state of the art from an extensive investigation
of many previous works. The methodology includes the search through the keywords:
“price-based,” “incentive-based,” “short-long term,” “demand response,” and “reinforce-
ment learning,” resulting in highly related articles published after the year 2016, which are
shown in Table 3.



Energies 2023, 16, 1466 10 of 33

Table 3. State-of-the-art.

Reference Year Q-Learning Price-B Incentive-B Satisfaction Short-Term Long-Term ToU Real-World

[56] 2016 • • • •
[39] 2017 • • • •
[49] 2019 • • • •
[40] 2020 • • •
[57] 2020 • • • •
[58] 2020 • • • •
[50] 2020 • • • •
[60] 2021 • • • •
[3] 2021 • • • • •

[38] 2021 • •
[55] 2021 • • • • •
[8] 2022 • • • • •

[51] 2022 • • • •
[61] 2022 • • • •
[64] 2022 • • • • •

Own · • • • • • • • •

From the state of the art, the following unresolved problems stand out:

• Although there is research that considered real-world data in future scenarios that
show promising results, there is still a lack of a complete methodology that considers
the characteristics of electricity markets, such as the difficulty in sending signals to
consumers (satisfaction), the various rate options, price rates, incentives, and subsidies.

• The application of RL algorithms in demand response problems is a recent field of
research that has not been fully developed from a long-term perspective yet.

• Research regarding RL in demand response has been applied in ideal scenarios; there-
fore, neither market aspects nor the contextualization of an application framework
is considered.

• Most investigations do not contemplate different schemes and price rate options,
such as the time of use scheme, which allows a better transition and insertion of new
changes in the network, such as the massive insertion of RES or electro-mobility.

• Current methods have been successful in reducing peak rebound events; however,
these methods do not fully incorporate the modeling of consumer behavior in terms
of satisfaction and comfort. This would enable a more accurate formulation of prices
and incentives.

Thus, in this paper is introduced a DR scheme that integrates schemes based on prices
and incentives, motivating consumers to change their electricity consumption patterns,
which results from considering consumption satisfaction. It is also intended to establish an
optimal rate of prices and incentives in the context of modern markets. In addition, tools
based on the reinforcement learning framework are used in this work, which increases
the penetration rate of RES by providing flexibility to the electrical system and reducing
uncertainty in long-term planning. This results from including the signals of the wholesale
market in the formulation of rates and incentives and transferring them optimally to
consumers. Consequently, the aim is to achieve efficient electrical energy management that
allows consumers to manage new system agents, such as electro-mobility and demand
aggregators, taking advantage of all available RES. Furthermore, the proposed method
adds bidirectional dissatisfaction value for modeling users more accurately and considers
their behavior when determining demand response prices offered by the service provider.

Therefore, the purpose of this work is to develop the following:

• A DR model that combines demand response models based on prices and incentives (P-
B and I-B) to efficiently manage the active response of consumer demand considering
their satisfaction.
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• A price scheme in real time and by the time of use allows demand management to
minimize the variability of electricity supply prices that motivates end consumers to
change their consumption patterns.

• Description and formulation of a market in which the implementation of this study is
proposed that includes an adjustment market to support deviation in demand based
on short-term benefits for consumers and service providers.

3. Problem Formulation

This work is situated in the context of two markets. Specifically, it has established a
wholesale market where generation plants sell their energy in two schemes: on the one
hand, a day-ahead market (d− 1) Figure 2a closes a settlement over time (h = 24) and,
on the other hand, an adjustment market (d) Figure 2b is established in real time in a
period of h. These two markets enable receiving price signals directly from renewable and
all available generation units Figure 2c. Due to these characteristics, this scheme merits
partitions in two stages. Thus, on the one hand, a time scale of da = h ∈ H → {1...24} day-
ahead (d− 1) time steps is denoted by a vector; on the other hand, an hour (h) represents
each hour at the current day (d) represented by rt. It is essential to mention that the vector
da that is obtained is adjusted every hour by the lapse rt, as explained in Figure 3.

Retail Market

{1 . . . U}

Wholesale Market

Spot 

Market

Real-�me 
Market

Payment 

(spot price)

Payment 

(spot price)

Reinforcement 

Learning 

selling price, demand

price/incen!ve

   Consumers                                     Distribu!on                        Transmission                                            Genera!on

a
d

b

c
f

e

Figure 2. Market Scheme.

Among the actors participating in this market, retailers Figure 2d take on a substantial
relevance in this work because the reinforcement learning tool Figure 2e will allow economic
planning of the resale of energy from the wholesale market to consumers. For this reason, it
is required that the planning must be carried out in the two time periods (day-ahead
and real-time, respectively). In this sense, retailers must balance energy supply and
demand economically. Traditionally, this balance was achieved by adapting the supply of
electrical energy to the demand of the system, that is, the consumers. However, due to the
considerations mentioned earlier of the massive penetration of non-conventional RES, it
is necessary to have flexibility in demand, which will also allow demand to be adjusted
to supply.

Therefore, the retailer needs to obtain information from consumers and market prices
(Figure 3). In this sense, on instant h = 0, the retailer, according to forecast demand sent
to the market, receives the price of energy from the spot market for 24 h of the following
day. Moreover, in the same way, generators, according to the demand that must be covered,
offer prices in the spot market. Once this premise is fulfilled, in the day-ahead stage
da = [1...24], the retailer obtains the energy prices of the following day and proceeds to
carry out the planning of the energy balance. Therefore, we will focus the analysis on the
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electricity retailer that economically manages the resale of energy while maximizing its
profits. Consequently, for this function, it is necessary to obtain wholesale energy prices
from the market for 24 h of the following day. From the consumers Figure 2f, historical and
processed data of their demand behavior is required, from that information it is obtained
their elasticity, behavior in system peaks, and load factor, among others.

t=da t=rt

Genera�on

Spot Market Real-�me Market

Service Provider / Retailer

Reinforcement Learning

Customers Customers

selling price

selling price

Payment

(spot price)

Payment

(spot price)

(s
t
,a
t
,r
t
,s
t+1
)=price, incen�ve, spot price

Payment (price) Payment (incen�ve)

  u,h !  u,h

"
h
da

"
h
rt

Figure 3. Temporality of the proposed model.

The retailer sends the information from the spot market and consumers to the algo-
rithm. These data constitute the input for the reinforcement learning algorithm, which will
process these data, return a price to consumers as an output, and predict the variation in
demand (demand response). Therefore, the RL algorithm enables the period time = h (rt)
since it first calculates an electricity sale price for the 24 h of the following day, which is
sent to consumers at time = 24 (da); these prices can be received both in a domestic energy
management system and directly by consumers. In other words, the consumer may or may
not participate in their consumption in the demand response program.

Once consumers receive the 24 prices for the next day, as mentioned, they can plan their
consumption according to their elasticity. However, this proposed approach to reinforcing
consumer participation also operates in the real-time adjustment market. Therefore, we are
now going to focus the analysis on this scenario. At this moment, the algorithm already has
historical information on consumers. Therefore, the algorithm can estimate the possible
behavior of the consumer, which allows obtaining a priori incentives; these incentives will
be sent in connection with a satisfaction function. In this sense, the consumer also receives
a finite number of incentives for hours required to change the behavior, and the elasticity
has low values; this approach is based on the critical peak price (CPP) mechanism.

For the instant of time t = h (rt), the algorithm compares the estimated behavior of the
consumer through the historical ones and, throughout each hour, modifies its elasticity and
a proposed factor, called the experience factor, which allows, on the one hand, modifying
and personalizing prices to obtain incentives based on the experience of their behavior
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throughout the day. However, it is essential to point out that the algorithm considers a
possible scenario when the consumer does not respond to the demand response program;
that is, the consumption is not modified compared to the historical one. In this case,
shipping pricing will approximate a less variable and approximate pricing scheme (similar
to a ToU time of use scheme). Furthermore, if the consumer does not respond to this
simplified pricing scheme, the scheme will eventually convert to a fixed pricing scheme,
known as a flat rate. Here, the question could arise as to whether the scheme could
first consider a flat rate and then become a real-time hourly price scheme, an action that
the algorithm can effectively carry out. However, it is not the focus of this work since
the proposed hypothesis considers, in the first instance, that the consumer is willing to
participate in modifying the electricity demand.

3.1. Reinforcement Learning Overview

The reinforcement learning (RL) approach addresses the problem of how an agent
can maximize the benefit that it can obtain in an environment by perceiving the reaction
(reward) that a state (state) gets due to an action (action). The objective of this agent is to
learn which set of actions (policy) will allow the highest performance (return) from the
environment, so it is understood that each action modifies the environment; this process is
based on interactive learning between the agent and the environment. The aforementioned
is presented in Figure 4.

Reward

 

$ $

Action

s ∈ "

 

#

e

s ∈ "

Figure 4. RL concept.

During reinforcement learning, the agent constantly interacts with the environment.
First, the agent acquires the state and uses this state to generate an action and a decision.
Then this decision will be made in the environment, which will generate the next state and
the reward for the current action according to the decision made by the agent. The purpose
of the agent is to obtain as much reward as possible from the environment.

Reinforcement learning is the third primary machine learning method besides super-
vised and unsupervised learning. For example, supervised learning is based on learning
from a training set provided by an external supervisor. Meanwhile, unsupervised learning
is a typical process of finding hidden structures in unlabeled data. Finally, reinforcement
learning focuses more on learning than on results purely from the interaction between the
agent and the environment, which poses a unique challenge defined as the balance between
“exploitation” and “exploration”, which is to achieve a balance between the actions you
know and new actions unknown.
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Consequently, reinforcement learning is based on a trial-and-error learning interaction,
where learning generally does not have direct orientation information; the agent must
continuously interact with the environment to obtain the best policy (Policy) through
trial and error. Moreover, in this approach, rewards are delayed; that is, instructional
information for reinforcement learning is rarely provided up front and is often provided
after the fact (last state).

Within the elements that make up the reinforcement learning approach is the envi-
ronment, an external system in which the agent is located; here, the agent can perceive a
particular system and perform specific actions depending on the state it perceives. Further-
more, the agent is a system embedded in the environment that can change its state through
its actions. Therefore, at first it is necessary to build a model that considers these elements.
It is necessary to model the consumers with their respective benefits for the environment.

3.2. Modeling of Electricity Consumers

The consumer model comprises a chain of elements that make up the individual
benefit. Within this chain of elements is found, for example, the value of the energy
purchased from the service provider (energy price), the incentive granted by the demand
response (reduction or increase), the decrease or increase in demand in each period, and the
cost of dissatisfaction. In this work, two types of consumers have been considered: on the
one hand, consumers who buy energy through an RTP and on the other hand, consumers
who purchase energy through a time of use price scheme ToU. In this context, RTP and ToU
consumers can be incentivized to perform demand responses. Specifically, the benefit for
RTP consumer is presented in Equation (1) , and the formulation for consumers (ToU) is
determined in Equation (7).

Ubenu,h =
U

∑
u=1

H

∑
h=1

[ηu · (∆Cu,h · µu,h)− (Cu,h · ru,h) + ηu(1− ρ) · (φu,h)] (1)

φu,h(Cu,h) =
βu,h

2
· (Cu,h)

2 + Cu,h (2)

βu,h > 0 (3)

ηu =
(νu,end − νu,st) · νu,DR

νtot
(4)

where β represents the preference of consumer regarding the willingness to perform
demand response; therefore, the higher value indicates that the consumer adopts a con-
servative stance to reduce consumption the above is shown in Figure 5. In this example,
while the value of β increases, the consumer is willing to reduce his consumption for his
electricity demand. Consequently, the β factor is a value that must be represented for
each consumer. A parameter has also been added to measure experience throughout the
execution of the DR model (Figure 3). In this sense, νu,st represents the time defined in
hours in which the first economic incentive is sent to each consumer, while νu,end defines the
current or final time of the last incentive sent to consumers from the provider. In addition,
the term νtot represents the experience of the consumer participation in the DR model
while the time incentives are applied. Finally, νu,DR represents the number of times the
consumer participated in the DR model as a member. Consequently, ηu is a parameter
that will reinforce those incentives sent by the service provider to consumers who actively
participate in reducing their demands.
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Figure 5. Unidirectional dissatisfaction value.

However, within this approach, it is necessary to analyze not only the decrease in
consumption but also the increase and its influence on consumer satisfaction; that is,
a model that considers these two scenarios is necessary, for example, the above is shown in
Figure 6. On the one hand, the model considers the scenario where a reduction in demand
consumption represents a cost of dissatisfaction that increases when this decreases. On the
other hand, it is considered when the consumers receive an economic incentive to increase
their consumption, which reduces the cost of dissatisfaction.
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Figure 6. Bidirectional dissatisfaction value.

φu,h(Pu,h, Cu,h) = Pu,h · βu,h(
Cu,h

Pu,h
)3 − Cu,h (5)

βu,h > 0 (6)
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φu,h represents the consumer satisfaction function; this function quantitatively models
satisfaction based on the difference between the nominal demand and actual consumption
of consumers. If the consumption is less than the demand, the value of the function is
positive, which means that the consumers are not satisfied, which results in a decrease in
the representative cost for the final consumer. In addition, the function value increases
faster as the actual load decreases, representing rational consumer behavior concerning
demand response. On the other hand, if the consumption is greater than the demand of
consumers, the value of the function is negative, which means that the consumers are
satisfied. However, the slope of function decreases as the actual load increases because con-
sumers will not be infinitely more satisfied when using more electricity. This bidirectional
satisfaction function denotes a key attribute that confers a significant benefit in mitigating
peak rebounding effects, mentioned in the Demand Response (DR) approaches outlined
in [43,52,54,63]. Finally, when the actual load is equal to the consumer demand, the value
of the function is zero. Then, for those consumers who are willing to add themselves to an
hourly rate that varies depending on use, the following Equation (7) is established [66,67]:

UToUbenu,h =
U

∑
u=1

H

∑
h=1

[
ηu · (∆CToUu,h · µu,h)− (CToUu,h · ru,h) + ηu(1− ρ) · (φu,h)

]
, (7)

where ru,h represents the retail price offered to consumers by energy providers. This price
can vary hourly or by time slots. It is proposed to carry out a previous grouping that will
serve as input for both the short-term and long-term reinforcement learning algorithm.
Consequently, consumers have been classified based on their behavior and influence on the
demand curve. The classifier uses weight variables such as the concurrency and coincidence
factors. These indexes represent the inverse diversity factor and the relationship between
the demand of each consumer and the maximum demand set of consumers over the sum
of the maximum individual demands expressed as a percentage. The influence of the
coincidence factor is determined by the habits of the population and the climatic conditions,
among others.

3.3. Modeling of Service Provider

In this sense, the electricity reseller will be called a service provider (SP). In this work,
the SP, aggregator, or marketer has been modeled as an agent of the electricity market that
obtains energy from the wholesale market in the two proposed schemes. On the one hand,
the SP buys power one day before in the “day-ahead” market, and on the other hand, it also
buys energy every hour in the “real-time” market. In this sense, the electricity purchased
in either of the two markets is then sold to distribution consumers. Therefore, the SP will
obtain its benefit from this resale of energy. However, as explained above, the SP is not in
charge of the maintenance and operation of the distribution networks; it only fulfills the
function of energy commercialization. Consequently, the utility of the business of SP results
from the sale of energy in both short- and long-term markets. Therefore, the function that
represents its utility is expressed as follows:

SPdabenu,h =
U

∑
u=1

H

∑
h=1

[
(∆Cu,h · ru,h) + (∆CToUu,h · rToUu,h)−Ω · µu,h · (∆Cu,h + ∆CToUu,h)− (Cu,h · zhda

)
]

(8)

Ω =


0→ SPbentot ≤ SPbenre f

1→ SPbentot > SPbenre f

(9)

SPbentot =
U

∑
u=1

H

∑
h=1

SPdabenu,h (10)

SPrtbenu,h =
U

∑
u=1

H

∑
h=1

[
(∆Cu,h · ru,h) + (∆CToUu,h · rToUu,h)− µu,h · (∆Cu,h + ∆CToUu,h)− (Cu,h · zhrt)

]
(11)
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µmin ≤ µu,h ≤ µmax (12)

In this sense, it is necessary to note that the methodology considers wholesale market
prices in the day-ahead and real-time markets. Therefore, a neural network has been used
to predict this price and thus reduce the uncertainty of wholesale price. With this, it will
be possible to estimate the utility the SP will obtain under the two schemes. In addition,
data from the Argentine electricity market has been used [68]. The estimation of these
parameters using a neural network under the following parameters. For prediction error
measurement, the root-means-square error is used as follows.

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(13)

where yi is the expected result and ŷi is the model prediction.

3.4. Objective Function

The objective function presented below considers the maximization of each of the
individual benefits, that is, for consumers under a real-time price scheme and those who
purchase energy from the supplier through a price defined by time slots.

rtda = max
U

∑
u=1

H

∑
h=1

(Ubenu,h + UToUbenu,h + SPdabenu,h) (14)

rtrt = max
U

∑
u=1

H

∑
h=1

(Ubenu,h + UToUbenu,h + SPrtbenu,h) (15)

3.5. Demand Response Scheme

A detailed methodology scheme used in this work is presented in this section and
is described in Figure 7. Once the data from the meters installed in each consumer are
obtained, the elasticity is calculated as determined in [69]. Once the elasticity calculation
is performed, these data are classified using the k-means grouping algorithm. For this
purpose, the pseudo-code used for the grouping is presented in the Algorithm 1.

Algorithm 1: Cluster of consumers C-ABD.
Input: Cu
Output:
Initialize variables u, i, k

for all consumers in U do
Phu: Find the time of maximum power
Mpu: Calculate the maximum power of the set of consumers

for each data set of Phu, Mpu do
Compute FCIu . (Figure 8)
Construct k nearest neighbors set of consumers in U
Ck = argmin‖xi − uk‖2

end
for each j in k do

uj =
1
N ∑N

i=1 xi

end
end
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Figure 7. Flow Chart Model.

In this sense, the characteristics that have been useful for clustering the typical curves
of consumer demand have been the coincidence factors, the same ones shown in Figure 8.

In this context, with the data resulting from the classification and the data set of the
wholesale market, the input data are made up, which, in this case, will be those that make
up the inputs of the two reinforcement learning approaches, on the one hand, of short term
and long term. Therefore, in this sense, reinforcement learning is proposed at each stage.
However, on the other hand, the RL approach focuses on the interaction between the agent
and environment rather than learning techniques such as supervised and unsupervised.

For this reason, it is necessary to formulate, in the first instance, the environment;
in this case, it is made up of the energy measurements of each consumer. On the other
hand, there is the agent, which comprises processing from the perspective of the service
provider, aggregator, and marketer. Therefore, these two agents interact in a discrete-time
sequence t ∈ T. When the agent observes the change in the RL environment due to
an action, it establishes state observations. A state S comprises all the parameters the
marketer or demand aggregator obtains from the consumer. The agent actions A are the
prices/incentives offered to the consumers. Finally, the final reward of the approach was
proposed as the set of rewards (benefits) presented in Equations (19) and (20), denoted
as rt.
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Sda : [∆Cu,h, ∆CToUu,h , Zhda
, Cu,h, φu,h] (16)

Srt : [∆Cu,h, ∆CToUu,h , Zhrt , Cu,h, φu,h] (17)

Au,h : [µu,h, ru,h, rToUu,h ] (18)

U

∑
u

H

∑
h

rtda =
U

∑
u

H

∑
h

rUbenu,h
+

U

∑
u

H

∑
h

rUtoubenu,h
+

U

∑
u

H

∑
h

rSPdabenu,h
(19)

U

∑
u

H

∑
h

rtrt =
U

∑
u

H

∑
h

rUbenu,h
+

U

∑
u

H

∑
h

rUtoubenu,h
+

U

∑
u

H

∑
h

rSPbrtenu,h
(20)

Within these actions, it is essential to define a policy π. This policy is a rule that
the agent must use to decide what to do given the knowledge of the current state of the
environment since it represents the function that maps the action A to the state S .

Q
(
sdau,h, au,h

)
= Q

(
sdau,h, au,h

)
+ α · [ r

(
sdau,h, au,h

)
+ γ ·Q

(
sdau,h+1, au,h+1

)
−Q

(
sdau,h, au,h

)
] (21)

Q(srtu,h, au,h) = Q(srtu,h, au,h) + α · [ r(srtu,h, au,h) + γ ·Q(srtu,h+1, au,h+1)−Q(srtu,h, au,h)] (22)

Therefore, the pseudo-code shown in Algorithm 2 is characterized by having a memory
that stores the optimal policies of the L-t RL algorithm. This tuple of policies serves as a
support so that in the first instance, the agent S-t can start without considering an e-greedy
policy but proceed with this a priori tuple and then start iterating, maximizing the reward.
Every time the agent obtains an optimal policy, the S-t Q-learning algorithm stores its tuple
to make a trade-off between the two short-term and long-term approaches. Therefore, as in
Figure 9, Agent L-t obtains from the environment, state, and rewards (sh, ah, rh, sh+1) due
to the actions ah+1. With this information, the Q-table is obtained. In addition, through
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the policy interaction approach, the actions that maximize the Q-values are found, that
is, the rewards rh of Q∗(sh, ah ) As an output of the L-t Q-learning algorithm, the optimal
policy π∗(Sh) is obtained and stored in the replication memory of the experience. Once
the temporality change has been made, as explained in Figure 2, the agent searches for the
actions that maximize the max(Q-value) reward. In this sense, the agent already has part
of the previous knowledge and uses the iterations of the L-t agent as input for the optimal
policy π∗(Sh) search.

Algorithm 2: ERM Q-learning.
Input: Ck, Cu,h, Ctouu,h, zhda
Output:

for each consumer in U do
Search Lt-transition (su,h, au,h, ru,h, su,h+1) in ERM

Initialize
{

Q(su,h, au,h)→ arbitrarily, ERM is empty
Q∗(su,h, au,h), otherwise

while au,h = max Q∗(su,h, au,h) do
for each episode τ do

Initialize su0,h0
Choose an action a within the state s within a policy from Q∗(su,h, au,h)

for each step of an episode: do
Choose an action a, observe r and su,h
Choose an action au,h+1 within the state su,h within a policy from
Q∗(su,h, au,h)

Policy Interaction Lt-Algorithm Q
(

sdau,h
, au,h

)
. Equation (21)

su,h ← su,h+1, au,h ← au,h+1
end

end
end

Store Lt-transition (su,h, au,h, ru,h, su,h+1) in ERM

Initialize St-Algorithm with Q
(

s∗u,h, a∗u,h

)
from ERM . Figure 9

Update St-transition (su,h, au,h, ru,h, su,h+1) in ERM
end
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4. Result Analysis
4.1. Application Scenario

This work has taken as input data, the data provided by the smart meters of the
consumers in a distribution network grid. This electric network is part of an innovation
project, “Caucete Smart Grid” This project aims to transform part of the current electrical
distribution network of the City of Caucete (placed in the province of San Juan—Argentina)
into an innovative and modern network [70]. This update will improve the operation,
control, and electrical performance of network. The goals of the project are to contribute
to energy efficiency (electricity) and a better quality of service to maximize global and
comprehensive benefits for consumers, the electricity company, and society in general,
increasing social benefits. In addition, it looks to promote, in turn, the use of RES for
electricity generation, such as photovoltaic solar energy. Finally, the ability to provide the
system with an advanced measurement infrastructure to show consumption patterns and
achieve a sustainable system with innovative strategies is viewed.

This approach will support the “Caucete” smart grid project by enabling or enhancing
consumer participation in a demand response program, supplying economic targets for
electricity consumers and retailers. For this, the method has been framed within a day-
ahead market. On the one hand, a reduction in the consumption price or specific discounts
will be achieved for consumers by including incentives (concerning their degree of par-
ticipation). In addition, it will be possible to provide the electricity system to consumers
with active involvement and elastic demand. On the other hand, among the benefits that
electricity retailers will obtain is improved planning of its usefulness and having a tool that
allows prompt response to events such as a reduction in supply.

Moreover, under this approach, other actors indirectly receive aim from the demand
response, as is the case of operators and electricity companies that will be able to count
on a flexible tool that allows them to face the challenges of technological changes such as
decarbonization or the entry of agents such as electric vehicles, and so on. Thus, electric
companies can plan their expansion better by having a DR program. Specifically, by having
an elastic demand, it will be possible to balance the loads to avoid the underuse of equip-
ment in electrical infrastructure. Finally, the electricity system will be able to use its energy
resources better to maximize the use of RES [71]. As mentioned in this work, the electrical
power and electrical consumption measurements come from the “Caucete” smart grid
project; therefore, the measurements of each consumer are obtained, and through Algorithm
1, they are classified by their incidence in the peak (internal or external coincidence factor).

First, a consumer whose electricity consumption does not coincide with the peak of
the system and occurs after 8:00 p.m. was selected. However, this consumer has its peak
between 1:00 p.m. and 7:00 p.m. Therefore, the cluster must detect this behavior and
group the consumption curves according to the DR requirements. In this case, in Figure 10
(blue), within the cluster options, a curve that covers the peak of the consumer is no longer
considered, which was considered in Figure 10 (red). Finally, the behavior of the different
variables is shown in Figure 11.
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Figure 11. Peak hour VS Energy peak VS CF.

Likewise, the residential consumer contemplated for this work was selected. The result
of the classification for a residential consumer is shown in Figure 12. Furthermore, Figure 13
shows how the classification adequately separates each data set into the corresponding
neighborhoods. In addition, since each consumer needs an adequate separation of clusters
and a calculation of the number of clusters, the Calinski-Harabasz criterion is used to obtain
the optimal number of clusters for each consumer. In this case, for the same consumer,
the result is 4, as shown in Figure 14.

0 5 10 15 20 25

Time [hours]

0

5

10

15

20

25

30

35

P
o

w
e

r 
D

e
m

a
n

d
 [

k
W

]

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 12. Cluster-Residential Consumer.



Energies 2023, 16, 1466 23 of 33

�15 �10 �5 0 5 10 15

First principal component

�8

�6

�4

�2

0

2

4

6

8

10

S
e

co
n

d
 p

ri
n

ci
p

a
l c

o
m

p
o

n
e

n
t

Cluster1
Cluster2
Cluster3
Cluster4
Centroids

Figure 13. Clusters and Centroids.

Evaluation of Optimal Number of Clusters

2 3 4 5

Number of clusters

0

50

100

150

200

250

300

C
ri

te
ri

o
n

 -
 C

a
li

n
sk

i-
H

a
ra

b
a

sz

Optimal number of clusters is 4

Figure 14. Optimal Number of Clusters.

The price at which a retailer or aggregator buys energy is needed as input to the algo-
rithm from the wholesale market side (day-ahead market, real-time market). In addition,
as shown in Figure 7, it is required to forecast these values to reduce the volatility of these
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prices through the data estimation and forecasting process. Therefore, the prices offered by
the national energy regulator (CAMMESA) have been taken as a reference. The data was
estimated through an intelligent network to forecast time series.

To predict the values of future time steps of step, we trained a stepwise regression
LSTM network, where the responses are the training steps with values changed by a
single action. The data was configured as 90% for training and the other 10% for testing.
In addition, the LSTM layer with 128 hidden units was used. This LSTM network was tested
with the following parameters, with three algorithms, namely Adam, SGDM, and RMSProp.
This test shows that the algorithm with the best result in terms of error (RMSE) is Adam;
therefore, this algorithm was chosen, Figure 15.
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Figure 15. Training process.

4.2. Long-Term Q-Learning

After obtaining the price forecast data with the consumer classification using the
C-ABD algorithm, the L-t Q-learning algorithm is executed. The typical curves of each
consumer are required, and one of the curves resulting from the clustering process was
selected. Specifically, it is shown in Figure 16 how real-time pricing looks to move away
from a flat price signal towards a dynamic pricing scheme. This price variation reduces
consumer peaks, considering maximizing at the same time the benefits of the consumer
and the marketer or aggregator.
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As shown in Figure 16, in addition to the RTP and ToU prices, a static ToU rate was
proposed that considers the schedules previously established by the national electricity
regulator. In this case, it is necessary to mention that the ToU dynamic pricing scheme can be
established at any time, considering three price levels to facilitate consumer participation.

Figure 17 shows how, by including a wholesale market price signal and matching
factors, the share of consumer demand is achieved to reduce the peak of the system (set of
consumers). Furthermore, it is observed that the approach no longer recognizes the peak
of consumers as the target to reduce. Therefore, the hours in which consumer demand
peaks present moderate price signals against the scenario without considering coincidence
factors. These scenarios are presented in Figure 18, as well as the variation in demand due
to the new price signals. It is essential to point out that the static time of use price signal,
in this case, is inefficient because it does not obey the dynamic behavior of demand; this is
a feature known in advance. In addition, because the method considers the bidirectional
satisfaction expressed in Figure 6, it can be seen how the algorithm offers prices that
motivate the consumer to increase their consumption. This characteristic is observed for the
first consumption hours of the day. Therefore, it is observed in Figure 17 how the consumer
obtains prices that consider an elasticity shown in Table 4 [66].
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Table 4. Elasticity values.

Hours of the Day Elasticity

(18:00–23:00) −0.7
(05:00–17:00) −0.5
(24:00–04:00) −0.3

In this sense, it is shown in Figure 18 that the consumer effectively reduces consump-
tion at the time established as the peak of the system. Therefore, the demand response
objective is achieved. On the other hand, because the model offers consumers a lower
price than a flat rate, it is observed that in these hours, the electricity consumption tends to
increase to a lesser extent, but it fulfills the transfer function of the system peak.
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The prices obtained from the reinforcement learning approach result from maximizing
the benefits of each of the actors; for this reason, Figure 19 shows the behavior of the
accumulated reward for the formulation of demand response prices, considering the first
three clusters shown in Figure 12. As can be seen, the algorithm manages to maximize its
objective in around 600 episodes. In this case, the algorithm has been configured so that the
number of episodes is 1000. In addition, it is observed that the algorithm looks for similar
strategies for the three cases, which points to similar growth.
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4.3. Long Short-Term Q-Learning

The results of the model, defined in Figure 20, will be presented in this section. For this
analysis, the same consumer analyzed in the previous section was taken in the first instance;
it will be considered that the consumer has already received a price scheme and responded
to the day-ahead signals. Therefore, the model will seek to offer new adjustment prices
to promote an even more robust response and sends economic incentives based on new
consumer demand to reinforce responses to energy spikes. As can be seen, the consumers
have reduced their consumption of it when the system peak is encountered. In other words,
the model formulates the incentives by observing the peak of consumers and downplaying
the peak of system.

The preceding is because the consumer no longer has excessive consumption during
system hours, which allows him to receive price signals according to his behavior. Conse-
quently, the model seeks to reduce the peak of consumers at 10:00 a.m. and encourages
them to increase their consumption during off-peak hours. Finally, it can be seen how,
with these two approaches, it is possible to encourage consumers to respond to two specific
events effectively. On the one hand, the need to reduce the demand peak that coincides with
the peak of the system, and on the other, when it is necessary to maximize the load factor
of the distribution network by increasing consumer consumption during off-peak hours.
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Figure 20. Long–Short term Q-learning.

A horizon of four days was established to determine the prediction of the model
and the reference consumer data to verify that the algorithm understands the long term.
In addition, it verifies that the model transfers data through shared memory between the
short and long-term approaches to improve performance and the search for the best solution
possible. In this sense, it can be seen in Figure 21 how in the long term, the algorithm
finds the best prices to reduce not only the peaks of the system but through incentives;
it manages to determine the long-term peak, generating a signal that can even support a
direct load control scheme.
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Figure 21. Demand variation/four days.

In this document, we measured the performance of the proposed pricing schemes
based on two metrics. In the first place, the total change in electrical energy per day,
called the variation in demand, was taken as a reference. Consequently, this demand
variation factor DV considers the relationship between consumption before any demand
response action and the same consumption after implementing a demand response scheme.
The above factor is expressed in Equation (23).

DV =
origCu − newCu

origCu
(23)

In addition, we also measured the average load factor of consumers to compare
the formulation of prices and if it manages, despite the actions to respond to demand,
to improve the load factor. This metric can be extrapolated to a measure that represents
the high peak consumer demand and the effectiveness of the pricing scheme in displacing
electricity demand. For this, Equation (24) was taken as a reference.

LF =
AvL

Max(Lh)
(24)

With the indices shown in the previous equations, it has been possible to measure the
performance of the presented model; therefore, in this case, the evaluation is presented
considering a sensitivity in the elasticity for the same consumer (Figure 22).

Consequently, it is shown as, from a minimum participation value, the real-time
and time of use rate presented by the model increases the load factor compared to the
demand response that only takes the reduction into account (reference model). In addition,
the variation in demand was considered, and it has been possible to determine that,
as observed in the graphs in the same way as the previous metric, the rate of time of use
offers a better load displacement than the reference model. The hardware and software
characteristics of the computer used for the simulation are shown below in Table 5.
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Table 5. This is a table caption.

Item Detail

Programming language Python with Python 3.9 Interpreter
Processor Intel(R) Core(TM) i54200M CPU 2.50 GHz 2.49 GHz

Ram and Data 12 GB

Execution time 84.1052 minutes for (400 consumers) with 1× 104 iterations
each consumer

5. Conclusions and Future Works

This work proposes a DR model based on prices and incentives (P-B and I-B). The re-
sults on consumers demonstrate the importance of considering the coincidence factor of
electricity demand and thus be able to characterize each behavior of consumers, to focus on
the appropriate demand response strategy. This originates from the fact that by considering
the peaks of the system, a better signal to the consumer can be obtained to perform “peak
clipping.” The short- and long-term approach presented for a combined real-time and
day-ahead market demonstrates the usefulness of considering incentives that reinforce
consumer behavior and demand adjustment. Furthermore, the long-term functionality
presented by the model offers the advantage of adjusting the demand response objectives.

Finally, this work proposes a Q-learning model with memory exchange from the
short term to the long term; this approach allows to focus on the economic incentives of
the consumers and improves the formulation of prices in a real-time market as well as
for the schemes of prices designed to cover the long term such as the time of use price
scheme. Consequently, the improvement of the load factor of consumers was demonstrated,
reflecting the effectiveness of the model in displacing the consumption peaks.

In future works, we have seen the need to consider various types of consumers and
focus the study on the particularities of elasticity. In addition, it is necessary for demand
response programs to be effectively implemented in distribution systems to take into
account tariff aspects and the influence of nodal prices. Therefore, a tariff model that
complements this presented work is already under development. Instead, it is essential
within the characterization of consumers and demands it is necessary to consider various
types of satisfaction factors for each of the consumers, in addition to the analysis of their
influence on the model presented.
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This study presents a new methodology, including the introduction of a bidirectional
satisfaction factor and a real-time adjustment market, that is aimed at balancing the energy
supply and demand. However, it is acknowledged that additional research is required
to further refine and improve the proposed methodology to more effectively address the
potential for peak rebound effects in this context.
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Abbreviations
The following abbreviations are used in this manuscript:

h The number of hours per day H = 24
da The time scale of da = h . . . 24
rt Real-time framework h = 1
s State of the environment at time t, s ∈ Sda and s ∈ Srt
r RL-Reward includes benefits for consumers and service providers
a Actions from agent to environment a ∈ A
Ubenu,h Consumer benefit with real-time pricing scheme u = 1, . . . , U
U Set of Consumers U = 12
ηu The participation factor of each consumer in each hour:

limited by νu,ini < νu,end < νu,tot
ρ Weighting factor ρ ∈ [0, 1]
∆ Cu,h Decrease or increase demand per consumer with real-time price at a specific time
µu,h The incentive for each consumer at a specific time
ru,h Real-time price for each consumer
φu,h Dissatisfaction cost of each consumer
βu,h The dissatisfaction cost reflects acceptance of consumers of the DR
∆ CToU u,h Decrease or Increase in Demand per ToU consumer in a specific time slot
CToU u,h Demand per consumer ToU in a specific time slot
UToUbenu,h Consumer benefit with price scheme ToU u = {1, . . . , U}
SPdabenu,h Service Provider Benefit (day-ahead)
Ω Incentive binary variable
zhda

Wholesale price from Day-ahead market
SPbentot Sum of Service Provider Benefits (day-ahead, real-time)
SPrtbenu,h Service Provider Benefit (real-time)
rtda , rtrt The day-ahead and Real-Time Reward
Cu Electric Energy Consumption per consumer
Phu Peak power per consumer
Mpu Peak demand of each consumer
Ck The cluster of each category
Q Q-table of Q-Learning
E Coefficient of elasticity per consumer
DV Demand variation factor
LF Load Factor
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