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Abstract: This paper studies the stability impact of the alternate voltage controller’s (AVC) low-
pass filter (LPF) in a wind turbine’s grid-connected voltage source converter (VSC). A small-signal
model of the grid-connected converter is designed with a grid-following synchronization control.
More specifically, the non-linear state-space model of the grid-connected converter was developed,
including the dynamics of both the inner and outer control loops of the converter, the dynamics of
the elements of the electrical system, as well as the digital time delay. An eigenvalue-based stability
analysis gives insight into the stability impacts of the outer-loop controllers. It is proven that the
cutoff frequency of the AVC’s LPF affects the phase-locked loop (PLL) and AVC bandwidths of
instability, as well as the corresponding critical oscillation frequencies. This phenomenon is observed
in both weak and strong grids. Consequently, the small-signal stability regions of the PLL and AVC
bandwidth can be identified for the range of the AVC’s LPF cutoff frequency under study. The
stability regions of the PLL and AVC, which are obtained from the small-signal model, as well as
the determined critical oscillation frequencies, are validated through time domain simulations and
fast-Fourier transformation (FFT) analysis.

Keywords: wind turbine; voltage source converter; small-signal model; stability analysis; alternate
voltage control; eigenvalue-based stability analysis; time domain simulations

1. Introduction

The wind industry has seen significant growth in recent years, with 93.6 GW of
new capacity added worldwide in 2021, only 1.8% lower than the previous year’s record.
Notably, offshore wind installations reached a historic high of 21.1 GW in 2021, representing
22.5% of all new installations. This brought the total installed wind capacity to 837 GW in
2021, an increase of 12.4% compared to 2020 [1].

Converter technology is essential for incorporating wind power into electric power
systems, and the voltage source converter (VSC) is currently the leading technology for
high-voltage transmission in both AC and DC networks [2]. VSCs offer the advantage of
being able to connect to weak grids, such as offshore AC grids [3,4]. Despite this, several
challenges have arisen in terms of power system stability and synchronizing the VSC with
the grid, which can be caused by dynamic phenomena in weak grids or undamped grid
resonances [5–7].

Small-signal stability refers to a converter-based system’s ability to return to a steady
state after a minor disturbance [8]. There are various techniques for analyzing small-signal
stability in converter-based power systems, but impedance-based stability analysis and
eigenvalue-based stability analysis are the most commonly used [9]. Impedance-based
modeling involves representing the interactions between the converter and grid through
equivalent impedances seen from the point of common coupling (PCC). These impedance
models form the open-loop gain of the system and the stability is determined using the
Nyquist stability criterion [8,9]. Impedance-based models do not require knowledge of the
internal converter control systems; therefore, they can treat the system as a “black-box”
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system. Eigenvalue-based modeling allows for an in-depth analysis of the system dynamics
by utilizing a state-space representation of the system, which facilitates the modal analysis
of the system. The nonlinear model is linearized at an equilibrium point around which
modal analysis is implemented. The eigenvalues of the state matrix show the system’s
stability [8].

A lot of research has been applied in small-signal modeling of VSC where impedance-
based stability analysis is applied. In [10,11], a detailed description of a unified impedance
model of a grid-connected VSC is given, and the impact of the resonant controller and the
digital time delay is discussed. Furthermore, the impact of an alternate voltage controller
(AVC) is included in the developed impedance-based model in [12,13]. For performing a
sensitivity analysis of the model and having a better understanding of the system’s internal
states, state-space modeling is preferred, and then eigenvalue analysis can be used to
evaluate the system’s stability. Several state-space modeling approaches of converter-based
systems have been studied so far, as can be seen in [14–17], focusing on a higher level
of modularity and providing the description of most dynamic states. In addition, the
impact of AVC is included in [18], where the state-space model is obtained after the transfer
function of the VSC output voltage is derived. The AVC controller is included in the models
designed in [19–21].

However, research in eigenvalue-based stability analysis as well as in impedance-based
stability analysis has not covered in depth the impact of the AVC design on the system’s
stability when it includes a low-pass filter (LPF). The LPF at the AVC is a necessary element
for attenuating low harmonics—up to the 2nd-order—which originate from the outer-loop
control interactions. The impact of the AVC’s LPF on the critical control bandwidths
of the outer loop controllers is a research area where little research has been conducted.
Therefore, this paper focuses on this research gap and studies the impact of the AVC’s
LPF on converter-based systems, where the strength of the grid is analyzed too. More
specifically, the impact of the AVC’s LPF on the system’s stability is analyzed, both in strong
and weak grid case scenarios, considering also how it affects the critical Phase-Locked loop
(PLL) and AVC bandwidth that may lead to instability.

The paper is structured as follows: in Section 2, the analytical state-space model is
given with a thorough description of all of the state-space submodels. Section 3 deals with
the eigenvalue analysis of the derived model, for both strong and weak grids. Section 4
maps the stability regions obtained in strong and weak grids. Section 5 shows the time
domain simulation results and Section 6 presents the conclusions of this work.

2. State-Space Model Description

This study examines the grid-side converter of a wind turbine, utilizing a grid-
following control structure as depicted in Figure 1. The philosophy is inherited from [22],
incorporating a PLL to synchronize the converter with the grid. The DC link voltage of
the inverter is assumed to be constant, and as the inverter is considered ideal, open-loop
control is employed to track a specified reference value for active power. A new addition to
this work is the AVC, which is used to regulate the voltage fed at the PCC of the VSC.

The dynamic behavior of the system is influenced by various nonlinear state equations
that describe the control dynamics. These state equations create individual state-space
models for each component, which when combined, form the overall nonlinear state-space
model of the system. This is represented in (1):

ẋ = Ax + R(x, u)

y = S(x, u)
(1)

where x represents the state variables of the system, u represents the system inputs, and y
represents the system outputs. R(x, u) and S(x, u) describe the non-linear dependencies of
the model.
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Figure 1. Grid-following VSC converter connected to the grid with its control structure.

2.1. dq Transformations

The control system in this model is implemented in the rotating dq frame, which
is aligned with the phase angle of the PCC voltage θ1. However, the control system is
also guided by the PLL output angle θ. In dynamic conditions, these two angles have
minimal errors [23]. To better understand the dynamics introduced by the PLL, two dq
frames are defined: the grid dq frame, which is defined by θ1, and the control dq frame,
which is defined by θ. During steady-state operation, the PLL precisely follows the grid
voltage angle, and the control dq frame is seamlessly synchronized with the grid dq frame.
However, if there is a perturbation in the grid voltage, a phase shift ∆θ between the two
reference frames occurs and it takes some time for the PLL to lock onto the new grid voltage
angle [24]. The output variables impacted by the control dq frame are the converter’s
current IL and the PCC voltage VPCC. In the following part of the paper, when these
variables are in the control dq frame, they will be indicated by superscript c. The subscript
0 indicates the steady-state values of the corresponding variables. The relationship between
the two dq frames is shown in Figure 2.

The equations of the transformation between the control and the grid dq frame derived
from the Park and inverse Park transformation equations; they are given below:[

Vc
PCCd

Vc
PCCq

]
=

[
cos(θ − θ1) sin(θ − θ1)
−sin(θ − θ1) cos(θ − θ1)

][
VPCCd
VPCCq

]
(2)

[
Ic
Ld

Ic
Lq

]
=

[
cos(θ − θ1) sin(θ − θ1)
−sin(θ − θ1) cos(θ − θ1)

][
ILd
ILq

]
(3)

After linearizing the equations of the transformation between the two dq frames, the
small-signal equations are:

∆Vc
PCCd = ∆VPCCd + VPCCq,0∆θ (4)

∆Vc
PCCq = ∆VPCCq −VPCCd,0∆θ (5)

∆Ic
Ld = ∆ILd + ILq,0∆θ (6)



Energies 2023, 16, 1440 4 of 20

∆Ic
Lq = ∆ILq − ILd,0∆θ (7)

Figure 2. Control and grid dq frame used for the VSC.

2.2. Phase-Locked Loop (PLL)

The control structure of the PLL is illustrated in Figure 3. The input to the PLL is the
PCC voltage on the q-axis VPCCq, and the output is the angular speed of the PCC voltage
ωPLL. The PI control regulates the voltage VPCCq to zero, thus aligning the PCC voltage
with the d-axis.

Figure 3. Control structure of the used PLL in Figure 1.

The state variables of the PLL are:

x1 =
[
θPLL ΦPLL

]
(8)

where ΦPLL=
∫

Vc
PCCq dt.

The differential equations of the PLL are the following:

θ̇PLL = KI,PLLΦPLL + KP,PLLVc
PCCq + ωn (9)

Φ̇PLL = Vc
PCCq (10)

2.3. Current Controller

The current control loop is shown in Figure 4 along with the feedforward voltage.
As shown in Figure 4, it generates a normalized voltage reference in order to control the



Energies 2023, 16, 1440 5 of 20

converter current. The corresponding algebraic equations of the current controller’s output
are given below:

Vnormd =
1

VDC
(VPCCd,LPF −ωPLLLF Ic

Lq + KP,d Ierrd + KI,dqerrd) (11)

Vnormq =
1

VDC
(VPCCq,LPF + ωPLLLF Ic

Ld + KP,q Ierrq + KI,qqerrq) (12)

where qerrdq denotes the current controller’s integrators.

Figure 4. Control structure of the current controller (PIcc) in Figure 1.

The current controller takes as input the error current, which represents the difference
between the desired dq-axis current ILdqref and the actual converter current ILdq. The
reference q-axis current is determined by the AVC control loop, which will be discussed in
the following subsection. The reference d-axis current is obtained from the injected active
power reference, as shown in (13), where |VPCC| is the magnitude of the voltage at PCC,
which is discussed in Section 2.4:

ILdref =
2
3

Pref
|VPCC|

(13)

The state variables of the current controller—including the low-pass filters at the
feed-forward voltage—are:

x2 =
[
qerrd qerrq VPCCd,LPF VPCCq,LPF

]
(14)

The differential equations of the current controller are shown in (15)–(18):

q̇errd = ILdref − Ic
Ld (15)

q̇errq = ILqref − Ic
Lq (16)

V̇PCCd, LPF = −ωFF,LPFVPCCd,LPF + ωFF,LPFVc
PCCd (17)

V̇PCCq, LPF = −ωFF,LPFVPCCq,LPF + ωFF,LPFVc
PCCq (18)

where ωFF,LPF is the cutoff frequency of the low-pass filter at the feedforward voltage.
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2.4. Alternating Voltage Controller (AVC)

The outer control loop is responsible for the generation of the q-axis current reference
(reactive current) and keeps the AC voltage fixed. The AVC is utilized to regulate the
voltage at the point of common coupling, and it is implemented by using the classical PI
control. It is shown in Figure 5.

Figure 5. Control structure of the alternate voltage controller (AVC) in Figure 1.

According to Figure 5, the voltage magnitude at the PCC is regulated to the desired
reference voltage after it is filtered, in order, e.g., to exclude unwanted 2nd-order harmonics,
as explained in the introduction. The voltage magnitude will be symbolized as VM and it is
equal to:

VM =
√

VPCCd
2 + VPCCq

2 (19)

Therefore, the reference current in the q-axis is derived by the following formula:

ILqref = −
(

KP,a(VPCCref −VM,LPF) + KI,aqerrac

)
(20)

where qerrac represents the integrator of AVC.
The state variables of the AVC are:

x3 =
[
qerrac VM,LPF

]
(21)

The differential equations of the AVC are the following:

q̇errac = VPCCref −VM,LPF (22)

V̇M,LPF = −ωAVC,LPFVM,LPF + ωAVC,LPFVM (23)

where ωAVC,LPF is the cutoff frequency of the low-pass filter at VM.

2.5. Time Delay

Time delay is a significant aspect of digital control systems, and it is considered in this
analysis. The delay is modeled using a 3rd-order Padé approximation, which approximates
the delay in the system by using the transfer function provided in (24):

e−Tds =

(
b0 + b1Tds + . . . + bl(Tds)l)(
a0 + a1Tds + . . . + ak(Tds)k

) (24)

where l and k are the order of Padé approximation,

aj =
(l + k− j)!k!

j!(k− j)!
, j = 0, . . . , k (25)

and

bi = (−1)i (l + k− i)!l!
i!(l − i)!

, i = 0, . . . , l (26)

The delay time, Td, is typically set to be 1.5 times the sampling period.
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The state variables that describe the time delay are as follows:

x4 =
[
xdel,1d xdel,2d xdel,3d xdel,1q xdel,2q xdel,3q

]
(27)

The differential equations of the digital time delay—where each equation can be used
in both the d- and q-frame—are the following:

ẋdel,1dq = 0xdel,1dq + 1xdel,2dq + 0xdel,3dq (28)

ẋdel,2dq = 0xdel,1dq + 0xdel,2dq + 1xdel,3dq (29)

ẋdel,3dq = −120
T3

d
xdel,1dq −

60
T2

d
xdel,2dq −

12
T1

d
xdel,3dq + Vnormdq (30)

2.6. LC Filter and Grid-Side Impedance

An LC filter is included in the model—as shown in Figure 6—to attenuate the high
harmonics that are derived from the converter as well as the modulation harmonics. The
dynamics of the grid impedance are also included in the state-space subsystem, and the
corresponding state variables are shown below:

x5 =
[

Ic
Ld Ic

Lq VPCCd VPCCq Iod Ioq

]
(31)

Figure 6. LC filter and grid impedance circuit in Figure 1.

The Padé approximation from the time delay is used to obtain the VSC bridge voltage
VI , as VI is the output of the time delay state-space subsystem:

VId = VDC

(
240
T3

d
xdel,1d + 0xdel,2d +

24
T1

d
xdel,3d −Vnormd

)
(32)

VIq = VDC

(
240
T3

d
xdel,1q + 0xdel,2q +

24
T1

d
xdel,3q −Vnormq

)
(33)

The state equations of the convert current IL, the voltage at PCC VPCC, and the output
current Io are shown in (34)–(39):

İc
Ld = −RF

LF
Ic
Ld +

(
− 1

LF
Vc

PCCd

)
+ ωPLL Ic

Lq +
1

LF
VId (34)

İc
Lq = −RF

LF
Ic
Lq +

(
− 1

LF
Vc

PCCq

)
−ωPLL Ic

Ld +
1

LF
VIq (35)
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V̇PCCd =
1

CF
ILd +

(
− 1

CF
Iod

)
+ ωnVPCCq (36)

V̇PCCq =
1

CF
ILq +

(
− 1

CF
Ioq

)
−ωnVPCCd (37)

İod =
1

LS
VPCCd +

(
−RS

LS
Iod

)
+

(
− 1

LS
VSd

)
+ ωn Ioq (38)

İoq =
1

LS
VPCCq +

(
−RS

LS
Ioq

)
+

(
− 1

LS
VSq

)
−ωn Iod (39)

3. Small-Signal Stability Analysis Assessment Based on Eigenvalue Analysis

Subsynchronous and near-synchronous oscillations of the fundamental frequency are
the most common cases of instability in small-signal models based on the grid-following
control. A linearized state-space model is required in order to assess the small-signal
instability of the system. The linearization is implemented around the equilibrium points of
the overall state-space model of the system, and this linear approximation is shown in (40):

ẋ = Ax, (40)

where A is the Jacobian matrix derived from the partial derivatives of the system at the
equilibrium points.

3.1. Equilibrium Points Computation

The equilibrium states of the state-space model consist of the voltage at PCC VPCC,0
and the inductor current IL,0—both in the dq reference frame—and they are used in (4)–(7).

As VPCCq is regulated to zero at the PLL, the corresponding equilibrium state VPCCq,0
is equal to zero. Given that, as well as the definition of VM in Section 2.4, VPCCd,0 is equal to
VPCCre f . The equilibrium state of the inductor current at d-axis ILd,0 is equal to ILdre f . The
equilibrium state of the inductor current at q-axis ILq,0 is derived by Kirchhoff’s voltage
law (KVL) on the grid side:

VPCCd,0 = VSd,0 + RS Iod,0 −ωnLS Ioq,0 (41)

In (42) and (43), the relationship between the steady-state converter and the output
current—in the d- and q-axis—is shown:

Iod,0 = ILd,0 = ILdre f (42)

Ioq,0 = ILq,0 −ωnVPCCd,0CF (43)

The grid voltage on the d-axis VSd,0 is given by the following formula:

VSd,0 = |VSabc|cosδ (44)

where δ is the grid angle with respect to the capacitor voltage of each converter. This angle
can be estimated if we consider the injected active power to the grid by the converter in the
abc frame:

P =
3
2
|VPCCabc||VSabc|sin(δ)

ωnLS
(45)

As already mentioned, the control is oriented to the d-axis; therefore, the active power
in the dq frame can be calculated by considering only the variables of the d-axis:

P =
3
2

VPCCd Iod =
3
2
|VPCCabc|Iod (46)
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Therefore, angle δ can now be estimated by using (45) and (46) and the following
formula is obtained:

cosδ =

√
1−

(ωnLS Iod
|VSabc|

)2
(47)

So, taking into account (42), (43), (44), and (47) into (41), the equilibrium state of the
inductor current in the q-axis is obtained in (48):

ILq,0 =

√
|VSabc|2 −

(
ωnLS ILdre f

)2
+ RS ILdre f −VPCCre f

(
1− (ωn)2LSC

)
ωnLS

(48)

After the calculation of the equilibrium points is completed, the state-space model can
be linearized around them.

3.2. Grid strength and Eigenvalue-Based Stability Analysis

The strength of a power grid is determined by the short circuit ratio (SCR), which
represents the ratio of the maximum short-circuit power SSC at PCC to the rated power SN
of the voltage source converter (VSC). The SCR is given by:

SCR =
SSC
SN

=

3
2
(VS)

2

|ZS |
3
2 VPCC ILdre f

(49)

Therefore, a grid impedance impacts the grid strength, as its increase leads to the
decrease of the short-circuit power.

An eigenvalue analysis is performed on the small-signal model using the system and
control parameters listed in Table A1. The goal of the default PI’s current controller is to
have a closed loop current bandwidth of around 1/20 of the switching frequency. A low
PLL bandwidth is chosen—equal to 7.27 Hz—in order to attenuate the effect of a possible
distortion on the PLL output signals by high-order harmonics. The grid inductance LS
is specified by (49), while the grid resistance RS is assumed to be zero in this analysis.
The AVC design is related to LS and that impacts the AVC bandwidth in case the grid
strength changes. Moreover, the response time of the inner-current loop is much faster
than the outer-AVC loop, so AVC’s bandwidth should be much smaller that the current
controller’s bandwidth.

Three different cases of the cutoff frequency of the AVC’s low-pass filter f AVC,LPF are
selected for the eigenvalue analysis; in fact, f AVC,LPF is equal to 20 Hz, 50 Hz (equal to the
nominal frequency), and 100 Hz, which is the upper limit of the cutoff frequency, as the
goal of the low-pass filter is to extract the 2nd-order harmonics. The eigenvalue sensitivity
analysis is then carried out to determine the small-signal stability and the effect of the
controllers. This analysis involves altering the control parameters of the system’s control
structures and measuring the correlation between instability and the magnitude of the
changes. The equilibrium points of the state-space model are re-estimated in each variation
of the controller under test until the system reaches instability. Instability is identified
when the real part of the complex eigenvalue obtains a positive value, meaning that the
damping becomes negative. In that way, a new eigenvalue analysis is carried out each time
a parameter is swept, which will finally lead to an eigenvalue trace that shows the stability
trend of the corresponding control parameter.

The weak grid case scenario is studied first when the SCR is equal to 1.5. The grid
inductance LS is equal to 10.3 mH, the current controller’s bandwidth is equal to 292 Hz,
and the AVC bandwidth is equal to 51.31 Hz. The PLL proportional gain KP,PLL of the
VSC system is adjusted multiple times, starting from 0.1 times its default value KP,PLL0
(deep blue) and increasing up to 10 times (deep red) in order to identify the specific PLL
bandwidths that cause instability in the system. The goal of this analysis is to determine
the range of KP,PLL values that result in a stable system operation. The results are shown in
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Figure 7, where the critical PLL proportional gain KP,PLLcr—with the corresponding PLL
bandwidth—is obtained for the f AVC,LPF under study. The oscillation frequency Fcr of the
critical mode of instability is also shown.

(a) (b)

(c)

Figure 7. Eigenvalue−based stability analysis for different AVC filter cases in the weak grid case
scenario (SCR = 1.5). The critical bandwidth of the PLL is identified after KP,PLL0 varies from 0.1 (deep
blue) to 10 (deep red) times. (a) f AVC,LPF = 20 Hz (b) f AVC,LPF = 50 Hz (c) f AVC,LPF = 100 Hz.

The same procedure is used in order to identify the critical AVC bandwidth where the
system becomes unstable. The default AVC integral gain KI,a0 of the VSC of the system
varies from 0.1 (deep blue) to 10 (deep red) times. The results are shown in Figure 8,
where the critical AVC integral gain KI,acr—with the corresponding AVC bandwidth—is
identified for the corresponding f AVC,LPF. The oscillation frequency Fcr of the critical
mode of instability is also shown. Based on these results, the instability in the weak
grid case occurs when the AVC bandwidth obtains a value close to 1/2 of the current
controller’s bandwidth.

Then a strong grid case scenario is studied, with an SCR equal to 10. The grid
inductance LS is equal to 1.5 mH, the current controller’s bandwidth is equal to 953 Hz and
the AVC bandwidth is equal to 7.7 Hz. The PLL proportional gain KP,PLL0 of the VSC in the
system varies from 0.1 (deep blue) to 10 (deep red) times, in order to identify if there are
any critical PLL bandwidths where the system becomes unstable. The results are shown in
Figure 9, where no critical PLL bandwidths are identified for the corresponding f AVC,LPF.

In order to identify the critical AVC bandwidth where the system becomes unstable,
KI,a0 varies from 1 (deep blue) to 200 (deep red) times. The results are shown in Figure 10,
where the critical AVC integral gain KI,acr—with the corresponding AVC bandwidth—is
identified for the corresponding f AVC,LPF. The oscillation frequency Fcr of the critical mode
of instability is also shown. Based on these results, the instability in the strong grid case
occurs when the AVC bandwidth obtains a relatively high value, which is a bit higher
than 2/3 of the current controller’s bandwidth, with a tendency to decrease as f AVC,LPF
is increased.
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(a) (b)

(c)

Figure 8. Eigenvalue−based stability analysis for different AVC filter cases in the weak grid case
scenario (SCR = 1.5). The critical bandwidth of the AVC is identified after KI,a0 varies from 0.1 (deep
blue) to 10 (deep red) times. (a) f AVC,LPF = 20 Hz (b) f AVC,LPF = 50 Hz (c) f AVC,LPF = 100 Hz.

(a) (b)

(c)

Figure 9. Eigenvalue−based stability analysis for different AVC filter cases in the strong grid case
scenario (SCR = 10). KP,PLL0 varies from 0.1 (deep blue) to 10 (deep red) times. (a) f AVC,LPF = 20 Hz
(b) f AVC,LPF = 50 Hz (c) f AVC,LPF = 100 Hz.
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(a) (b)

(c)

Figure 10. Eigenvalue−based stability analysis for different AVC filter cases in the strong grid case
scenario (SCR = 10). The critical bandwidth of the AVC is identified after KI,a0 varies from 1 (deep
blue) to 200 (deep red) times. (a) f AVC,LPF = 20 Hz (b) f AVC,LPF = 50 Hz (c) f AVC,LPF = 100 Hz.

4. Stability Regions of PLL and AVC Depending on the AVC’s LPF Cutoff Frequency

The small-signal stability analysis assessment, which was analyzed in Section 3, pro-
vided the eigenvalue analysis trends of the PLL and AVC bandwidth for specific values of
AVC’s LPF cutoff frequency f AVC,LPF. The accuracy of the small-signal analysis—which is
later validated by the time domain simulation results—allows the identification of stability
regions for the above-mentioned control loops when f AVC,LPF varies.

In the weak grid case scenario (SCR = 1.5), the stability region of the PLL bandwidth
is shown in Figure 11. According to these graphs, the critical PLL bandwidth is equal to
58.2 Hz for f AVC,LPF equal to 20 Hz. The critical PLL bandwidth drops rapidly to 40 Hz
when the cutoff frequency varies from 20 to 60 Hz. Then, the critical PLL bandwidth drops
more smoothly, reaching a value of 34.93 Hz when f AVC,LPF varies from 60 to 100 Hz. The
oscillation frequency that corresponds to the critical PLL bandwidth is equal to 120.16 Hz for
f AVC,LPF equal to 20 Hz. When f AVC,LPF varies from 20 to 56 Hz, the oscillation frequency
drops to 96.13 Hz; however, this frequency rises to 105.84 Hz when f AVC,LPF varies from 56
to 100 Hz.

Similarly, the stability region of the AVC bandwidth in the weak grid case is shown in
Figure 12. The critical AVC bandwidth is equal to 149 Hz for f AVC,LPF that is equal to 20 Hz.
The critical AVC bandwidth drops to 143 Hz when the cutoff frequency varies from 24 to 44
Hz, and then obtains a value equal to 138 Hz until f AVC,LPF is equal to 100 Hz. Therefore,
AVC’s critical bandwidth is not impacted by the variations of f AVC,LPF. The oscillation
frequency that corresponds to the critical AVC bandwidth is equal to 58.9 Hz for f AVC,LPF
that is equal to 20 Hz. When f AVC,LPF varies from 20 to 100 Hz, the oscillation frequency
increases to 118.4 Hz.

In the strong grid case scenario (SCR = 10), the stability region of the PLL is shown
in Figure 13. According to this result, the PLL bandwidth does not impact the system’s
stability when the grid is strong, as also shown in the corresponding small-signal stability
assessment in the previous section. Therefore, the instability region is stable, and as a result,
there are no oscillation frequencies.
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Figure 11. Stability regions of PLL bandwidth in weak grid case (SCR = 1.5), when f AVC,LPF varies
from 20 to 100 Hz. The corresponding critical oscillation frequency to the critical PLL bandwidth is
shown (red).

Figure 12. Stability regions of AVC bandwidth in weak grid case (SCR = 1.5), when f AVC,LPF varies
from 20 to 100 Hz. The corresponding critical oscillation frequency to the critical AVC bandwidth is
shown (red).

Figure 13. Stability regions of PLL bandwidth in strong grid case (SCR = 10), when f AVC,LPF varies
from 20 to 100 Hz. The system is stable for the PLL bandwidth in question; therefore, no critical
oscillation frequencies are shown.



Energies 2023, 16, 1440 14 of 20

Similarly, the stability region of the AVC bandwidth in the strong grid case is shown in
Figure 14. The critical AVC bandwidth is equal to approximately 781 Hz for f AVC,LPF equal
to 20 Hz; then it drops to approximately 673 Hz when the cutoff frequency varies from
24 to 100 Hz. The oscillation frequency that corresponds to the critical AVC bandwidth is
equal to 127 Hz for f AVC,LPF equal to 20 Hz. When f AVC,LPF varies from 20 to 100 Hz, the
oscillation frequency increases to 273 Hz.

Figure 14. Stability regions of the AVC bandwidth in a strong grid case (SCR = 10), when f AVC,LPF

varies from 20 to 100 Hz. The corresponding critical oscillation frequency to the critical AVC band-
width is shown (red).

5. Simulation Results

To verify the small-signal model dynamic response of the model, time domain simu-
lations were carried out by using MATLAB Simulink and the PLECS block set. All of the
simulation cases were implemented in weak and strong case scenarios. They were tested
under three different cases of AVC’s low-pass filter, where f AVC,LPF was equal to 20, 50, and
100 Hz. Fast Fourier transformation (FFT) was utilized in order to identify the dominant
frequency when the system became unstable. Then, the comparison with the results in
Section 3 could be done. The circuit and control parameters are shown in Appendix A.

5.1. Time Domain Analysis in Weak Grid Case Scenario

In the weak grid case scenario (SCR = 1.5), the impact of PLL on the system’s stability
was first tested under different cases of f AVC,LPF. A step change was applied to the default
proportional gain of the PLL KP,PLL0 at t = 1.5 seconds, when the system was stable. The
controller’s gain then obtained the value that critically impacted the system’s stability
(KP,PLLcr), and the inductor current IL in the dq frame was utilized to demonstrate the
instability cases. In Figures 15 and 16, the KP,PLLcr and the corresponding critical frequency
obtained from the FFT analysis are shown.

Then, the impact of the AVC bandwidth on the system’s stability was tested for the
same cases of f AVC,LPF. A ramp change with a small slope was applied to the integral gain
of the AVC KI,a0 at t = 1.5 seconds when the system was stable, and the controller’s value
that affected the system’s stability (KI,acr) was identified. The inductor current in the dq
frame was again utilized to demonstrate the instability cases. In Figures 17 and 18, the
KI,acr and the corresponding critical frequency obtained from the FFT analysis are shown.

The results in Figures 15–18 are very close to the corresponding small-signal stability
analysis in Figures 7 and 8. Therefore, the eigenvalue-based stability analysis was validated
in the weak grid case scenario and provides a high level of accuracy.
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(a) (b) (c)

Figure 15. Time domain simulations of the VSC inductor current IL for different AVC filter cases.
The stability impact of PLL in a weak grid (SCR = 1.5) was observed, caused after the step change
in KP,PLL0 to its critical value KP,PLLcr at t=1.5 s; (a) KP,PLLcr = 1.3094 when f AVC,LPF = 20 Hz;
(b) KP,PLLcr = 0.9657 when f AVC,LPF = 50 Hz; (c) KP,PLLcr = 0.7857 when f AVC,LPF = 100 Hz.

(a) (b) (c)

Figure 16. FFT analysis of the VSC inductor current IL for different AVC filter cases in a weak grid
(SCR = 1.5). The dominant oscillation frequency is shown when KP,PLL obtains its critical value;
(a) f AVC,LPF = 20 Hz; (b) f AVC,LPF = 50 Hz; (c) f AVC,LPF = 100 Hz.

5.2. Time Domain Analysis in Strong Grid Case Scenario

In the strong grid case scenario (SCR = 10), the procedure was similar to the weak grid
case scenario. First, the impact of PLL on the system’s stability was studied under different
cases of f AVC,LPF. In all f AVC,LPF cases, the same step change was applied to KP,PLL0 at
t = 1.5 s (equal to 10 times KP,PLL0) when the system was stable. The obtained time domain
simulation results of the inductor current in the dq frame are shown in Figure 19 and prove
that changes in f AVC,LPF have no impact on the system’s stability even though KP,PLL is
increased. Therefore, in the strong grid—and for all f AVC,LPF cases—the system remains
stable when the PLL bandwidth varies.

Similar to the weak grid case scenario, the impact of the AVC bandwidth on the
system’s stability was observed during the simulation process for different f AVC,LPF cases.
A ramp change was applied to KI,a0 at t = 1.5 s when the system was stable; the slope was
higher than in the weak grid case because the instability was observed in much higher AVC
bandwidth. The graphs of the inductor current in the dq frame and the corresponding FFT
analysis are presented in Figures 20 and 21, which illustrate the instability cases.
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The results in Figures 19–21 are very close to the corresponding small-signal stability
analysis in Figures 9 and 10. Therefore, the eigenvalue-based stability analysis is accurately
validated in the strong grid case scenario (just as in the weak grid case).

(a) (b) (c)

Figure 17. Time domain simulations of the VSC inductor current IL for different AVC filter cases. The
stability impact of AVC in the weak grid (SCR = 1.5) is observed, caused after the ramp change in
KI,a0 to its critical value KI,acr at t = 1.5 s; (a) KI,acr = 285 when f AVC,LPF = 20 Hz; (b) KI,acr = 270
when f AVC,LPF = 50 Hz; (c) KI,acr = 260 when f AVC,LPF = 100 Hz.

(a) (b) (c)

Figure 18. FFT analysis of the VSC inductor current IL for different AVC filter cases in the weak
grid (SCR = 1.5). The dominant oscillation frequency is shown when KI,a obtains its critical value;
(a) f AVC,LPF = 20 Hz (b) f AVC,LPF = 50 Hz (c) f AVC,LPF = 100 Hz.
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(a) (b) (c)

Figure 19. Time domain simulations of the VSC inductor current IL for different AVC filter cases.
The step change in PLL’s proportional gain at t = 1.5 s from KP,PLL0 = 0.1637 to KP,PLL = 1.637 has
no stability impact in the strong grid case (SCR = 10); (a) f AVC,LPF = 20 Hz;(b) f AVC,LPF = 50 Hz;
(c) f AVC,LPF = 100 Hz.

(a) (b) (c)

Figure 20. Time domain simulations of the VSC inductor current IL for different AVC filter cases.
The stability impact of AVC in a strong grid (SCR = 10) is observed, caused after the ramp change in
KI,a0 to its critical value KI,acr at t = 1.5 s; (a) KI,acr = 10200 when f AVC,LPF = 20 Hz; (b) KI,acr = 9300
when f AVC,LPF = 50 Hz; (c) KI,acr = 8400 when f AVC,LPF = 100 Hz.
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(a) (b) (c)

Figure 21. FFT analysis of the VSC inductor current IL for different AVC filter cases in the strong
grid (SCR = 10). The dominant oscillation frequency is shown when KI,a obtains its critical value;
(a) f AVC,LPF = 20 Hz; (b) f AVC,LPF = 50 Hz; (c) f AVC,LPF = 100 Hz.

6. Conclusions

In this paper, the impact of the AVC in a grid-connected VSC of a wind turbine
was studied under different grid strength cases that were defined by the SCR values of
the system. The nonlinear state-space model of a grid-following VSC was built, where
the converter was connected to the grid through an LC filter, and the individual state-
space models of the PLL, the current controller, the AVC, and the digital time delay were
developed in the dq reference frame. The eigenvalue-based stability analysis was used
to assess the system’s stability, where the obtained eigenvalue traces showed the impact
of each controller for different cases of f AVC,LPF. It is proven that the increase of f AVC,LPF
from 20 to 100 Hz decreases the critical AVC bandwidth in the strong and weak grid
case scenarios—not very significant in the weak grid case—and increases the oscillation
frequency that corresponds to the critical cases of instability. On the other hand, the
increase of f AVC,LPF decreases the critical PLL bandwidth in the weak grid case; however,
the oscillation frequencies that correspond to the critical PLL bandwidth cases of instability
follow an interesting trend, as they decrease for f AVC,LPF = 20 to 50 Hz, and then increase
until f AVC,LPF reaches the value of 100 Hz. In the strong grid case, the PLL bandwidth does
not impact the system’s stability even when f AVC,LPF changes. Time domain simulations
are provided, accompanied by the FFT analysis, demonstrating the validity of the outcomes
in this research.
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Appendix A

The system parameters of Figure 1 and the control parameters of the following control
structures are listed in Table A1.

Table A1. System and default control parameters.

Description Value

VS Grid Phase Voltage (peak value) 311 V
fn Rated Frequency 50 Hz

VDC DC Link Voltage Reference 800 V
LF Filter Inductance 5 mH
RF Filter Resistance 0.1 Ω
CF Filter Capacitance 10 µF
fsw Switching Frequency 20 kHz
fS Sampling Frequency 20 kHz

VPCCref Reference PCC Voltage (peak value) 280 V
Pref Nominal Active Power 30 kW

ωFF,LPF Cutoff Frequency of Feedforward Voltage 100 rad/s
KI0 Default Integral Gain of Current Control 666.7
KP0 Default Proportional Gain of Current Control 33.3

KI,PLL0 Default Integral Gain of PLL 0
KP,PLL0 Default Proportional Gain of PLL 0.1637

KI,a0 Default Integral Gain of AVC 100
KP,a0 Default Proportional Gain of AVC 0
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