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Abstract: This paper proposes a new cascaded fractional-order controller (CC-FOC) to solve the load
frequency control (LFC) problem of an interconnected power system. The CC-FOC consists of a three-
degree-of-freedom fractional-order proportional-integral-differential (3DOF-FOPID) controller and
a fractional-order proportional-integral (FOPI) controller. Each area of the two-area interconnected
power system in this study consists of a thermal unit, a hydro unit, a diesel unit, and a doubly-fed
induction generator (DFIG). The enhanced particle swarm optimization (PSO) and gravitational
search algorithm (GSA) under the chaotic map optimization (CPSOGSA) technique are used to
optimize the controller gains and parameters to enhance the load frequency control performance
of the cascade controller. Moreover, simulation experiments are conducted for the interconnected
power system under load perturbation and random wind speed fluctuations. The simulation results
demonstrate that the proposed cascaded fractional-order controller outperforms the traditional
proportional-integral-differential (PID) controller and three other fractional-order controllers in terms
of LFC performance. The suggested cascade controller displays strong dynamic control performance
and the resilience of the cascade fractional-order controller by adjusting the load disturbance and
analyzing the system characteristics.

Keywords: CC-FOC; CPSOGSA; DFIG; load frequency control; two-area interconnected power system

1. Introduction

The massive use of fossil fuels is an essential factor in global warming. To cope with
the increasingly severe environmental and climate problems, governments are exploring
the development path of renewable energy sources [1]. Wind power, a common type of
renewable energy, has been strongly developed for its environmental friendliness and
economy [2,3]. However, as the renewable power represented by wind power joins the grid,
the penetration of renewable energy gradually increases while reducing the load frequency
control (LFC) capability of the power system [4]. However, it is well known that frequency
is critical in the stable running of a power system, and severe system frequency fluctuations
and deviations can adversely affect the users within the power system [5]. So, it is vital to
design an efficient load frequency controller to ensure that the power system frequency is
maintained in a safe range [6,7].

Many researchers and scholars also work on enhancing the frequency stability of power
systems and propose various LFC techniques. Examples include the fuzzy controller [8],
sliding mode controller [9], model predictive control (MPC) [10], robust controller [11],
and neural network [12]. The straightforward design structure of traditional proportional-
integral-differential (PID) controllers makes them popular in LFC power systems. However,
the control capability of traditional PID controllers is insufficient in the face of severe
disturbances like sudden load disturbances or wind power fluctuations [13]. For this
problem, many researchers choose to use metaheuristic algorithms such as the imperialist
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competitive algorithm (ICA) [14], honey badger algorithm (HBA) [15], and ant crow search
algorithm (CSA) [16] on the one hand to optimize PID controllers and thus enhance the
LFC performance of power systems.

On the other hand, some modifications are made to the PID controller structure. The
literature [17,18] proposes combining the PID controller with a fuzzy logic controller, which
enhances the frequency control of the interconnected hydro-thermal power system in two
areas. In contrast, the literature [19] has proposed fractional order PID (FOPID) controller
to improve the LFC capability of the electrical system. Compared with the conventional
PID controller, the FOPID controller has two degrees of freedom for fractional-order in-
tegration and fractional-order differentiation, which makes it more beneficial to reduce
the steady-state error of the system, reduce high-frequency noise, and suppress output
disturbances [20]. In the literature [21], the FOPID controller parameters were optimized
using the bald eagle optimization algorithm (BEO) to enhance the system’s reliability
and keep the system frequency in the specified range under different load perturbations.
The literature [22] proposes optimizing the FOPID controller parameters in a four-area
interconnected power system containing electric vehicles using a hybrid differential evolu-
tionary particle swarm algorithm (DEPSO). The simulation results illustrate that the FOPID
controller has good system frequency control capability.

However, in the face of the increasingly complex power system and the uncertainty
brought by renewable energy into the grid, there is an urgent need for load frequency
controllers in the electrical system to have stronger disturbance immunity and robustness.
In order to improve the dynamic response of the two degrees of freedom fractional-order
PID (2DOF-FOPID) controller, the literature [23] suggests increasing the degrees of free-
dom of the FOPID controller and using a quasi-oppositional based salp swarm method
(QSSA) to optimize the controller settings. In the literature [24,25], a three degrees of
freedom fractional-order PID (3DOF-FOPID) controller is proposed for increasing the fre-
quency reliability of regional interconnected electric systems and is compared with the
3DOF-PID controller as well as the 2DOF-FOPID controller to verify the properties of
3DOF-FOPID controller.

In addition, cascade controllers show more outstanding performance in terms of im-
munity, robustness, and flexibility than individual controllers [26,27]. The literature [28]
uses a chaotic game algorithm for a cascaded FOPID-FOPI controller and tests the non-
linearity of the generator rate constraint in a multi-region interconnected power system.
The literature [29] proposes using a cascaded FOPI-FOPTID controller and, thus, the LFC
performance of power systems containing energy storage devices. It demonstrates the
role of energy storage devices in stabilizing the system frequency. In the literature [30], an
improved squirrel search algorithm was proposed to optimize the cascaded FOPID-TID
controller parameters and used to improve the LFC capability of a wind-diesel electri-
cal system. The controller performance in LFC problems relies on metaheuristic algo-
rithms for parameter optimization, and appropriate optimization algorithms are needed to
find the optimal controller parameters. However, metaheuristic algorithms such as PSO,
biogeography-based optimization (BBO), and differential evolution (DE) have drawbacks
such as premature convergence and local optimal solutions. Power system LFC still re-
quires the application of a robust optimization algorithm to improve the stability control
of the power system. The improved PSOGSA algorithm under chaotic map optimization
(CPSOGSA) algorithm is an improved population intelligence algorithm on PSOGSA under
chaotic optimization, which combines the advantages of both PSO and GSA algorithms and
has shown high optimization efficiency and optimization accuracy on different engineering
applications [31,32].

Therefore, the main work of this study is to optimize the gain and parameters of the
cascaded 3DOF-FOPID-FOPI controller using the CPSOGSA algorithm to improve the LFC
of the power system effectively. Thus, the interconnected power system can recover quickly
to the given frequency under load disturbance and wind speed fluctuation. Simulation
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experiments are conducted to demonstrate the excellent control capability of the proposed
cascaded fractional-order controller. The following are the main contributions of the study:

• A novel cascaded 3DOF-FOPID-FOPI controller is proposed for the first time to solve
the load frequency control problem of a two-area interconnected electric power system.

• The application of the CPOSGSA algorithm is extended to the load frequency control of
a two-area interconnected power system through the optimal selection of gains and pa-
rameters of the cascade controller by the superior performance CPSOGSA algorithm.

• The DFIG power fluctuations due to stochastic wind speed are considered in addition
to load perturbations in the area interconnected power system to verify the control
performance of the controller in a more realistic scenario.

• The robustness of the proposed cascaded fractional-order controller is well illustrated
by performing a sensitivity analysis under various conditions.

The remaining work in this study is as follows:
The comprehensive mathematical model of doubly-fed induction generator (DFIG)

used for the study is highlighted in Section 2, together with the load frequency model of
the regionally integrated power system. Then, in Section 3, it is explained that the control
structure of the proposed cascaded fractional-order controller (CC-FOC) is introduced, as
well as the approximate implementation of the fractional-order calculus operator. Section 4
details the implementation principle of the optimized cascade controller gains using the
CPSOGSA algorithm and its iterative process. In Section 5, several simulation tests are
carried out for the interconnected system to compare the performance of each controller
and show how well the proposed cascaded fractional order controller controls the system.
Finally, Section 6 concludes the study.

2. Systems Investigated

The model of the two-area interconnected power system adopted in this study is
illustrated in Figure 1. In the given test system, each area contains a thermal unit, hydro
plant, and diesel generator set with an integrated DFIG-driven wind energy conversion
system, where the installed capacity of the wind turbines is 10% of the total installed
capacity of the system. The synchronous unit output dominates the system frequency
adjustment process. DFIG participates in part of the power system frequency adjustment
through inertial response to reduce the synchronous frequency regulation pressure. With
the fluctuation of load disturbance and wind power active output in the interconnected
power system, the regional frequency of the power system constantly changes. In extreme
circumstances, it could risk the security of the electrical system. As a result, the CPSOGSA
method parameters optimize the CC-FOC of each area to ensure that the frequency (∆ f1,
∆ f2) and the pull-line power deviation (∆Ptie) of each area are within the legal bounds of
the system. In addition, the following subsection discusses the mathematical model of
DFIG used in the regional interconnection system. The system parameters involved are
shown in Appendix A.

DFIG and Its Additional Frequency Response Model

The model structure of DFIG used in this study and its participation in the droop
control principle of the system frequency response is shown in Figure 2. Among them, the
output power of the wind turbine is closely related to the wind speed, and the relationship
between the mechanical power of DFIG and the actual wind speed could be denoted by
Equation (1).

Pm = (
ρAr

2SN
Cp,opt)V3

w (1)

where ρ is the density of air, SN represents the rated power of the wind turbine, Ar is the
wind turbine blade area, and Vw represents the actual wind speed, Cp,opt is the optimal
wind energy utilization factor.
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The wind energy utilization factor Cp of the wind turbine is given in Equation (2).

Cp(λ, β) =
4

∑
i=0

4

∑
j=0

αi,jβ
iλj (2)

where αi,j is the polynomial coefficient, β is the pitch angle, and λ is the blade tip speed
ratio. λ is defined as shown in Equation (3).

λ = ω0
Rωωt

Vw
(3)

where ωwt is the DFIG rotor speed input, ω0 is the DFIG rotor rated speed in m/s, and R is
the wind turbine blade radius.

The relationship between the reference speed and the electromagnetic power of the
wind turbine is given by

ωre f = −0.67P2
e f + 1.42Pe f + 0.51 (4)
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where Pe f is the DFIG measured electrical power, ωre f is the reference speed for maximum
power tracking.

The additional frequency response of the wind turbine consists of three parts: fre-
quency measurement module, washout filtering module, and droop control, where the
transfer function of the frequency measurement module is given by

∆ fm =
1

1 + TR1s
∆ f (5)

washout filter module:
∆ f ′m =

Tw1s
1 + Tw1s

∆ fm (6)

droop control:
∆Pe = K f ∆ f ′m (7)

where TR1 is the frequency measurement module time gain, TW1 is the washout filter
gain factor, K f is the sag control gain, and ∆Pe is the active power variation of the DFIG
additional frequency response.

3. Cascade Fractional Order Controller Design
3.1. Implementation of Fractional Calculus

Fractional calculus is a non-integer order calculus, and the fractional order definition
has several formulations in various viewpoints. The following equation introduces a
unified fractional order calculus operator.

γDα
m =


dα

dtα α > 0
1 α = 0 α ∈ R∫ m

γ (dτ)
α

α < 0
(8)

where D is the fractional order calculus operator, m and γ are the up and down bounds of
the calculus operator, respectively, and α denotes the order of the fractional order operator.

The most popular fractional-order calculus operator is the one defined by the Riem
ann–Liouville theorem. Equations (9) and (10) demonstrate the definitions of the integral
operator and the calculus.

γDα
m f (t) =

1
Γ(n− α)

dn

dtn

∫ m

γ

f (τ)

(t− τ)α−n+1 dτ, n− 1 < α < n n ∈ R (9)

γDα
m f (t) =

1
Γ(α)

∫ m

γ
(t− τ)α−1 f (τ)dτ (10)

where n denotes the order of the calculus operator for fractional orders and Γ(·) is the
Eulerian Gamma function.

While the fractional-order controller under the Riemann–Liouville definition can
accurately calculate the fractional-order calculus value for a given signal, it is challenging
to implement in a practical system. In contrast, the Oustaloup filter can approximate the
fractional-order calculus operator well within a specific frequency interval (ωL, ωH) and at
order N f .

sα ≈ (
dωH

b
)

α

(
ds2 − bωHs

d(1− α)bs2 + bωHs + dα
)Gp (11)

Gp, ωk, and ω′k can then be calculated from Equations (12) and(13) as follows:

Gp =

N f

∏
k=−N f

s + ω′k
s + ωk

(12)
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ωk = (
bωH

d
)

α+2k
2Nf +1

, ω′k = (
bωL

d
)

α−2k
2Nf +1

(13)

In the above Equation d = 9, b = 10, the frequency interval is [0.001, 1000], N f = 5.

3.2. Cascade 3DOF-FOPID-FOPI Controller

In this study, a CC-FOC is devised to enhance the LFC efficiency of the interconnected
system and reduce the system frequency changes brought on by load disturbances and wind
fluctuations. The structure block diagram of the cascade controller is shown in Figure 3.
The designed cascaded fractional order controller comprises two parts, a 3DOF-FOPID
controller and a FOPI controller, connected by cascading.
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3.2.1. 3DOF-FOPID Controller

The dynamic performance of the multi-degree-of-freedom controller facilitates better
suppression of system oscillations. The 3DOF-FOPID controller, in its traditional form,
consists of three parts, which serve to increase the closed-loop stability of the controller and
reduce external disturbances through the closed-loop response. The following equation
gives the output response of the 3DOF-FOPID controller.

U1(s) =
{

Pf KP + KI
sη + D f KDsζ( N

N+sζ )
}

R(s)+{
−KP − KI

sη − KDsζ( N
N+sζ )

}
Y(s)+{

−G f f KP − KI
sη − G f f KDsζ( N

N+sζ )
}

D(s)
(14)

where η, ζ, are the integral gain and differential gain.

3.2.2. FOPI Controller

U(s) =
{

KP1 +
KI1

sη1

}
U1(s) (15)

The linear inequality for the parameter boundaries of the cascade controller is given by

Kmin
P ≤ KP ≤ Kmax

P , Kmin
P1 ≤ KP1 ≤ Kmax

P1
Kmin

I ≤ KI ≤ Kmax
I , Kmin

I1 ≤ KI1 ≤ Kmax
I1

Kmin
D ≤ KD ≤ Kmax

D , ηmin ≤ η ≤ ηmax, ηmin
1 ≤ η1 ≤ ηmax

1
ζmin ≤ ζ ≤ ζmax, Pmin

f ≤ Pf ≤ Pmax
f , Dmin

f ≤ D f ≤ Dmax
f

Gmin
f f ≤ G f f ≤ Gmax

f f , Nmin ≤ N ≤ Nmax

(16)

where min is the minimum value of the cascade controller gain and max is the maximum
value of the cascade controller gain. For the new cascade controller, there is no definite
method to determine these values at the beginning of the controller design [33]. To enhance
the reliability of the interconnected area power system and obtain better parameter opti-
mization, the range of controller gains KP, KI , KD, KP1, and KI1 take values in the range of
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0 to 2. The values of η, η1, ζ, and G f f are in the range of 0 to 1. Pf and D f take values in the
range of 0 to 3. The value range of N is from 10 to 200.

4. The Proposed CPSOGSA Algorithm

This section will first discuss the particle swarm optimization (PSO) algorithm and
the gravitational search algorithm (GSA) that make up the CPSOGSA algorithm, explain
the principles and mathematical expressions of the two algorithms, and then introduce the
chaotic mapping and its parameter search process in the CPSOGSA algorithm in detail.

4.1. Particle Swarm Optimization

Based on the biological behavior of a flock of birds seeking food, Kennedy et al.
introduced the PSO algorithm, an intelligent optimization technique [34]. The core idea of
the algorithm is to use particles to mimic individual birds, with the position of each particle
being a potential solution to the problem. Each particle in the current particle swarm
maintains its optimal solution information during the search process, while the particle
swarm maintains the population’s optimal solution information. The velocity and position
of each particle in the current particle swarm are updated continuously throughout the
optimization solution process. The iterative search procedure is halted, and the optimum
solution is produced when the predetermined number of iterations or population ideal
solution accuracy is obtained. The particle of the particle swarm updates for location and
velocity are provided by

vi(t + 1) = wvi(t) + c1·rand·(pbesti − pi(t)) + c2·rand·(gbesti − pi(t)) (17)

pi(t + 1) = pi(t) + vi(t + 1) (18)

where vi(t) and pi(t) are the velocity and position of particle i, respectively, c1 and c2 are the
particle’s population learning factor as well as its learning factor, respectively, w represents
the inertia factor, and rand represents the random number with the interval at [0, 1].

4.2. Gravitational Search Algorithm

The design idea of GSA is derived from the law of gravitation in physics [35]. In GSA,
the positions of particles orbiting in space are considered solutions to the optimization
problem, and each particle interacts with the other through universal gravity. The position
of that particular particle is the best answer to the optimization issue because, under the
influence of gravity, all particles will eventually move toward the individual particle with
an enormous mass. Assuming that there are N individuals in the initial population of GSA,
the position of the ith individual in space can be defined as shown in Equation (19).

pi = (p1
1, . . . pc

i , . . . pn
i )i = 1, 2, . . . N (19)

where pi is the position of the ith particle in the cth dimension and n is the specified
dimension of the ith particle. At the t moment, the mass of the particle is given by

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(20)

Mi(t) =
mi(t)

N
∑

j=1
mj(t)

(21)

where f iti(t) is the fitness value of particle i at time t; mi(t) is the mass of particle i at time
t; best(t), worst(t) are the optimal fitness value and the worst fitness value of all particles
at time t, respectively, and are defined accordingly as follows:

best(t) = min f iti(t)i ∈ {1, 2, . . . N} (22)
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worst(t) = max f iti(t)i ∈ {1, 2, . . . N} (23)

This paper is a minimization problem for the optimal control of the system load
frequency, so the calculation method of this adaptation degree is used.

At the moment t, the universal gravitational force between the particle i and the
particle j in the cth dimension is

Fc
ij = G(t)

Mi(t)Mj(t)
Rij(t) + ε

(pc
j (t)− pc

i (t)) (24)

where G(t) and Rij(t) are the universal gravitational constant at the moment of t and
the Euclidean distance between particle i and particle j, respectively, and ε is a very
small constant.

Then the total force exerted on particle i is given by

Fc
i (t) =

N

∑
j=1,j 6=i

randjFc
ij(t) (25)

where randj represents a random number of [0, 1].
In each iteration of the GSA algorithm, each particle updates its next-generation veloc-

ity vc
i (t + 1) and position pc

i (t + 1) according to the acceleration ac
i (t), which is calculated

as follows:
ac

i (t) = Fc
i (t)/Mi(t) (26)

vc
i (t + 1) = randjvc

i (t) (27)

pc
i (t + 1) = pc

i (t) + vc
i (t + 1) (28)

GSA will update the particle velocity and position throughout the optimization search
process and then calculate the gravitational force of each particle. After several iterations,
the individual particles with higher masses will get better positions and keep gathering
other particles. The optimal solution will be output when the number of iterations reaches
a predetermined value.

4.3. Improved PSOGSA Algorithm under Chaotic Map Optimization (CPSOGSA)

The hybrid PSOGSA algorithm comprises two parts, PSO and GSA, and its equations
of motion are shown in Equations (29) and (30).

vi(t + 1) = wvi(t) + c′1·rand·(pbesti − pi(t)) + c′2·rand·(gbesti − pi(t)) (29)

pi(t + 1) = pi(t) + vi(t + 1) (30)

Chaos, as a nonlinear system with complex behavior and random characteristics,
is very sensitive to initial conditions. Due to its disorderly and ergodic characteristics,
chaos can be traversed through all the state points in the chaotic area in a finite time.
Therefore, the hybrid PSOGSA algorithm is optimized using the chaotic mapping method
to improve the convergence speed of the algorithm while preventing the particle position
from converging and jumping out of the optimal local solution in time. Therefore, this
paper adopts the method of chaotic mapping instead of random numbers to calculate the
total force applied to the particles, thus improving the GSA algorithm’s local search ability
and convergence speed.

The total force of particle i using the chaotic mapping method is calculated as shown
in Equation (31).

Fc
i (t) = ∑

j∈(k)best,j 6=i
C(t)Fc

ij(t) (31)

where C(t) is the value of the function generated using a one-dimensional chaotic mapping.
Table 1 shows the ten functions used to generate chaotic mappings in this paper [36,37],
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none of which have random numbers and do not generate values between 0 and 1 but are
simply normalized to the same scale. Figure 4 shows the chaotic curves generated using the
chaotic mapping function, which changes according to the number of iterations. Simulation
tests of the PSOGSA algorithm optimized by these 10 chaotic map mapping functions are
conducted in the literature [31]. The simulation results show that the PSOGSA algorithm
under Sinusoidal chaotic map optimization has the best convergence speed and smaller
fitness values. Therefore, Sinusoidal chaotic maps are chosen to optimize the PSOAGSA
algorithm in this study. In addition, the parameter settings of the CPSOGSA algorithm in
this study are given in Appendix A.

Table 1. The chaotic maps function.

No. Chaotic Map Function Range

1 Chebyshev yt+1 = cos(k cos−1(yt)) [−1, 1]
2 Circle yt+1 = mod((yt + g− (e/2π) sin(2πyt)), 1) e = 0.5, g = 0.2 [0, 1]

3 Gauss/Mouse yt+1 =

{
1 yt = 0

1
mod(yt ,1)

otherwise
[0, 1]

4 Iterative yt+1 = sin(eπ/yt) e = 0.7 [−1, 1]
5 Logistic yt+1 = eyt(1− yt) e = 4 [0, 1]

6 Piecewise
yt+1 =


yt
K 0 ≤ yt ≤ K
yt−K
0.5−K 0 ≤ yt ≤ K
1−K−yt
0.5−K 0 ≤ yt ≤ K

1−yt
K 0 ≤ yt ≤ K

K = 0.4
[0, 1]

7 Sine yt+1 = e
4 sin(πyt) e = 4 [0, 1]

8 Singer yt+1 = τ(7.86yt − 23.31yt
2 + 28.75yt

3 − 13.302875yt
4) τ= 1.07 [0, 1]

9 Sinusoidal yt+1 = eyt
2 sin(πyt) e = 2.3 [0, 1]

10 Tent yk+1 =

{ yt
0.7 yt < 0.7
10
3 (1− yt) yt ≥ 0.7

[0, 1]
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The time multiplied squared error (ITSE) is used in this study as the performance 
indicator and goal function for assessing the LFC of the system, and CPSOGSA is used to 
tune and optimize the relevant CC-FOC system parameters. The system objective function 
is shown in Equation (32). 
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The time multiplied squared error (ITSE) is used in this study as the performance
indicator and goal function for assessing the LFC of the system, and CPSOGSA is used to
tune and optimize the relevant CC-FOC system parameters. The system objective function
is shown in Equation (32).

J = ITSE = min
∫ T

0
(|∆ f1|2 + |∆ f2|2 + |∆Ptie|2)dt (32)

In comparing the controller performance, the CPSOGSA algorithm will be used to
optimally iterate each controller parameter with Equation (32) as the objective function. The
algorithm’s optimization search process for the controller parameters is shown in Figure 5.
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5. Simulation Analysis

As illustrated in Figure 1, the frequency model of the two-area interconnected power
system containing DFIG is built based on the R2021b MATLAB/SIMULINK environment
in this study, and the proposed cascaded 3DOF-FOPID-FOPI controller is simulated and
verified. This section will use load perturbation and wind speed fluctuation to simulate
the interconnected electrical system. The LFC performance of several controllers is then
compared, and the robustness of the CC- FOC is evaluated. In addition, to illustrate the
excellent performance of the CPSOGSA algorithm on parameter search, the parameters of
the CC-FOC in the system will be iteratively searched for using DE, PSO, GSA, CHGSA, and
CPSOGSA, respectively. Whereas with the CPSOGSA algorithm, the number of particles is
fixed at 50, and the procedure has 100 iterations overall.

5.1. Scenario 1 Effect of Different Load Perturbations

In this subsection, two operating conditions are included, the first is a +2% load
disturbance in area 1 of the interconnected regional system at t = 0 s, and the second is a
+2% load disturbance and a +4% load perturbation in areas 1 and 2 of the interconnected
regional system at t = 0 s, respectively. The gains of the cascaded 3DOF-FOPID-FOPI
controller, 2DOF-FOPID controller, FOPID controller, and PID controller are optimized
based on the CPSOGSA algorithm to compare the control performance of each controller
under load perturbation.

Under a +2% load perturbation in area 1, Table 2 illustrates the optimal gain for
each controller in the regionally interconnected system based on the ITSE fitness function.
Figures 6 and 7 illustrate the response curves of the system frequency deviation and contact
line power deviation under different load disturbance conditions, respectively. Table 3
shows the values of undershoot (US), overshoot (OS), settling time (Ts), and objective
function (ITSE) for the system under different controllers. Settling time is defined as a
tolerance range of 0.002%. According to Table 3, when the controller gains are optimized
and the CPSOGSA algorithm is used, the cascaded 3DOF-FIPID-FOPI controller performs
considerably outperforming the other four controllers. In the case of +2% load perturbation
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in area 1, for the maximum drop US of ∆ f1, the CC-FOC reduces 70.41%, 84.07%, 92.29%,
and 89.71% compared to the 3DOF-FOPID controller, 2DOF-FOPID controller, FOPID
controller, and PID controller, respectively. In addition, for the maximum overshoot
OS of ∆ f1, the CC-FOC reduces 72.33%, 66.43%, 88.53%, and 96.80% compared to the
3DOF-FOPID controller, 2DOF-FOPID controller, FOPID controller, and PID controller,
respectively. For the settling time Ts of ∆ f1, the CC-FOC well reduces the settling time of
frequency recovery under the specification of the objective function. CC-FOC decreases the
settling time of frequency recovery by 76.26%, 76.70%, 85.33%, and 88.22%.

Table 2. Gains of each controller parameter.

Controller Unit KP KI KD η ζ Pf Df Gff N KP1 KI1 η1

PID
thermal 2 0 2
hydro 2 0 2
diesel 2 2 2

FOPID
thermal 2 2 2 0 0.9036
hydro 0.1677 1.8687 2 0 0
diesel 2 2 2 0 0

2DOF-
FOPID

thermal 1.9112 2 2 0 0.2920 0.0402 2.9999
hydro 0.9487 0 0 0.0037 0.5265 0.3364 0
diesel 2 2 2 0.0845 0.3382 3 3

3DOF-
FOPID

thermal 1.9999 2 2 0 1 2.9910 3 1 46.5761
hydro 1.2494 1.9858 0.1133 1 0.5932 2.2241 2.9977 0.9536 188.0323
diesel 2 2 2 0.0857 0 3 2.9998 1 143.5195

CC-FOC
thermal 2 0 2 0.9913 0.9186 3 3 0.0836 64.6058 2 2 0.0386
hydro 2 0.0646 0 0.8879 0.9994 0 2.993 0 108.3272 0.3344 0 0.6158
diesel 1.9994 1.9992 1.9996 0.1592 0 2.9972 2.9975 1 104.8120 2 2 0
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Table 3. Overshoot/Undershoot and Settling time of state variables for 2% load disturbance in area 1.

Controller
∆f1 ∆f2 ∆Ptie

ITSE×10−6
US×10−3

(Hz)
OS×10−3

(Hz)
Ts

(sec)
US×10−3

(Hz)
OS×10−3

(Hz)
Ts

(sec)
US×10−3

(Hz)
OS×10−3

(Hz)
Ts

(sec)

PID −1.41 0.3 10.78 −0.26 0.1 13.2 −0.25 0.132 10.5 2.88
FOPID −1.88 0.0837 8.66 −0.24 0.0078 5.46 −0.2 0.005 6.21 0.79

2DOF-FOPID −0.91 0.0286 5.45 −0.074 0.001 4.65 −0.08 0 5.65 0.122
3DOF-FOPID −0.49 0.0347 5.35 −0.0723 0.0026 4.25 −0.0745 0.00223 4.45 0.098

CC-FOC −0.1452 0.0096 1.276 −0.0230 0.0008 1.976 −0.0209 0.0006 1.576 0.0078

5.2. Scenario 2 Wind Speed Fluctuations

The frequency stabilization of the connected regional system comprising DFIG is
simulated and confirmed under stochastic wind speed conditions to validate the control
performance of the cascade controller in a more realistic setting. The random wind speed
of the wind turbine in area 1 is illustrated in Figure 8a, and the resulting active output of
the DFIG is shown in Figure 8b. Under the influence of stochastic wind speed, the zone
frequency and contact line power of the interconnected power system also change, and the
corresponding dynamic response curves are shown in Figure 9. The LFC performance of
the CPSOGSA-optimized cascade controller is much better than the other four controllers,
as illustrated by the variation curves of system frequency and contact line power under
random wind speed fluctuations in area 1.
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5.3. Scenario 3 Comparison of Different Optimization Algorithms

The primary purpose of this subsection is to illustrate the excellence of the CP-
SOGSA algorithm in optimizing the cascade controller parameters. For this purpose,
CPSOGSA is compared with four other algorithms. Individual algorithms are used to
optimize all parameters of the proposed cascade controller in the presence of the same
operating disturbance.

The iterative process of the various algorithms is reflected in Figure 10a, and it can be
seen that CPSOGSA converges faster than the other four algorithms and has a smaller fitness
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value, i.e., the controller parameters found are better. However, the convergence speed
and fitness value of PSO and GSA could be more satisfactory and even fall into the local
optimum. Figure 10b–d show the frequency variation curves of the regional interconnected
power system and the dynamic response curves of the contact line power deviation obtained
by different algorithms for the cascade controller when the interconnected regional system
faces the same disturbances. From the dynamic response results of the system, it is known
that the cascade controller under CPSOGSA optimization exhibits better system frequency
control capability.
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5.4. Scenario 4 Load Perturbation and Internal Parameter Changes

The robustness of the load frequency controller is important for the system, so this
subsection will reflect the robustness of the proposed cascade controller by varying the load
perturbation and system parameters in a simulation environment for sensitivity analysis.
The load perturbation circumstances and system parameters are altered between +25%
and −25% of their nominal values in the simulated evaluation of the controller resilience.
Figure 11 shows the frequency dynamic response of area 1 under varying load disturbance
and system parameters such as the time constant of the hydropower plant (Tw), frequency
bias parameter (B), droop governor characteristic (R), stiffness coefficient (T12), and power
system time constant (TP). From Figure 11a,b, we can learn that the load disturbance and
the system parameter B have some influence on the stabilization of the system frequency,
among which the influence of the load disturbance change is the most obvious, but the
LFC performance of the system is still very good. The impact of the change of other system
parameters in the range of ±25% on the system frequency deviation is negligible, which
fully illustrates the robustness of the proposed cascade controller.
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Table 4 gives the US/OS and settling time of the frequency deviation and tie-line
deviation for areas 1 and 2 under load perturbation and different system parameter changes.
Taking B as an example, with a +25% increase in B, the US of ∆ f1, ∆ f2, and ∆Ptie only
changes by 8.61%, 16.52%, and 7.17%, the overshoot of ∆ f1, ∆ f1, and ∆Ptie only changed by
9.38%, 20%, and 0, respectively, and the settling time of ∆ f1, ∆ f1, and ∆Ptie only changed by
1.276%, 23.86%, and 7.68%, respectively. All the results illustrate the excellent robustness of
CC-FOC under CPSOGSA algorithm optimization.

Table 4. Frequency deviation and tie-line power deviation under sensitivity analysis.

Controller %
Change

∆f1 ∆f2 ∆Ptie

ITSE×10−6
US×10−3

(Hz)
OS×10−3

(Hz)
Ts

(sec)
US×10−3

(Hz)
OS×10−3

(Hz)
Ts

(sec)
US×10−3

(Hz)
OS×10−3

(Hz)
Ts

(sec)

Nominal 0 −0.1452 0.0096 1.276 −0.0230 0.0008 1.976 −0.0209 0.0006 1.576 0.0077
Loading

condition
+25 −0.1816 0.0119 1.327 −0.0290 0.0009 2.505 −0.0261 0.0008 2.255 0.0122
−25 −0.1089 0.0071 1.142 −0.0017 0.0006 1.192 −0.0156 0.0005 1.142 0.0044

B = 0.5390 +25 −0.1327 0.0087 1.255 −0.0192 0.0006 1.505 −0.0194 0.0006 1.455 0.0066
B = 0.3234 −25 −0.1610 0.0105 1.254 −0.0286 0.0010 2.339 −0.0226 0.0071 1.789 0.0094

R = 3 +25 −0.1439 0.0094 1.279 −0.0227 0.0078 1.929 −0.0207 0.0064 1.529 0.0077
R = 1.8000 −25 −0.1466 0.0096 1.277 −0.0236 0.0081 2.027 −0.0210 0.0065 1.627 0.0079
Tw = 1.25 +25 −0.1453 0.0095 1.277 −0.0232 0.0079 1.977 −0.0209 0.0065 1.577 0.0078
Tw = 0.75 −25 −0.1453 0.0095 1.278 −0.0232 0.0078 1.978 −0.0208 0.0065 1.578 0.0078

T12 = 0.0541 +25 −0.1446 0.0087 1.177 −0.0266 0.0093 2.133 −0.0239 0.0076 1.813 0.0074
T12 = 0.0325 −25 −0.1459 0.0100 1.326 −0.0192 0.0061 1.476 −0.0173 0.0049 1.527 0.0083
TP = 14.3625 +25 −0.1384 0.0966 1.285 −0.0233 0.0080 2.025 −0.0233 0.0804 1.628 0.0084
TP = 8.6175 −25 −0.1540 0.0947 1.243 −0.0230 0.0078 1.925 −0.0207 0.0065 1.534 0.0076
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6. Conclusions and Future Work

This paper proposes a cascaded 3DOF-FOPD-FOPI controller for the LFC problem
of a two-area interconnected power system integrated with DFIG. The parameters of
the cascaded controller are optimized under the objective function of ITSE using the
CPSOGSA algorithm. Simulation results show that the cascade controller optimized
with the CPSOGSA algorithm provides better control output performance in the LFC of
interconnected power systems than other controllers. The suggested cascade controller can
reduce frequency stabilization time and overshoot and undershoot for conventional load
disturbances and wind turbine output power variations caused by wind speed fluctuations.
In addition, the CPSOGSA algorithm effectively optimizes the controller gain. It can
converge quickly and find the optimal optimized gain even in a state with many cascade
controller parameters. The sensitivity analysis of varying load perturbations and system
parameters also illustrates the robustness of the cascade controller.

In future work, optimization of the control structure of the cascaded fractional-order
controller will be considered to reduce the number of controller parameters while ensuring
the control performance, as well as to analyze the impact of wind power entry on the inertia
aspects of the power system.
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Abbreviations
CC-FOC Cascade fractional-order controller

CPSOGSA
Improved particle swarm optimization and gravitational search algorithm under
chaotic map optimization

DE Differential evolution
DFIG Doubly-fed induction generator
FOPI Fractional-order proportional-integral
GSA Gravitational search algorithm
ITSE Time multiplied squared error
LFC Load frequency control
PSO Particle swarm optimization
PID Proportional-integral-differential
2DOF-FOPID Two-degree-of-freedom fractional-order proportional-integral-differential
3DOF-FOPID Three-degree-of-freedom fractional-order proportional-integral-differential

Appendix A

Parameters of the two-area 1nterconnection system
TG = 0.08 s, TT = 0.3 s, Tr = 10 s, Kr = 0.3 s, TGH = 0.2 s, TRH = 28.75 s, TRS = 5 s,

TW = 1 s, KD = 16.5, TD = 0.025 s, TP = 11.49 s, KP = 68.9566 Hz/pu, Ri = 2.4 Hz/pu,
Kth = 0.543478, Khy = 0.326084, Kdi = 0.130438, T12 = 0.0433 s, B1, B2 = 0.4312 s,
α12 = −1.

B1, B2, frequency bias parameters; TG, governor time constant of thermal unit; TT ,
steam turbine time constant of thermal unit; Tr, steam turbine reheat time constant; Kr,
steam turbine reheat gain constant; TGH , governor time constant of hydro unit; TRH , hydro
turbine speed governor transient time droop constant; TRS, hydro turbine speed governor
reset time; TW , water flow inertia time constant; KD, the gain of the diesel generator unit;
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TD, time constant of the diesel generator unit; TP, power system time constant; KP, power
system gain; T12, synchronization coefficient; Ri, governor regulation parameter; ACE, area
control error.

Parameters of DFIG
Tf = 5 s, Tcon = 0.02 s, ω0 = 1.33 rad/s, Kpt = 3 s, Kit = 0.6 s, VWT = 1 pu,

HWT = 5.19 s, TR1 = 0.2 s, TW1 = 6 s, R = 52 m, 0.5ρAr/SN = 0.00145.
Parameters of CPSOGSA
c1 = 1.4962, c2 = 1.4962, w = 0.7298, N = 50, Iteration = 100.
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11. Vafamand, N.; Arefi, M.M.; Asemani, M.H.; Dragičević, T. Decentralized Robust Disturbance-Observer Based LFC of Intercon-
nected Systems. IEEE Trans. Ind. Electron. 2022, 69, 4814–4823. [CrossRef]

12. Adibi, M.; Woude, J.v.d. Secondary Frequency Control of Microgrids: An Online Reinforcement Learning Approach. IEEE Trans.
Autom. Control 2022, 67, 4824–4831. [CrossRef]

13. Ali, M.; Kotb, H.; Aboras, K.M.; Abbasy, N.H. Design of Cascaded PI-Fractional Order PID Controller for Improving the Frequency
Response of Hybrid Microgrid System Using Gorilla Troops Optimizer. IEEE Access 2021, 9, 150715–150732. [CrossRef]

14. Rostami, Z.; Ravadanegh, S.N.; Kalantari, N.T.; Guerrero, J.M.; Vasquez, J.C. Dynamic Modeling of Multiple Microgrid Clusters
Using Regional Demand Response Programs. Energies 2020, 13, 4050. [CrossRef]

15. Khadanga, R.K.; Nayak, S.R.; Panda, S.; Das, D.; Prusty, B.R.; Sahu, P.R. A Novel Optimal Robust Design Method for Frequency
Regulation of Three-Area Hybrid Power System Utilizing Honey Badger Algorithm. Int. Trans. Electr. Energy Syst. 2022,
2022, 6017066. [CrossRef]

16. Patan, M.K.; Raja, K.; Azaharahmed, M.; Prasad, C.D.; Ganeshan, P. Influence of Primary Regulation on Frequency Control of an
Isolated Microgrid Equipped with Crow Search Algorithm Tuned Classical Controllers. J. Electr. Eng. Technol. 2021, 16, 681–695.
[CrossRef]

17. Chen, G.; Li, Z.; Zhang, Z.; Li, S. An Improved ACO Algorithm Optimized Fuzzy PID Controller for Load Frequency Control in
Multi Area Interconnected Power Systems. IEEE Access 2020, 8, 6429–6447. [CrossRef]

18. Kamarposhti, M.A.; Shokouhandeh, H.; Alipur, M.; Colak, I.; Zare, H.; Eguchi, K. Optimal Designing of Fuzzy-PID Controller in
the Load-Frequency Control Loop of Hydro-Thermal Power System Connected to Wind Farm by HVDC Lines. IEEE Access 2022,
10, 63812–63822. [CrossRef]

19. Tabak, A. Fractional order frequency proportional-integral-derivative control of microgrid consisting of renewable energy sources
based on multi-objective grasshopper optimization algorithm. Trans. Inst. Meas. Control 2021, 44, 378–392. [CrossRef]

20. Ebrahim, M.A.; Becherif, M.; Abdelaziz, A.Y. PID-/FOPID-based frequency control of zero-carbon multisources-based intercon-
nected power systems underderegulated scenarios. Int. Trans. Electr. Energy Syst. 2021, 31, e12712. [CrossRef]

21. Agwa, A.M.; Abdeen, M.; Shaaban, S.M. Optimal FOPID Controllers for LFC Including Renewables by Bald Eagle Optimizer.
CMC-Comput. Mater. Contin. 2022, 73, 5525–5541. [CrossRef]

http://doi.org/10.1016/j.rser.2022.112111
http://doi.org/10.1016/j.ijepes.2019.105471
http://doi.org/10.1109/JSYST.2020.3032656
http://doi.org/10.1016/j.ijepes.2020.106501
http://doi.org/10.1016/j.epsr.2021.107114
http://doi.org/10.1109/ACCESS.2022.3174625
http://doi.org/10.1186/s41601-022-00250-1
http://doi.org/10.3390/en15020629
http://doi.org/10.1049/iet-gtd.2017.0600
http://doi.org/10.3390/en15218219
http://doi.org/10.1109/TIE.2021.3078352
http://doi.org/10.1109/TAC.2022.3162550
http://doi.org/10.1109/ACCESS.2021.3125317
http://doi.org/10.3390/en13164050
http://doi.org/10.1155/2022/6017066
http://doi.org/10.1007/s42835-020-00614-3
http://doi.org/10.1109/ACCESS.2019.2960380
http://doi.org/10.1109/ACCESS.2022.3183155
http://doi.org/10.1177/01423312211034660
http://doi.org/10.1002/2050-7038.12712
http://doi.org/10.32604/cmc.2022.031580


Energies 2023, 16, 1364 18 of 18

22. Pahadasingh, S.; Jena, C.; Panigrahi, C.K. Load Frequency Control Incorporating Electric Vehicles Using FOPID Controller with
HVDC Link. In Proceedings of the Innovation in Electrical Power Engineering, Communication, and Computing Technology,
Singapore, 22 February 2020; pp. 181–203.

23. Mohapatra, T.K.; Dey, A.K.; Sahu, B.K. Employment of quasi oppositional SSA-based two-degree-of-freedom fractional order PID
controller for AGC of assorted source of generations. IET Gener. Transm. Distrib. 2020, 14, 3365–3376. [CrossRef]

24. Nayak, J.R.; Shaw, B.; Sahu, B.K. Implementation of hybrid SSA-SA based three-degree-of-freedom fractional-order PID controller
for AGC of a two-area power system integrated with small hydro plants. IET Gener. Transm. Distrib. 2020, 14, 2430–2440.
[CrossRef]

25. Sahu, P.C.; Prusty, R.C.; Panda, S. Active power management in wind/solar farm integrated hybrid power system with AI based
3DOF-FOPID approach. Energy Sources Part A: Recovery Util. Environ. Eff. 2021, 1–21. [CrossRef]

26. Ali, M.; Kotb, H.; Kareem AboRas, M.; Nabil Abbasy, H. Frequency regulation of hybrid multi-area power system using wild horse
optimizer based new combined Fuzzy Fractional-Order PI and TID controllers. Alex. Eng. J. 2022, 61, 12187–12210. [CrossRef]

27. Guha, D.; Roy, P.K.; Banerjee, S. Equilibrium optimizer-tuned cascade fractional-order 3DOF-PID controller in load frequency
control of power system having renewable energy resource integrated. Int. Trans. Electr. Energy Syst. 2021, 31, e12702. [CrossRef]

28. Barakat, M. Novel chaos game optimization tuned-fractional-order PID fractional-order PI controller for load–frequency control
of interconnected power systems. Prot. Control Mod. Power Syst. 2022, 7, 16. [CrossRef]

29. Choudhary, R.; Rai, J.N.; Arya, Y. Cascade FOPI-FOPTID controller with energy storage devices for AGC performance advance-
ment of electric power systems. Sustain. Energy Technol. Assess. 2022, 53, 102671. [CrossRef]

30. Guha, D.; Roy, P.K.; Banerjee, S. Frequency Control of a Wind-diesel-generator Hybrid System with Squirrel Search Algorithm
Tuned Robust Cascade Fractional Order Controller Having Disturbance Observer Integrated. Electr. Power Compon. Syst. 2022,
50, 814–839. [CrossRef]

31. Duman, S.; Li, J.; Wu, L.; Guvenc, U. Optimal power flow with stochastic wind power and FACTS devices: A modified hybrid
PSOGSA with chaotic maps approach. Neural Comput. Appl. 2020, 32, 8463–8492. [CrossRef]

32. Gan, K.; Sun, S.; Wang, S.; Wei, Y. A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration.
Atmos. Pollut. Res. 2018, 9, 989–999. [CrossRef]

33. Celik, E. Design of new fractional order PI–fractional order PD cascade controller through dragonfly search algorithm for
advanced load frequency control of power systems. Soft Comput. 2021, 25, 1193–1217. [CrossRef]

34. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the Icnn95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995.

35. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
36. Gandomi, A.H.; Yang, X.-S. Chaotic bat algorithm. J. Comput. Sci. 2014, 5, 224–232. [CrossRef]
37. Mirjalili, S.; Gandomi, A.H. Chaotic gravitational constants for the gravitational search algorithm. Appl. Soft Comput. 2017,

53, 407–419. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1049/iet-gtd.2019.0284
http://doi.org/10.1049/iet-gtd.2019.0113
http://doi.org/10.1080/15567036.2021.1956647
http://doi.org/10.1016/j.aej.2022.06.008
http://doi.org/10.1002/2050-7038.12702
http://doi.org/10.1186/s41601-022-00238-x
http://doi.org/10.1016/j.seta.2022.102671
http://doi.org/10.1080/15325008.2022.2141925
http://doi.org/10.1007/s00521-019-04338-y
http://doi.org/10.1016/j.apr.2018.03.008
http://doi.org/10.1007/s00500-020-05215-w
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1016/j.jocs.2013.10.002
http://doi.org/10.1016/j.asoc.2017.01.008

	Introduction 
	Systems Investigated 
	Cascade Fractional Order Controller Design 
	Implementation of Fractional Calculus 
	Cascade 3DOF-FOPID-FOPI Controller 
	3DOF-FOPID Controller 
	FOPI Controller 


	The Proposed CPSOGSA Algorithm 
	Particle Swarm Optimization 
	Gravitational Search Algorithm 
	Improved PSOGSA Algorithm under Chaotic Map Optimization (CPSOGSA) 

	Simulation Analysis 
	Scenario 1 Effect of Different Load Perturbations 
	Scenario 2 Wind Speed Fluctuations 
	Scenario 3 Comparison of Different Optimization Algorithms 
	Scenario 4 Load Perturbation and Internal Parameter Changes 

	Conclusions and Future Work 
	Appendix A
	References

