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Abstract: In order to cope with the efficient consumption and flexible regulation of resource scarcity
due to grid integration of renewable energy sources, a scheduling strategy that takes into account
the coordinated interaction of source, grid, load, and storage is proposed. In order to improve
the accuracy of the dispatch, a BP neural network approach modified by a genetic algorithm is
used to predict renewable energy sources and loads. The non-convex, non-linear optimal dispatch
model of the distribution grid is transformed into a mixed integer programming model with optimal
tides based on the second-order cone relaxation, variable substitution, and segmental linearization
of the Big M method. In addition, the uncertainty of distributed renewable energy output and
the flexibility of load demand re-response limit optimal dispatch on a single time scale, so the
frequency of renewable energy and load forecasting is increased, and an optimal dispatch model
with complementary time scales is developed. Finally, the IEEE 33-node distribution system was
tested to verify the effectiveness of the proposed optimal dispatching strategy. The simulation results
show an 18.28% improvement in the economy of the system and a 24.39% increase in the capacity to

consume renewable energy.

Keywords: distribution network; renewable energy consumption; source-grid-load-storage; second-order
cone planning; optimal scheduling; BP neural network

1. Introduction

The power output of renewable energy sources such as wind power and photovoltaic
is intermittent, uncertain, and volatile [1]. With the development of active distribution
networks [2,3], the grid connection of a large number of distributed renewable energy
may need the effective regulation of renewable energy sources. Therefore, the quality of
renewable energy consumption [4] becomes a pressing challenge to be broken.

There have been many studies on renewable energy consumption, network recon-
figuration, and adjustable loads in the literature [5-7]. However, most of the existing
studies have been conducted unilaterally only for the source, network, load, and storage
sides [8,9]. The literature [10] uses reconfiguration to achieve eco-economic operation of
the distribution network and promote the consumption of renewable energy. However,
renewable energy output and load are time-series and uncertain [11,12], and static reconfig-
uration cannot accommodate this feature. The literature [13] promotes renewable energy
consumption by optimizing the scheduling of energy storage and adjustable loads but
ignores the dynamic regulation capability of the network side. In the literature [14], a
robust optimization study of on-load regulating transformers and (Static Var Compensator,
SVC) in the distribution network was conducted to obtain the optimal tap position and
SVC output. The literature [15] models the distribution network scheduling problem as a
multi-level stochastic programming model and solves it using deep reinforcement learning
algorithms. In the literature [16], two objectives of distribution network operation cost and
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voltage stability index are considered, and the proposed cloud particle swarm algorithm is
used to optimize the solution, and the results show that the dispatching effect based on the
cloud particle swarm algorithm is satisfactory.

The above renewable energy outputs are uncertain and random. Their prediction
accuracy is low, and the prediction error increases with time [17,18], so it is important to
improve the prediction accuracy of these uncertain variables [19]. Therefore, a BP neural
network improved by the genetic algorithm is used for forecasting.

The optimal dispatching model of the distribution network is a nonconvex nonlinear
optimization solution problem, and heuristic algorithms based on artificial intelligence
have been widely used in solving nonlinear models due to their advantageous features
such as simplicity and easy establishment of complex constraints, such as evolutionary
algorithms, particle swarm algorithms, genetic algorithms, etc. In the literature [20], the
particle swarm algorithm was used to solve the optimal dispatching model of distribution
networks containing renewable energy sources, but the particle swarm algorithm can be
easily fall into local optimality and not being able to guarantee global optimality, and the
time to find the best is too long [21], and the selection of weight coefficients is difficult
to be reasonably determined. Due to the above reasons, more and more scholars have
started to study effective numerical analysis methods to improve the speed of optimization
solutions and to ensure global optimality. In [22], a coordinated optimal scheduling model
is proposed, and the model is solved by an improved genetic algorithm. The simulation
results show that this method can effectively reduce the operation cost of the distribution
network and improve the capacity of renewable energy consumption. The second-order
cone relaxation and linearization method have the advantages of easy to obtain the optimal
global solution, fast solution speed, and high efficiency, and it has been widely used. In the
literature [23], an optimal tidal framework based on second-order cone relaxation is given,
and its effectiveness is verified.

In summary, an active distribution network with coordinated interaction of source,
network, load, and storage based on second-order cone planning is proposed in order to
fully stimulate the regulating role of the source side, the flexibility of dynamic changes
on the network side, and the demand response and adjustability of the load and storage
sides. Finally, the effectiveness and rapidity of this optimization strategy are verified by
simulation test results of the IEEE 33-node distribution system.

This paper proposes a multi-timescale scheduling strategy for source network load and
storage in distribution networks based on second-order cone planning. The contributions
are as follows:

(1) Compared with the previous distribution grid scheduling that only targets a single
flexibility resource, this study fully considers the coordination of source-grid-load-storage
multiple flexibility resources and considers a multi-time-scale scheduling approach within
the day-ahead day.

(2) The paper introduces an objective function that simultaneously considers the
economy and maximizes the consumption of renewable energy so as to promote the
consumption of renewable energy by adjusting the output of flexible resources while
meeting the day-ahead economy level.

(3) To address the problem that traditional intelligent algorithms are prone to fall into
local optimality, this paper converts the non-convex and non-linear model into a linear
model by linearizing the Big M method with segmental linearization and uses second-order
cone programming to solve the model quickly.

2. Renewable Energy and Load Forecast

Short-term forecasting of renewable energy and load in the system is an important
part of rational day-ahead and intra-day dispatch [17]. (back propagation, BP) neural
networks are typically characterized by their strong self-learning, adaptive and fault-
tolerant capabilities in dealing with nonlinear probabilistic problems. As a result, BP
neural networks can respond quickly and effectively to the environment and a range of
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stochastic factors, improving predictive power while achieving adaptivity through deeper
learning and sampling training, hence the use of the method for renewable energy and load
forecasting [16,17]. Figure 1. below shows the topology of the neural network. As shown
in Figure 1, before predicting renewable energy and load, the topology of the BP neural
network needs to be determined, and the number of implicit, input, and output layers in
the structure used for this study is 1. The BP neural network uses the most rapid descent
method as the default calculation method.

New Energy é
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Data R

Input  implicit Output
layer layer  layer

Figure 1. BP neural network topology diagram.

For features containing random fluctuation characteristics, such as load photovoltaic
wind energy, the prediction of the traditional BP neural network is not stochastic and does
not meet the stochastic characteristics of the above fluctuations because the weights and
thresholds are obtained by initialization at the time of training. The genetic algorithm can
effectively optimize the weights and thresholds to avoid falling into a local optimum, so
a genetic algorithm improved BP neural network is used for renewable energy and load
prediction, and the algorithm process is shown in Figure 2.
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Figure 2. Flow chart of BP neural network improved by genetic algorithm.
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In short-term forecasting of renewable energy, as well as load based on BP neural
network, the accuracy of forecasting, can be measured in terms of relative error as shown
in the following equation.

Yi—

1

/
Yi 5 100% (1)

€xd =

where y; denotes the true value and v} denotes the predicted value.

As shown in Figure 3, the BP neural network improved by the genetic algorithm can
keep the relative error of each hour at less than 0.3% accuracy when predicting before the
day, and after the statistical error frequency, the most concentration is 0.1%.
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Figure 3. The predictive power of the BP neural network was improved by the genetic algorithm Figure.

3. Scheduling Method of Source Network Load and Storage Coordination

The grid integration of renewable energy sources such as wind power and photo-
voltaic [3] brings many problems to the active distribution grid, such as causing drastic
fluctuations in the system, increasing the net loss of the power system, and there are many
renewable energy sources that cannot be consumed, it has become a challenge to mobi-
lize the flexibility of source-grid-load-storage and deal with the economic problems of
renewable energy consumption and distribution network operation [4-7].

Figure 4 shows the structure of an active distribution grid system with coordinated
source-grid-load-storage interaction. It consists of four components, source, grid, load,
and storage [12]. The optimization model focuses on the lowest cost of distribution grid
operation and the lowest loss of actively managed devices.

The source side coordinates and complements the output timing and spatial distri-
bution characteristics of controllable distributed renewable energy sources to reduce the
impact of power fluctuations on the system and improve the consumption capacity [14].
The grid side rationally reconfigures the network structure of the active distribution net-
work according to the network operation state [19]. Coordination of the temporal and
spatial characteristics of the network resources. On the load side, the new power system
contains many adjustable loads, such as air conditioning loads, which can cut peaks and
fill valleys and relieve network congestion by guiding customers to change their electricity
consumption patterns. In energy storage [13], due to the development of renewable energy
electric vehicles, traditional energy storage devices and new mobile energy storage in the
active distribution network can quickly adjust their charging and discharging power by
the system’s dispatching commands, which can charge at low valley loads and discharge at
peak loads, which helps to improve the system’s ability to cut peaks and fill valleys and
improve the economy of operation.
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Figure 4. Schematic diagram of the optimal scheduling model based on the coordinated interaction
of source, network, load, and storage.

3.1. Multi-Time Scale Scheduling Mode

A multi-timescale active distribution network coordination and optimal dispatching
strategy are proposed for active distribution networks containing multiple flexible resource
resources in the source-network-load-storage. The corresponding optimal control objectives
are proposed from two-time scales: day-ahead and intra-day. In addition, correspond-
ingly, the dispatching is divided into two stages: day-ahead optimization dispatching
and intra-day optimization dispatching. In the day-ahead optimization stage, the grid
company optimizes the dispatch according to the day-ahead market price, the flexible and
controllable resources on the source-grid-load-storage side, etc., and determines the output
of each piece of equipment, the amount of power purchased from the upper grid and the
amount of flexible load regulation on the next day.

However, due to the relatively long prediction time scale, the gap between the predic-
tion results of renewable energy and load and the actual situation becomes larger, resulting
in a lack of practical guidance for the optimization results in the long-time scale, so further
corrections are needed in the intra-day stage. On the basis of the scheduling with economic
optimization as the control target, consider the coordination of each flexible resource in
the short time scale within the day so as to achieve the maximum quality consumption of
renewable energy. Correction of deviations between scheduling plan and forecast results. In
summary, the architecture of the proposed multi-time-scale coordinated optimal scheduling
method for active distribution networks is shown in Figure 5.
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Figure 5. Multi-timescale optimization schematic.
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3.2. Scheduling Objective Function before the Day

In order to reasonably and effectively utilize the strong interactivity and dispatch-
ability of multi-flexible resources, the dispatching costs of multi-flexible resources are
integrated based on the consideration of distribution network operation costs, including
wind abandonment costs, higher level power purchase costs, and network loss costs. In
addition, the operating cost of (the capacitor, CB) and (On-Line Tap Changer, OLTC) is also
introduced into the objective function of distribution network operation cost because the
lifetime of CB and OLTC is affected by the number of operations.

T C;zbandon + Czuy + Cgoss
minFgc = ) l )
=1\ +C/ 4 CSB 4 cQrTe

where C#0andon ig the abandonment cost, C;ﬂ)uty is the cost of active power purchase from the

upper grid, Czuy is the cost of power purchase from the distribution network, Cl°*® is the

cost of network losses, C/'** is the cost of scheduling flexibility resources CSB and COLTC
are the operating costs of CB and OLTC.

Cztzbundon — Z (ADG PBG. abandon )At (3)

abandon
i€Qpg

where )Lan(;n Jon 18 the cost per unit of distributed power supply, pPe- abandon js the amount of

power abandoned by the distributed power supply, i is the node where the distributed power
supply is located and Qpg is the set of all points containing distributed power supply.

' P P
i=0pg Z:Qgrid

=y /\buy'DGPEGAt+' Yo AT A @)

where Cf " is the cost of electricity purchased from the distribution network, Af,uy'DG)\zuy'g rid

is the renewable energy feed-in tariff and the electricity purchased from the distribution

network, PB G and Pigtr “ are the electricity purchased from the distribution network to the
renewable energy and the superior network.

C%OSS — AZOSS< Z Swij.tliz]'_tRi]' + 2 Iizj.tRij> At 5)
ijEQSW ijEQClose

where A% is the cost of network loss swjj; is the switching status of the branch ij, 0-1
variable, “0” means open, “1” means closed Qg means the branch where the contact
switch is located, Q)¢jos, means the branch where the normally closed switch is located.

'™ = cPC + CcJVC 4 CEP 4 W 4 CPR 4 CFSS )

where the cost of scheduling flexible resources includes the cost of distributed power
reactive power compensation CPC, the cost of static reactive power generator compensation
C?VC, the cost of grouping capacitor compensation CS2, the cost of dynamic reconfiguration
of the distribution network C;", the cost of controlled load regulation CPR, and the cost of
energy storage and reactive power compensation Cfss .
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cPe= ¥ (Ae]Qhe|)ar 7)
i€eQpg
where AqD G is the unit reactive power compensation cost of distributed energy; ASW is the
switching operation cost; APR is the unit regulation cost of the regulable load.
csVe = y (/\svc ’ Qsve ‘ ) Al ®)
i€Qsyc

where /\S V€ is the stationary reactive power generator unit reactive power compensation

cost bit regulatlon cost, QSVC is the stationary reactive power generator compensation
power, Qgyc is the set of nodes where the stationary reactive power generator is located.

P = ¥ (A5%|Qf|)at ©)

iEQCB

where /\,?B is the cost per unit of reactive power compensation for the group-throwing

capacitors, QEtB is the power of the group-throwing capacitors, and Q¢ is the set of nodes
where the static reactive power generators are located.

V=Y AWasw, (10)
ij€Qgy
where A5W is the unit action cost of the contact switch, Aswjj ; is the number of times the contact

switch is actuated and Qgyy is the set of branch circuits where the contact switch is located.

CPR — Z (ADR

i€Qpr

I (11)

where APR is the unit scheduling cost of controllable load, PL°*-* and PLoadf are the load

power and the original power of controllable load at node i after the tlme shlft of flexibility,
respectively. Qpp is the set of nodes accessed by controllable load respectively.

P.ESS.
o= T (a5 e s o E (o) a2
i€QEgs i. discha i€QEss

where /\555 and )\555 are the depreciation coefficients per unit of power for energy storage

charging and discharging; qESCfl indicates the energy storage charging efficiency; 7 f%sl cha

indicates the energy storage discharging efficiency; PESS

. cha
charging power; and PlEtths ha indicates the energy storage discharging power.

indicates the energy storage

T 1 T

CB OLTC CB CB OLTC OLTC,IN OLTC,DE

CB+ COUIC = c§BY " Y oGP + cQITCY - (90N 1 gOHEPE)  (13)
t=1 iGQCB t=1

3.3. Intraday Scheduling Objective Function

Short-term optimal dispatch model Different from the objective of day-ahead dispatch,
the short-term dispatch takes the day-ahead dispatch result as the benchmark, adds con-
straints with the minimum operating cost of the distribution network, and achieves the
maximum consumption of renewable energy through mutual cooperation and collabo-
ration of energy storage, SVC and (Energy storage systems, ESS), and flexible load. The
ultra-short-term forecasting of wind power and photovoltaic using a neural network is
rolled over every 10 min, and the short-term dispatching plan is formulated on this basis.
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The objective function of optimal short-term scheduling is shown as follows.

Ts
maxFpg = Y Y PHCAt (14)
t=1i€Qpg

where Fpg is the renewable energy power consumption in the whole day of the distribution
network, ¢ is the time period identification (t =1, 2, ..., T), At is the time interval, T is the
total number of time periods, this paper takes At = 1 h, T = 24, PPC is the actual renewable
energy power consumption at node i, Qpg is the set of nodes corresponding to the scenery.

3.4. Constraints
3.4.1. Source Side Flexibility

Sources considered for source-side flexibility include OLTC as well as distributed
energy sources.

On-load regulating transformers are able to change the output voltage by adjusting
the position of the tap. Between the upper grid and the root node 7 of the distribution
network, respectively.

2
V2 o< (V.Base) rip < V2
i.min it 1, i.max , Vi‘, Vi e QOLTC (15)
r;mn < Tit < rfnax

where QOLIC is the set of all substation nodes with on-load regulator transformers; ViBtase

is the voltage value on the high voltage side of the transformer, which is a constant value;
M3 and rM" are the upper and lower limits of the OLTC ratio squared; r;; is the OLTC
ratio squared ratio, which can be described as the following relationship with 0-1 variables.

GOLTC > gOLTC > GOLTC vy vj & OLTC; gOLTCIN 4 sOLTCDE < 1y v/j e OLTC
7ty 1<y 7! 17 ’ 7

OLTC OLTC OLTC,IN OLTC,DEcys, . ; OLTC
;Ui,s,t - ?Ui,s,t—l ey — 0y SR;, Vt,Vi € Q)

OLTC OLTC OLTC,INap. _ sOLTC,DE . OLTC (16)
;Ui,s,t - ;‘Ti,s,tq <o SR; —&;; RIATESES

3 ( (SIQtLTC,IN + 5iOtLTC,DE> < NiOLTc,max/W c QOLTC
teT N\ 7 !

where (SJQtLTC’I N and (5]-OtLTC’D E are used to indicate OLTC gear adjustment; SR; is the max-

imum range of OLTC gear change; N].OLTC'maX

is the maximum number of OLTC gear
adjustments allowed in T time period.

Controlled distributed energy sources need to consider their power factor limits and
capacity limits, as well as climbing constraint limits, when participating in coordinated
dispatch, as shown in the following equation.

DG _ pDG. av DG. abandon
Pi.t _Pi.t _Pi.t

—PPC tan(cos ! PFPS ) < QP <

i. down (1 )
7
PBG tan ((:os’1 PFPEP )

(PRS)” + (QRE)” < (sP°)*

where PDC is the actual power output of distributed energy at i node, PG is the
active power output of distributed energy at i node PL¢: abandon g the discarded power of

distributed energy, PFPEOW . and PFP fp are the power factor values of distributed energy

at i node SPC is the capacity of distributed energy at i node. Pgil and PDC is the active
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power output of the distributed energy source at the next moment with the currently active
power output.

PP

zt+1 PDG < Tlim,i (18)

where PP¢ 141 and PZPG are the active output of the distributed energy source at the next
moment and the currently active output, and 1y, ; is the up and down slope limit value.

3.4.2. Network Side Flexibility

Active distribution network reconfiguration requires frequent opening and closing of
contact switches, reducing switch life.

Therefore, it is necessary to limit the number of switch actions in dynamic reconfigura-
tion as follows.

Aswijy = |swijy — swij—1 | (19)
T .
Y Aswij; < swiha (20)
t=1
where sw““‘t . is the maximum allowable number of operations of the branch ij throughout
ij.m P ] g
the day.
)» SWjjt + Nciose = N — Ns
ijGQSW
(21)
B D SWij.t + Nciose 1 < M; —1
ij€EQsw

where N, Ng and Ngjos. are the total number of nodes, the number of root nodes, and the
total number of normally closed branches in the network, respectively, M; is the number
of branches in the lth power supply loop, I =1, 2, ..., L, L is the total number of power
supply loops in the network, sw;; ; is the remote switch state of branch jj in the Ith power
supply loop, Qgw; and Ncjese 1 are the set of branches with remote switches in the 1th
power supply loop respectively.

3.4.3. Load Side Flexibility
The capacitor bank operation model can be expressed as:

QCB . CBQ.CB’ step

, Vi, Vje QB (22)
yCB < YCB max

CB, st
where Q S%P

QCB is the set of nodes; YjCB M is the upper limit of the number of throwing groups;

is the compensation amount of group-throwing capacitors per slot;

y]CtB is the number of throwing groups. When considering the economics and lifetime of
the equipment, the capacitors are subject to a regulation constraint, so the total number of
operations for multiple periods is considered.

Z]y, —y5P | < NP, v, v e 0°F (23)

NCB,max

where is the maximum number of operable operations.

QiSVC,min < Qﬁ/c < QfVC,max, Vi’, Vi e QSVC (24)

where is the section B°VC points QSVC min gt Qf VCmax

are the upper and lower limits of
the SVC output force respectively.
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Distribution network loads such as central air conditioning and electric vehicles have
certain controllability and flexibility, which can realize the spatial and temporal transfer
of electricity consumption loads under certain rules and have a good ability to cut peaks
and fill valleys and optimize load distribution. Equation (23) indicates the limitation of the
controllable load’s own regulation capacity in the process of participating in the cooperative
scheduling of multi-flexible resources, and Equation (24) indicates that the total electricity
consumption of controllable load in a day is consistent with that before regulation.

Load.a _ pload.f

P it =P it ki,t
Load.a _ (yLoad.f 25
f = Q" @)

(1-k) <k, <(1+k;)

T T

y, pLoadant — yo pLotfpy

t?l ! t:Tl ! (2 6)

L Qfjtar= & Q)" ar

t=1 " t=1 "
where Pft"”d'“ QiLlf”d'“ represents the flexible load-adjusted power output and PiLtoad'f QiLfad'f
represents the original system load. k; , indicates the limit value of the controllable load
variation time shift rate. In the incentive-based demand response model, the load variation
time shift rate can usually be set by the grid scheduler on the day before the demand
response, and the controllable load is dispatched on the response day.

3.4.4. Storage Side Flexibility

In general, energy storage flexibility modeling needs to consider constraints for multi-
ple time periods. In order to extend the life of energy storage and prevent overcharging and
discharging, it needs to consider its own capacity constraints, charging and discharging
state constraints, and charging and discharging power constraints.

_r. ESS pESS _ ESS ESS
{ Eivi1 = Eit 1700 Pit eha — i discha Fit, discha

‘ (27)
EMM < Eijy < B, Ejj—o = Eiy=1

where E;; indicates the current moment of energy storage and E, , ; indicates the next
moment of energy storage.

ESS ESS
i,.cha + (5i.t discha <1 (28)
where 5{5§ﬁa , ‘Sftsgis ha indicates the charging and discharging state of energy storage,

which cannot be in charging and discharging state at the same time.

ESS pESS ESS ESS pESS
(5i,.cha Pzﬂt cha,min S Pi.t cha S (Si,.cha Pi.t cha,max

ESS ESS ESS ESS ESS
i,.discha * i.t discha,min S P i.t discha S 5i,.discha P i.t cha,max

(29)

3.4.5. Distribution Grid Side Constraints

The distribution network tidal constraint is based on the Distflow branch tidal model,
as Equations are shown.

Pz, + Q2%
1 t
)y (Pij,t_l] 0 . 7:’;’) =P+ ) Py (30)
)

icu(j it ket(j)
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+Q7,
Y (Qij,t % il =Qitt Y Qs (31)
icu(f) it ket(j)
Uiz,t - uzt = 2(”1]Pl]t +xz]Q1],) 1]t<7' + x;j ) (32)
id
P = Pl — PG — PR e+ Piia Y Piat Y. Psswyy  (33)
jEQClose,i ]'EQSWAI
QU = QI — QR — QY - QP+ Y Qe+ Y, Qiuswij (34)
JEQClose.i JEQsw.1

where u(j) is the set of first nodes in the distribution network with j as the last node; ¢(j) is

the set of last nodes in the distribution network with j as the first node; Pg”d and and

the purchasing power from the superior grid r;; and x;; are the resistance and reactance of

branch ij; I;j ; is the transmission current of branch ij; U; ; is the node voltage magnitude.
Equations (30)—(32) are non-convex constraints, which are relaxed and transformed

into linear constraints using second-order cone-convex optimization techniques, and

quickly find the optimal global solution; define the new variables node voltage value

squared ljli/t and branch current value squared Tij,t.

ﬁi,t = Ulz,t (35)
- +Qz
t ij,t
it 2 — = (36)
v uz,t

After an equivalent deformation, transformed into the standard second-order cone form.
2Pi]',t _ _

C2Qij || < Lje+ Uiy (37)

Lij e — Uiyl

Therefore, the branch tidal constraint can be deformed as

r (Pz'j,t Iz;trq)— ]t+ r Pkt
icu(f) kev(j)

D (Ql]t 1],tx1]) = Qj,t + ke;(j) ij,t

icu(j)

05 — Ty = 2(rPys + xiQiia) — o (1 + 33 (38)
2P,
2Qij ¢ < Tje + Uy
11], ul/f 2

The voltage and current safety limits of the distribution network are shown below.

uz'z,mm < ﬁi,f < u1'2,max (39)
) ~
Iij,min < Iij,t < Ilj max (40)
where U, ., and U, ., are the upper and lower branch voltage limits for node 7, and I;; jmin
and I are the upper and lower branch #j current limits.

ij,max
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Interaction power constraints.

grid grid grid
_Pi.up < P <Pi.up
P (41)
gr1 grl grl
—Q7 up Qi s up
where Pfr:; and erﬁ) are the active and reactive power limits for the interaction between

the upper grid and the root node i of the distribution network, respectively.

3.5. Linearization Strategy

The linearization approach used includes techniques such as variable substitution,
segmented linearization, and the Big M method to linearize the nonlinear terms in the text,
in turn, with the following process.

Equations (7)-(9) and (12) are linearized in the same way, and Equation (7) is used as
an example for illustration.

Equation (7) is an absolute value function, so it needs to be linearized and introduces
auxiliary variables with 0-1 variables, combined with the large M method equivalently
linearized as:
cPS = x (aboqey)at

i€Qpg
DG DG
0<Qf} — Qi < Mpg,i0;, (42)
DG2
0 < Q¥ — QP° < Mpg,0;,

L

DGl _DG2 _
oo =0
where Q?Y is the auxiliary variable, Mpg is a large enough positive number, oDt and

1,t
(Tl!:;G,z is a 0-1 variable.
Equations (11), (18), (19), and (23) are linearized in the same way, and Equation (11) is

used as an example to illustrate.

CPR = y (/\DRPLLtoad.av )At
i€eQpr
0< Pil'dtoad.av o (Pi]‘dtoad. a __ lejtoad.f) < MLoad.t‘T}Fad'l (43)
0< Pil.qtoad.av + ( pl]jtoad.a _ pl]}oad.f ) < MLoad.t a}toad.Z
U.il'dtoad.l . Ul]Tt()ad.Z =0

where P}t"ad'a" is the auxiliary variable; My .4+ and My .4 is a sufficiently large positive

number in the large M method. 003! and 01342 are 0-1 variables.

The nonlinear characteristics of the capacity constraint in Equation (17) due to the
squared term are linearized using a segmental linearization.

DGn __
Pit " =

P = 0cPe > 0n=1,--- ,NPC

aPG-nPl]’DtG 4 b:‘DG‘n QR‘G 4 CPG.H
(44)

where 7 is the linearized segment number, a?G'” bPG'" CPG'" is the coefficient of the Nth
line segment, and NDG is the number of linearized segments with capacity constraint.
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4. Example Validation

The IEEE 33-node distribution system shown in Figure 6. is used for simulation testing,
where the voltage reference value is 12.66 kV, and the capacity reference value is 10 MVA.
CB is connected to nodes 21 and 32, ES is connected to nodes 3, 8, and 16, PV is connected
to nodes 6 and 24, WT is connected to nodes 16 and 29, and the access capacity is shown in
the Table 1. below.

22 23 2-4 37

Figure 6. IEEE 33-node distribution network.

Table 1. Renewable energy configurations.

Access Nodes 6 16 24 29
Access to renewable energy types PV WT PV WT
Access capacity/kW 1000 1600 1000 1600

The validity of the method is verified based on the following three methods.

(1) The optimal scheduling strategy of a multi-time scale distribution network with
coordinated interaction of source network, load, and storage is proposed.

(2) Optimal scheduling on a single time scale.

(3) Not considering the dynamic reconfiguration of the distribution network and
renewable energy consumption.

The following Tables 1-5 show the configurations of renewable energy storage, on-
load regulation transformers (OLTC), a grouping of capacitor banks (CB), and static VAR
compensation for the IEEE 33-node system.

Table 2. ESS parameters.

Access Nodes Power Limit/MW Capacity Limit (MW-h) Charging Efficiency Discharge Efficiency
3 0.3 1.8 0.9 1.11
8 0.2 1 0.9 1.11
16 0.2 15 0.9 1.11

Table 3. CB parameters.

Access Nodes Unit Capacity/Kvar Quantity
21,32 100 2

Table 4. SVC parameters.

Access Nodes Compensation Range/Kvar

5,15,31 [—100, 300]
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Table 5. OLTC parameters.

Parameters Node Voltage/p.u. OLTC Secondary Voltage/p.u.
Lower limit 0.93 0.95
Upper limit 1.07 1.05

Analysis of Simulation Results

For the 33-node distribution network system, the above three methods are used to
dispatch the distribution network. Among them, the renewable energy consumption
and operation cost of the distribution network is shown in the following table, and the
abandoned power and voltage of each time period are shown in the figure.

From the Table 6 and Figure 7, it can be seen that the renewable energy consumption
rate and consumption rate, as well as the operation cost of the distribution network obtained
by this method, are the best. Compared with method 2 and method 3, the renewable energy
consumption rate increased by 5.35% and 24.39%, respectively, and the operation cost is
reduced by 7.96% and 18.28%, respectively.

Table 6. Operating cost and consumption rate.

Programs Fgc/10* CNY Consumption Rate
1 2.083 93.87
2 2.39 88.52
3 2.8251 76.36
—vBefore dispatch
1000 | | ~+-Method 1
. Method 2
S 800+ —Method 3
=
3]
= 600" :
o
"8 _ ]
g 400 i 1
=
=
2 200/ o
< I __o--o"*"°"°' """'-o-.,_,.&--q_
0 - iy ,-' A 2
0 5 10 15 20 25

time(h)
Figure 7. Abandoned electricity.

The Table 7. below shows that the abandonment cost of this method decreases by
0.156 x 10* CNY and 0.669 x 10* CNY compared to Option 2 and Option 3, respectively.
Although this method incorporates various flexibility control measures, the flexible interac-
tion cost is still reduced by 0.214 x 10* CNY compared with method 3. This is due to the
fact that the proposed model takes into account the requirements of power consumption
and operation economy;, so it can reasonably utilize the flexible interaction characteristics
of multiple flexible resources to maximize the consumption of renewable energy with
minimum operation cost, while Method 3 ignores the spatial and temporal complementar-
ity between the active management components due to the flexibility of the distribution
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network structure. The network loss cost and power purchase cost of this method is higher
than those of methods 2 and 3 because the flexible interaction of multi-flexible resources is
used to promote renewable energy consumption, which leads to reverse power transmis-
sion and increases the line loss, thus increasing the network loss and the power and power
purchase cost of renewable energy.

Table 7. The economic cost of the three methods.

Programs Cost of Abandoned Flexibility and Operating Net Loss Cost/ Cost of Electricity
8 Electricity/10* CNY Costs/10* CNY 10* CNY Purchase/10* CNY

1 0.356 0.075 0.555 1.585

2 0.512 0.112 0.402 1.698

3 1.025 0.289 0.511 1.432

For the IEEE33 node system, the distribution network dispatch based on the strategy
is shown in Figures 8-14 below.

112

V/p.u.
8 =

_—
S O
(&)

100

50

I/A

30

0 10
NOge - »
hY

Figure 8. System node voltage and current before scheduling.
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Figure 9. System node voltage and current after scheduling.
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Figure 10. ESS Spatial and temporal distribution of power output.
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Figure 11. CB Spatial and temporal distribution of power output.
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Figure 12. SVC Spatial and temporal distribution of power output.
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Figure 13. Previous dispatch status.
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Figure 14. Intraday Scheduling Status.

Figures 8 and 9 show the voltage distribution and branch current carrying capacity
before and after dispatching, respectively. It can be seen that before dispatching, due to the
access to renewable energy sources and the lack of system flexibility regulation ability, the
distribution network had an over-voltage limit and excessive voltage fluctuation, compared
with after implementing the dispatching strategy, the node voltage of the distribution
network obviously relieves the phenomenon of excessive voltage deviation and over-
voltage limit, and the system carrying capacity also decreases significantly. Figure 10
shows the ES output, Figure 11 shows the CB output, Figure 12 shows the SVC output,
and Figures 13 and 14 show the day-ahead and intra-day dispatching, respectively. The
comprehensive experimental results above show that the performance of all aspects of the
scheme system has been effectively improved before and after the source-grid-load-storage
interaction. From the above figure, it can be seen that the proposed method has a good
effect in alleviating the under-voltage and smoothing the voltage fluctuation of the power
system. The following Table 8. and Figure 15. show the topology of the distribution system
for each time period

Table 8. Reconstruction results.

Whether to Number of Reconfiguration Disconnect Total Network
Reconfigure Reconfigurations Moment Switch Number Loss/kW-h
0:00 7/11/14/17/28
4:00 7/9/14/28/32
Yes 4 19:00 7/9/14/28/36 1925.13
21:00 7/9/14/17/37
No 0 33/34/35/36/37 2258.72

From the distribution network structure and net loss in Figure 15, it can be seen that
the total network loss of the distribution network in a day is reduced by 466.41 kwh before
and after reconfiguration, and it maintains a radial operation. The distribution network
reconfiguration is equivalent to changing the topology to transfer the load to another
branch with a lower load level at a certain load peak and to transfer the renewable energy
to the rest of the branch when the renewable energy output is high, and it is difficult to be
consumed by this branch to achieve the purpose of space-time coordination.
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Figure 15. Distribution network topology change diagram.

5. Conclusions

In order to explore the synergy capability of source-grid load and storage in the AC
distribution network, a multi-timescale optimal dispatch model considering the operating
cost of the distribution network and renewable energy consumption is developed. The
method considers the synergistic capability of source-grid load and energy storage in the
system and achieves good results based on the multi-timescale idea and second-order
cone relaxation technique. The flexible resources in the distribution network are modeled
interactively in a comprehensive manner to give full play to the complementarity of



Energies 2023, 16, 1356 20 of 21

resources and significantly improve renewable energy consumption and grid operation
costs. The following three points summarize the contributions of the study.

(1) The mathematical model of each component in the distribution network is carefully
established on the basis of an in-depth study of the coordination of the flexible resources on the
source grid, load-storage side to promote the economic operation of the distribution network,
and the high-quality consumption of renewable energy. The experimental results show that
the economy of the system has improved by 18.28% compared with that before optimization,
and the system’s consumption rate of renewable energy has increased by 24.39%.

(2) The optimal dispatching strategy for the coordinated operation of the source net-
work, load, and storage is diverse, and the integrated day-ahead and day-ahead dispatching
model is more consistent with the actual situation, which can economically and effectively
coordinate the resources on the source network, load, and storage side to achieve the
purpose of minimizing the operation cost of the distribution network and optimizing the
consumption of renewable energy.

(3) The solution idea of the second-order cone optimal tide framework is chosen
and based on the linearized model, which can ensure the optimal solution result while
significantly reducing the solution difficulty and improving the solution efficiency.

Finally, how to consider the collaborative dispatching between multiple types of energy
in active distribution networks and the study of artificial intelligence-based distribution
network dispatching are directions that we can continue to study in the future.
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