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Abstract: There will be an increasing number of retired batteries in the foreseeable future. Retired
batteries can reduce pollution and be used to construct a battery cycle ecosystem. To use retired
batteries more efficiently, it is critical to be able to determine their State of Health (SOH) precisely
and speedily. SOH can be estimated accurately through a comprehensive and inefficient charge-and-
discharge procedure. However, the comprehensive charge and discharge is a time-consuming process
and will make the SOH assessment for many retired batteries unrealistic. This paper proposes an
accurate and efficient SOH Estimation (SOH-E) method using the actual data of retired batteries. A
battery data acquisition system is designed to acquire retired batteries’ comprehensive discharge and
charge data. The acquired discharge data are separated into various time interval-segregated sub-data.
Then, the specially designed features for SOH-E are extracted from the sub-data. Neural Networks
(NNs) are trained using these sub-data. The retired batteries’ SOH levels are then estimated after
the NNs’ training. The experiments described herein use retired lead–acid batteries. The batteries’
rated voltage and capacity are 12 V and 90 Ah, respectively. Different feature value extractions and
time intervals that might affect the SOH-E accuracy and are tested. The Backpropagation NN (BPNN)
and Long-Short-Term-Memory NN (LSTMNN) are designed to estimate SOH in this paper. The
experimental results indicate that SOH can be calculated in 30 min. The Root-Mean-Square Errors
(RMSEs) are less than 3%. The proposed SOH-E can help decrease pollution, extend the life cycle of a
retired battery, and establish a battery cycle ecosystem.

Keywords: retired battery; battery cycle ecosystem; state of health; backpropagation neural network

1. Introduction

Batteries are essential in applications ranging from consumer electronics through to
Electric Vehicles (EVs), Uninterruptible Power Supplies (UPSs), Energy Storage Systems
(ESSs), etc. A Battery Management System (BMS) is one of the essential tools for the efficient,
reliable, and safe operation of battery modules. The accurate and efficient estimations of
State of Charge (SOC) and State of Health (SOH) are the critical cores of a BMS. They are
important tools for verifying battery performance and avoiding unexpected failures. Due
to the complicated electrochemical reaction in their practical and dynamic applications, it is
difficult to accurately estimate batteries’ SOH [1–3]. The conventional classifications of SOH
Estimation (SOH-E) methods include direct assessment and model-based and data-driven
estimations [4–28]. Detailed comparisons of different SOH-E methods will be provided in
Section 2.

From 2016 to 2021, the global battery market rose at a growth rate of approximately
4.15% annually, i.e., to USD 17.25 billion in 2021. The growth of ESSs, EVs, and 5G base
stations has considerably driven the battery market’s expansion. About 94.8% of global
battery markets are nickel-based, lithium-based, and lead–acid batteries [29–33]. As a
result, more batteries will be retired from EVs and 5G communication base stations in
the foreseeable future. The SOH of a battery is an important parameter with which to
determine whether the battery has aged and should be retired. Generally, when the SOH
metric of a battery drops to 70–80%, the battery is no longer suitable for usage and should
be retired [29]. It is estimated that by 2030, EVs will result in retired batteries of about
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100–200 GWh due to the inability to meet the EV usage requirements. Those retired
batteries with different degradation capacities could be classified and used in ESSs and
other mobility applications. Figure 1 illustrates the possible battery cycle ecosystem. New
high-performance and reliable batteries can be used in EVs and UPSs in communication
base stations and data centers. When a battery has expired or its SOH metric has dropped
to 70–80% [29], the battery should be retired. An SOH-E using a battery history database
and data analysis can be applied to classify and sort retired batteries. The reuse scenarios
can then be determined based on the degradation capacity of retired batteries. For example,
retired battery-based ESSs can be constructed by integrating them with the internet of
energy and optimal dispatch control and be joined to the ancillary services of power system
operation. Finally, an end-of-life analysis can be conducted, and thus the battery will be
recycled and remanufactured. Reusing batteries retired from UPSs and EVs can decrease
pollution, extend the battery life cycle, and be used to construct a battery cycle ecosystem.
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Generally, a comprehensive and laborious charge-and-discharge (CHA-DISCH) proce-
dure is executed to acquire complete measurements and then used to accurately calculate
the SOH. Obtaining full CHA-DISCH measurements may take 12 h for a commercialized
lead–acid battery. Due to the limited time of the employed analyses, the estimation of
SOH levels for many retired batteries using the conventional methods is almost unrealistic.
Therefore, different SOH assessment methods have been proposed [4–28]. Most of these
methods have not been tested and validated using operational, commercialized batteries,
nor have they considered the effects of retired batteries. This paper proposes an accurate
and efficient SOH-E using the actual discharge information of retired batteries. A battery
data acquisition system is implemented to obtain retired batteries’ CHA-DISCH data. These
measurements are separated into sub-data of different time intervals; then, the specially
designed features are extracted from the sub-data for SOH-E. These features are exploited
to train Neural Networks (NNs) and to evaluate the retired batteries’ SOH. Using the
proposed method, any measurement of the discharge data can be used as the initial point.
Consequently, after feature value extraction, the SOH can be estimated in 30 min. Our
experiments used retired lead–acid batteries. The batteries’ rated voltage and capacity are
12 V and 90 Ah, respectively. Two feature value extractions and a Backpropagation NN
(BPNN) and a Long-Short-Term-Memory NN (LSTMNN) are designed to estimate SOH.
The experimental results, which take different feature value extractions with various time
intervals and NN methods with multiple hidden layers and neurons into account, indicate
that the SOH estimated in 30 min via the proposed method can achieve a Root-Mean-Square
Error (RMSE) of less than 3%.

The main achievements of this paper are as follows:

• An accurate and efficient SOH-E is proposed using the actual discharge information
of retired batteries.
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• A battery data acquisition system for acquiring retired batteries’ CHA-DISCH data
is designed.

• The SOH-E performances of two feature value extractions and two neural networks
are compared.

• The retired batteries are used and tested in experiments.
• It is determined that the proposed method can accurately and effectively estimate the

retired batteries’ SOH levels in about 30 min. In addition, the RMSE verified by the
retired batteries is lower than 3%.

• There will be an increasing number of retired batteries in the foreseeable future. The
proposed SOH-E can reduce pollution, extend battery life cycle values, and used to
construct a battery cycle ecosystem.

2. Basic Concepts of SOH-E

Batteries’ SOH can be evaluated by the measured and rated capacities and can be
expressed as [4]

SOH =
Qmea

Qrat , (1)

where Qrat and Qmea are the rated and measured capacities, respectively.
The conventional classifications of SOH-E methods include direct estimation, model-

based estimation, and data-driven estimation [4–28]. The traditional direct estimation meth-
ods include coulomb counting, open-circuit voltage, and impedance spectroscopy [7–10].
The coulomb-counting method requires a complete and inefficient CHA-DISCH proce-
dure [7]. Then, SOH can be calculated by dividing the discharge capacity by the rated
capacity, as shown in (1). Apart from being a time-consuming procedure, coulomb count-
ing can accurately assess batteries’ SOH. However, the Depth of Discharge (DoD) needs
to be considered to prevent damaging the batteries in practical applications. The open-
circuit voltage method uses the relationship between the open-circuit voltage and SOH to
assess batteries’ SOH. Ref. [8] combined incremental capacity analysis and open-circuit
voltage to enhance the SOH-E under different temperatures. The impedance spectroscopy
used in the study employed the wide frequency impedance spectrum to compute elec-
trochemical model parameters and was then used to assess SOH [9]. The integration of
battery impedance spectroscopy into a battery management system to reduce the number
of inductors and switch components was proposed in [10].

The commonly used model-based estimation methods include the Kalman filter,
particle filter, and statistical techniques [11–15]. A Kalman filter with dual extended and
unscented functionalities is a robust algorithm that describes and solves the nonlinear
state equations of a system based on the prior measurements and has been employed to
assess SOH [11]. A particle filter uses the particles generated and updated recursively
from a nonlinear approach to approximate a probability density function. Ref. [12] applied
the particle filter and Monte Carlo sampling methods to estimate SOC and SOH. An
enhanced particle filter method combining an unscented Kalman filter was proposed
in [13] to enhance estimation accuracy. Statistical techniques expressed in the form of a
regression analysis can also be used to predict SOH. An electrochemically based least-
squares method was proposed to identify the degradation parameters of batteries and,
consequently, predict SOH [14]. Ref. [15] used a high-order autoregressive model to predict
SOH and a particle swarm optimization algorithm was employed to avoid a human-related
subjective determination of order.

There are many data-driven estimation methods. They can be classified as artificial
NNs [16–23], extreme learning machines [24,25], support vector machines [26,27], etc.
Artificial NN simulates the human brain’s behavior, with artificial neurons organized
by the input layer, hidden layers, and output layer. Different artificial NNs have been
designed and used for SOH assessment. Ref. [16] proposed an NN to estimate SOH
using a backtracking search algorithm. An online SOH-monitoring method based on the
fusion of partial incremental capacity and a feed-forward NN was represented in [17]. A
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convolutional NN for the estimation of battery capacity based on current, voltage, and
charge capacity measurements during a partial charge cycle was proposed in [18]. SOH
assessment based on impedance spectroscopy and a recurrent NN and LSTMNN was
proposed in [19,20], respectively. Ref. [21] represented a rapid SOH-E for retired lead–acid
batteries, but comprehensive experimental results were not obtained. Ref. [22] proposed an
improved feedforward-long short-term-memory-modeling system for SOC prediction with
a sliding balance window of dimensional current–voltage–temperature variation vectors.
A detailed review of deep convolutional NNs targeted towards the multi-timescale state
prediction of lithium-ion batteries was proposed in [23]. An extreme learning machine
is similar to an NN, but its connection weights between the output and hidden layers
cannot be adjusted. It provides quicker performance than traditional NNs in terms of
learning accuracy. Ref. [24] used the variation of the two resistance values calculated from
the Thevenin equivalent model as a health factor. The extreme learning machine was
employed to estimate battery life. An SOH-E method that used a hierarchical extreme
learning machine to enhance the robustness and accuracy of estimation was represented
in [25]. The key concept of a support vector machine is to find a small set of vectors
from a large number of data sets in order to describe the system effectively. A model
that combined particle swarm optimization and a support vector machine to predict SOH
degradation trends was proposed in [26]. An alternate health indicator used to measure
battery degradation was proposed in [27]. The authors also compared the SOH assessment
accuracies of the statistical regression model and the support vector machine model. There
are some special techniques for the analysis of battery characteristics. For example, ref. [28]
proposed a two-pulse test to determine the SOH of valve-regulated lead–acid batteries. The
specially design pulse test and electrical battery model needed to be integrated into SOH-E.

Different SOH-E methods have their own characteristics and estimation accuracies.
Detailed comparisons can be found in [4–6]. The estimation errors of direct assessment
are commonly about 1–5%. Integrating other SOH-E methods into a direct assessment can
enhance prediction accuracy. Most model-based estimations have prediction errors of less
than 10%. The Kalman-filter-based SOH-E method usually outperforms other model-based
estimation methods. Data-driven estimation methods have a large error margin, which
may vary from less than 1% to 10%. Even though comparisons have been discussed in [4–6],
it is difficult to directly state which method offers the best performance due to the different
tested batteries and conditions. Moreover, most of these methods have not been tested and
validated using operated commercialized batteries, nor have they considered the effects of
retired batteries. Therefore, this paper proposes an accurate and efficient SOH-E technique
using the discharge information of actually retired batteries.

3. Experimental Platform and Data Acquisition

To avoid damaging batteries in real applications, the DoD of a battery is commonly
set between 50% to 80% of the rated capacity. The SOH with DoD can be written as

SOH =
(1 − DoD)× Qrat + Qmea

Qrat , (2)

The DoD is set as 70% in the following experiments. The SOH is rewritten as in the
Equation (3).

SOH =
0.3Qrat + Qmea

Qrat , (3)

Herein, a lead–acid battery is considered as the study object, and its SOH is evaluated
by (3) with a Constant-Current (CC) and Constant-Voltage (CV) charge and the following
CC discharge. The SOH-E platform comprises the SOH-E and data acquisition system. The
proposed SOH-E method utilizes the features extracted from the discharge information
to evaluate the SOH levels. The data acquisition system can organize the CHA-DISCH
commands, record the CHA-DISCH data, and formulate the sub-data for the SOH-E. The
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configuration of the proposed battery data acquisition system is illustrated in Figure 2.
The system acquires comprehensive CHA-DISCH data from batteries with different aging
capacities, including SOCs, temperatures, currents, voltages, etc. Moreover, the system can
remotely organize the CHA-DISCH schedule, record measurements in the database, and
evaluate SOH.
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It can be seen from Figure 2 that the primary devices for the proposed system include
the electronic load, power supplies, and a PC. The CHA-DISCH control circuit, composed
of relays, organizes the CHA-DISCH schedule. The battery data measurement circuit,
consisting of operational amplifiers and resistors, is used to convert the battery voltage and
current into the measured range of the data collector. The data collector’s resolution and
maximum input frequency are 32 bits and 5 MHz, respectively. The operating temperature
ranges from 0 ◦C to 50 ◦C. The main hardware of the battery data acquisition system is
shown in Figure 3. The CHA-DISCH control circuit and hardware of the battery data
acquisition system are located behind the devices shown in Figure 3; therefore, they are
not visible in the image. The platform also uses other retired batteries; therefore, two
power supplies are shown in Figures 1 and 2. Only one power supply is used for the
retired lead–acid batteries. The Human–Machine Interface (HMI) of the acquisition system
designed by LabVIEW [34] is illustrated in Figure 4. The HMI is exploited to choose the
communication protocol, including the baud rate and COM port; arrange the CHA-DISCH
schedule; observe the CHA-DISCH current and voltage waveforms; record the CHA-
DISCH data; and evaluate battery SOH. All measurements were saved in the database and
shown in the HMI.

In these experiments, retired lead–acid batteries of the UXH90-12I variety (Taiwan
Yuasa Battery Co., Ltd., Taipei, Taiwan) [35] that had expired following their use in commu-
nication base stations were utilized. The detailed specifications of the UXH90-12I batteries,
including their appearance, dimensions, weight, nominal capacity, internal resistance, volt-
age of CV charge, voltage at 70% DoD, etc., are shown in Table 1. The CC charge and CC
discharge are both set at the current of 10% of the rated capacity (0.1 C/9 A). Figure 5 illus-
trates the voltages and currents of a whole CHA-DISCH procedure for a retired lead–acid
battery, where ”CH I”, “DIS I”, “CH V”, and “DIS V” are the channels of charge current,
discharge current, charge voltage, and discharge voltage, respectively. The charge shown in
Figure 5 is from CC to CV and the discharge is CC. The unit of the x-axis in Figure 5 is 0.1 s.
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Table 1. Specification of UXH90-12I.

Appearance Specifications
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4. Proposed SOH-E Methodology

Figure 6 illustrates the discharge voltage profiles for batteries with the SOH levels
of 71.5%, 81.5%, and 90.5% measured by the proposed battery acquisition system and
calculated by (3). Figure 6 indicates that SOH can be estimated from the discharge voltages
and discharging time. Therefore, the features can be designed based on the observations.
Some features, such as the discharge voltage difference, the discharge voltage variation
over time, discharge voltage percentage deviation, etc., can be extracted for SOH-E. The
acquired measurements can be separated into sub-datasets in a specified time interval and
utilized to extract the features for SOH-E. The basic concepts of attaining the sub-dataset
are shown in Figure 7, where tS is the specified time interval, and n and n + 1 are the nth
and (n + 1)th sub-datasets. Figure 8 shows the basic concept of the feature value extraction
method. In Figure 8, the discharge voltage difference, discharge voltage variation over
time, discharge voltage percentage deviation, and temperature difference can be calculated
as follows:

VDi = Vi − Vi−1, (4)

VDTi =
V0 − Vi
i × tS

, (5)

VPDi =
(V0 − Vi)

V0
, (6)

where V0 and Vi denote the initial voltage and measured voltage at the ith tS. VDi, VDTi,
and VPDi are the discharge voltage difference, discharge voltage variation over time, and
discharge voltage percentage deviation between t = 0 to t = i × tS, respectively. TN and T0
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are the temperatures measured at t = 0 and t = N × tS, respectively. TD is the temperature
variation. I0 is the discharge current.
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To effectively observe the voltage change in the discharge procedure, it is recom-
mended that the minimum time interval, tS, and total time for SOH-E are set to 5 min and
30 min, respectively, for retired batteries of the UXH90-12I variety. The time intervals and
the number of features will significantly affect the SOH-E’s accuracy and will be tested
in Section 5. This paper proposes two different feature value extractions calculated from
the sub-datasets and used in the experiments. The first feature value extraction is based
on the observation documented in Figure 7 in which the voltages and voltage differences
are closely related to the SOH. Therefore, the discharge current, discharge temperature
difference, discharge voltages, and discharge voltage differences are used. Taking a tS of
10 min as an example, Figure 9a depicts a schematic diagram of the first feature value
extraction, where V0, V1, V2, V3, I0, TD, VD1, VD2, and VD3 are used. Extending from
the first feature value extraction, the values of discharge voltage variation over time and
discharge voltage percentage deviation are added. Figure 9b illustrates the schematic
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diagram of the second feature value extraction, where V0, V1, V2, V3, I0, TD, VDT1, VDT2,
VDT3, VPD1, VPD2, and VPD3 are used. Figure 10 is the architecture of the BPNN used for
the second feature value extraction of the proposed SOH-E. It can be observed that the
12 features extracted in 30 min were used; therefore, the SOH can be calculated in about
30 min after the BPNN has been successively trained. For simplification, only the example
with a time interval of 10 min is shown in Figures 9 and 10; however, the simulation results
with intervals of 5 and 15 min are also tested. Aside from the BPNN, LSTMNN is also
implemented to estimate SOH in this paper. The detailed descriptions and applications
of BPNN and LSTMNN can be found in [36] and are not discussed herein due to limited
space. Note that the charge data can also be used for SOH-E; however, with respect to
retired batteries, the use of only discharge data can reduce the equipment investment.
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5. Test Results and Discussions

The following experiments utilize one hundred retired lead–acid batteries, of the
UXH90-12I variety [35], which originated from communication base stations. The specifi-
cations of the UXH90-12I batteries are listed in Table 1. Table 2 shows the batteries’ SOH
levels calculated by the complete CHA-DISCH procedures. In Table 2, “R” is the internal re-
sistance measured by HIOKI BT3554 [37]. The rated internal resistance of a new UXH90-12I
battery is 3.5 mΩ, but the internal resistances of the retired batteries are significantly higher
than that of the new battery. The temperature at which internal resistance was measured
was about 32 ◦C. Internal resistance can be one of the bases for SOH-E. Figure 11 shows the
correlation between SOH (%) and R (mΩ). It can be observed that higher internal resistance
usually means poorer SOH; however, there is no absolute relationship. The correlation
coefficient calculated from Table 2 is 0.748. Due to the need for additional measurement
equipment and the difficulty of applying it online for each battery, the internal resistance is
not included in the feature value extraction of the proposed SOH-E.
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The number of SOH-Es is n. 
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Table 2. Measured batteries’ SOH (%) and R (mΩ).

No. 1 2 3 4 5 6 7 8 9 10

R (mΩ) 12.0 9.5 11.4 12.5 18.3 11.9 10.2 14.0 10.3 12.1

SOH (%) 92.4 91.1 89.1 88.7 88.6 88.3 88.0 87.8 87.7 86.8

No. 11 12 13 14 15 16 17 18 19 20

R (mΩ) 11.6 12.6 14.5 14.4 24.2 24 17.6 18.2 24.1 24

SOH (%) 84.4 82.7 82.6 81.9 78.3 77.8 77.4 77.2 75.9 75.4

No. 21 22 23 24 25 26 27 28 29 30

R (mΩ) 18.7 14.2 20.3 20.3 21 21.6 21.4 21.8 22.1 22

SOH (%) 74.7 74.4 74.0 72.8 71.3 70.1 68.9 68.9 68.8 67.2

No. 31 32 33 34 35 36 37 38 39 40

R (mΩ) 22.2 22.2 22.9 22.9 23 14.0 10.3 12.3 12.1 12.9

SOH (%) 64.7 64.3 62.0 61.9 60.7 87.7 87.7 87.0 86.8 85.9

No. 41 42 43 44 45 46 47 48 49 50

R (mΩ) 16.8 13.9 12.9 10.6 12.2 12.9 12.3 13.1 12.7 15.9

SOH (%) 85.8 85.5 85.4 85.1 85.0 84.6 84.3 83.8 83.43 80.0

No. 51 52 53 54 55 56 57 58 59 60

R (mΩ) 14.8 12.6 13.1 15.6 16.4 20.8 17 16.4 16.5 16.4

SOH (%) 79.9 79.4 77.9 76.6 76.5 76.5 75.7 72.0 71.8 70.2

No. 61 62 63 64 65 66 67 68 69 70

R (mΩ) 17.5 21.8 22.4 22.2 22.2 19.1 11.8 20.6 14 21.1

SOH (%) 67.9 67.6 66.1 65.1 64.3 63.8 63.8 63.5 62.2 61.5

No. 71 72 73 74 75 76 77 78 79 80

R (mΩ) 11.9 11.5 10.4 10.4 12.3 14.1 15 24.3 23.1 20.6

SOH (%) 89.0 88.2 87.8 87.7 87.0 82.1 80.4 77.5 77.0 72.3

No. 81 82 83 84 85 86 87 88 89 90

R (mΩ) 20.5 21.4 21.8 22.7 23.2 10.4 12.9 11.9 12.81 13.5

SOH (%) 71.6 70.6 68.1 62.2 60.9 87.7 86.0 85.9 85.7 85.1

No. 91 92 93 94 95 96 97 98 99 100

R (mΩ) 13.8 13.2 13.9 15.7 17.9 16.2 17.9 22.3 13.9 17.5

SOH (%) 83.9 80.4 79.9 77.9 71.5 69.1 67.9 65.6 63.7 62.4

A total of 70% of the retired batteries listed in Table 2 were used to train the BPNN and
LSTMNN according to the feature value extractions illustrated in Figure 9. The remaining
30% of the batteries were utilized to confirm the estimation accuracies. Figure 12 shows the
number of retired batteries for the intervals of SOH (%) and R (mΩ) used for the training
and assessment procedures. It can be observed that the quantities of retired batteries
with SOH less than 70% used for training and assessment were 19 and 8, respectively.
The number of retired batteries with R(mΩ) between 10 and 13 used for the training and
assessment were 21 and 9, respectively. The total numbers of retired batteries used for
training and assessment were 70 and 30, respectively. The comparative accuracy indices
include the Maximum Error (MxE), Minimum Error (MnE), Mean Absolute Error (MAE),
and RMSE. The MAE and RMSE were determined by (7) and (8), respectively.

MAESOH =
1
n

n

∑
i=1

∣∣SOHmea − SOHest∣∣ (7)
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RMSESOH =

√
1
n

n

∑
i=1

(SOHmea − SOHest)2, (8)

where MAESOH and RMSESOH are the MAE and RMSE of the batteries’ SOH, respectively.
SOHmea and SOHest are the estimated and measured SOH levels, respectively. The number
of SOH-Es is n.
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Different feature value extractions and time intervals might change the SOH-E ac-
curacy and, consequently, were tested, for which the results are shown in the following
material. Table 3 lists the accuracy comparisons of the BPNN-based SOH-E for two feature
extractions. The time interval, tS, is set as 5 min. For the first feature extraction, the values
of V0, V1, V2, V3, V4, V5, V6, VD1, VD2, VD3, VD4, VD5, VD6, I0, and TD are used as the
input data. The number of features is 15. For the second feature extraction, the values of V0,
V1, V2, V3, V4, V5, V6, VDT1, VDT2, VDT3, VDT4, VDT5, VDT6, VPD1, VPD2, VPD3, VPD4, VPD5,
VPD6, I0, and TD are used as the input data. The number of features is 21. The numbers of
hidden layers and neurons for the BPNN used in Table 3 are 3 and 500, respectively. The
RMSE, MAE, and MxE of the first feature value extraction are 3.34%, 2.58%, and 16.38%,
respectively. The RMSE, MAE, and MxE of the second feature value extraction are 2.81%,
2.23%, and 9.93%, respectively. Table 3 shows that the second feature value extraction
outperforms the first feature value extraction since the discharge voltage variation over
time and discharge voltage percentage deviation, as defined in (5) and (6), respectively,
are designed as features for SOH-E. In the following comparisons, only the second feature
value extraction is investigated. Table 4 lists the accuracy comparison of the BPNN-based
SOH-E for different time intervals. Three time intervals—5, 10, and 15 min, for which the
numbers of features are 21, 12, and 9, respectively—were tested. Table 4 shows that the time
interval has no significant effect on the RMSE and MAE, but MxE when the time interval is
5 min—marked in red—performs better. According to the above results, the 5 min interval
with the second feature value extraction is the better choice. To improve computational
efficiency while performing fewer measurements, an RMSE of 2.87% can still be achieved
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at 15 min intervals. This indicates that only nine features extracted in 30 min can obtain
acceptable SOH-E. The voltage change in the discharge is too small to be distinguished
while the time interval is less than 5 min; therefore, further data points were not simulated
for inclusion in Table 4.

Table 3. Accuracy Comparisons of SOH-E for Different Feature Value Extractions.

Feature Value Extraction RMSE (%) MAE (%) MxE (%) MnE (%)

1 3.34 2.58 16.38 0.0073

2 2.81 2.23 9.93 0.0016

Table 4. Accuracy Comparisons of SOH-E for Different Time Intervals.

Time Interval
tS

RMSE (%) MAE (%) MxE (%) MnE (%)

5 2.81 2.23 9.93 0.0016

10 2.80 2.22 13.18 0.0014

15 2.87 2.36 13.65 0.0023

Different NN methods with various hidden layers and neurons may significantly affect
the accuracy of SOH-E and, therefore, are further simulated and discussed. Tables 5 and 6
list the SOH-E of BPNN and LSTMNN under the hidden layers of 1, 2, and 3 and the
neurons of 100, 300, and 500, respectively. Through the training data of 70 retired batteries
and verification data of 30 retired batteries, the lowest RMSEs for SOH-E of BPNN and
LSTMNN are 2.79% and 2.73% under 3 hidden layers with 300 neurons and 2 hidden
layers with 100 neurons, respectively. The lowest MAEs for SOH-E of BPNN and LSTMNN
are 2.24% and 2.23% under 3 hidden layers with 300 neurons and 3 hidden layers with
100 neurons, respectively. The average RMSE and MAE of BPNN under different hidden
layers and neurons as listed in Table 5 are 2.96% and 2.38%, respectively. The average
RMSE and MAE of LSTMNN under different hidden layers and neurons as listed in Table 6
are 2.81% and 2.25%, respectively. The average performance of LSTMNN is slightly better
than BPNN; however, both NNs obtain similar results. Note that the proposed method
can start SOH-E from any measurement point. Figures 13 and 14 show parts of the SOH-E
from different measurement points for BPNN and LSTMNN under 3 hidden layers with
300 neurons and 2 hidden layers with 100 neurons, respectively. Figures 13 and 14 indicate
that the starting point of the measurement does not significantly affect the results of SOH-
E. Compared with the SOH-E methods represented in [4–25], the proposed method can
accurately and effectively estimate the SOH of retired batteries in about 30 min. In addition,
the RMSE verified by the retired batteries is lower than 3%. Although the probability
of occurrence is small, it can be seen from Tables 5 and 6 that some SOH-Es still have
significant errors. In addition to improving them through the use of more training data,
integrating different NNs along with varying the data used for the feature extractions may
also reduce the maximum estimation error and will be investigated in the future.
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Table 5. SOH-E Comparisons of BPNN under Different Neurons and Hidden Layers.

No. of Hidden Layers No. of Neurons RMSE (%) MAE (%) MxE (%) MnE (%)

1

100 3.20 2.63 20.54 0.0006

300 3.11 2.55 18.01 0.0000

500 2.99 2.42 16.5 0.0004

2

100 3.09 2.53 16.03 0.0000

300 2.85 2.25 15.05 0.0003

500 2.96 2.29 14.34 0.0026

3

100 2.85 2.26 14.38 0.0004

300 2.79 2.24 14.32 0.0032

500 2.81 2.25 9.93 0.0016

Table 6. SOH-E Comparisons of LSTMNN under Different Neurons and Hidden Layers.

No. of Hidden Layers No. of Neurons RMSE (%) MAE (%) MxE (%) MnE (%)

1

100 2.87 2.28 17.92 0.0017

300 2.86 2.25 15.07 0.0016

500 2.84 2.23 16.73 0.0004

2

100 2.73 2.24 15.86 0.0012

300 2.82 2.26 19.67 0.0001

500 2.81 2.24 16.51 0.0034

3

100 2.79 2.23 16.21 0.0004

300 2.8 2.32 17.61 0.0005

500 2.78 2.24 16.62 0.0027
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6. Conclusions 
This paper proposed an accurate and efficient SOH-E method using the actual dis-
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6. Conclusions

This paper proposed an accurate and efficient SOH-E method using the actual dis-
charge data of retired batteries. A battery data acquisition system was implemented to
attain retired batteries’ CHA-DISCH data. Then, the measurements were separated into
sub-data of different time intervals and the features extracted from the sub-data were
exploited for SOH-E. The features were utilized to train a BPNN and LSTMNN and ap-
plied to evaluate SOH levels. One hundred retired lead–acid batteries were utilized in the
experiments. Different time intervals and NNs were simulated. Three time intervals—5,
10, and 15 min, for which the number of features were 21, 12, and 9, respectively—were
tested. It was determined that the time interval has no significant effect on the RMSE and
MAE; however, the MxE performed better when the time interval was 5 min. The SOH-E of
BPNN and LSTMNN under 1, 2, and 3 hidden layers and with 100, 300, and 500 neurons,
respectively, were simulated. The average performance of the LSTMNN was slightly better
than the BPNN; however, both NNs obtained similar results. The experimental results
demonstrated that SOH can be estimated in 30 min and that the RMSE verified by actually
retired batteries is less than 3%. It can be observed that the utilization of discharge voltage
variation over time and discharge voltage percentage deviation as features can effectively
enhance SOH-E accuracy. This paper used discharge data for SOH-E; however, the charging
data and the combination of CHA-DISCH data can also be used for SOH-E. Moreover, the
proposed SOH-E can also be extended to retired lithium-ion batteries. These issues will be
investigated in the future.

Author Contributions: J.-H.T. proposed and designed the core algorithm for SOH-E. J.-H.T., R.-J.C.,
P.-T.L. and C.-W.H. worked to establish the experimental platform and conduct the SOH-E of retired
batteries. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported in part by the Bureau of Energy, Ministry of Economic
Affairs of Taiwan, under Project of Recycling Application Cloud for Retired Batteries and Ministry of
Science and Technology of Taiwan under Contracts MOST 111—2221—E—110-022—MY3 and MOST
111—2622—E—110—009. The authors thank the Joint Research and Development Center of National
Sun Yat-Sen University and Brogent Technologies, Inc. for providing the experimental space.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2023, 16, 1240 16 of 17

References
1. Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and

management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78,
834–854. [CrossRef]

2. Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery lifetime prognostics. Joule 2020, 4, 310–346. [CrossRef]
3. Gou, B.; Xu, Y.; Feng, X. State-of-health estimation and remaining useful-life prediction for lithium-ion battery using a hybrid

data-driven method. IEEE Trans. Veh. Technol. 2020, 69, 10854–10867. [CrossRef]
4. Lipu, M.S.; Hannan, M.A.; Hussain, A.; Hoque, M.M.; Ker, P.J.; Saad, M.H.M.; Ayob, A. A review of state of health and remaining

useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod. 2018,
205, 115–133. [CrossRef]

5. Noura, N.; Boulon, L.; Jemeï, S. A review of battery state of health estimation methods: Hybrid electric vehicle challenges. World
Electr. Veh. J. 2020, 11, 66. [CrossRef]

6. Oji, T.; Zhou, Y.; Kang, S.F.; Chen, X.; Liu, X. Data-driven methods for battery SOH Estimation: Survey and a critical analysis.
IEEE Access 2021, 9, 126903–126916. [CrossRef]

7. Ungurean, L.; Cârstoiu, G.; Micea, M.V.; Groza, V. Battery state of health estimation: A structured review of models, methods and
commercial devices. Int. J. Energy Res. 2016, 41, 151–181. [CrossRef]

8. Weng, C.; Sun, J.; Peng, H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and
state-of-health monitoring. J. Power Sources 2014, 258, 228–237. [CrossRef]

9. Li, S.E.; Wang, B.; Peng, H.; Hu, X. An electrochemistry-based impedance model for lithium-ion batteries. J. Power Sources 2014,
258, 9–18. [CrossRef]

10. Simatupang, D.; Park, S.Y. Integration of battery impedance spectroscopy with reduced number of components into battery
management systems. IEEE Access 2022, 10, 114262–114271. [CrossRef]

11. Kim, J.; Lee, S.; Cho, B.H. Complementary cooperation algorithm based on DEKF combined with pattern recognition for
SOC/capacity estimation and SOH prediction. IEEE Trans. Power Electron. 2012, 27, 436–451. [CrossRef]

12. Schwunk, S.; Armbruster, N.; Straub, S.; Kehl, J.; Vetter, M. Particle filter for state of charge and state of health estimation for
lithium-iron phosphate batteries. J. Power Sources 2013, 239, 705–710. [CrossRef]

13. Miao, Q.; Xie, L.; Cui, H.; Liang, W.; Pecht, M. Remaining useful life prediction of lithium-ion battery with unscented particle
filter technique. Microelectron. Reliab. 2013, 53, 805–810. [CrossRef]

14. Prasad, G.K.; Rahn, C.D. Model based identification of aging parameters in lithium ion batteries. J. Power Sources 2013, 232, 79–85.
[CrossRef]

15. Long, B.; Xian, W.; Jiang, L.; Liu, Z. An improved autoregressive model by particle swarm optimization for prognostics of
lithium-ion batteries. Microelectron. Reliab. 2013, 53, 821–831. [CrossRef]

16. Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Saad, M.H.; Ayob, A. Neural network approach for estimating state of charge of
lithium-ion battery using backtracking search algorithm. IEEE Access 2018, 6, 10069–10079. [CrossRef]

17. Zhang, S.; Zhai, B.; Guo, X.; Wang, K.; Peng, N.; Zhang, X. Synchronous estimation of state of health and remaining useful lifetime
for lithium-ion battery using the incremental capacity and artificial neural networks. J. Energy Storage 2019, 26, 100951. [CrossRef]

18. Shen, S.; Sadoughi, M.; Chen, X.; Hong, M.; Hu, C. A deep learning method for online capacity estimation of lithium-ion batteries.
J. Energy Storage 2019, 25, 100817. [CrossRef]

19. Eddahech, A.; Briat, O.; Bertrand, N.; Delétage, J.-Y.; Vinassa, J.-M. Behavior and state-of-health monitoring of Li-ion batteries
using impedance spectroscopy and recurrent neural networks. Int. J. Electr. Power Energy Syst. 2012, 42, 487–494. [CrossRef]

20. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction
of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

21. Chen, R.J.; Hsu, C.W.; Lu, T.F.; Teng, J.H. Rapid SOH estimation for retired lead-acid batteries. In Proceedings of the 2021 IEEE
International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 16–19 November 2021; pp. 1–4.

22. Wang, S.L.; Paul, T.A.; Jin, S.Y.; Yu, C.M.; Fernandez, C.; Stroe, D.I. An improved feedforward-long short-term memory modeling
method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature
variation. Energy 2022, 254, 124224. [CrossRef]

23. Wang, S.; Ren, P.; Takyi-Aninakwa, P.; Jin, S.; Fernandez, C. A Critical Review of Improved Deep Convolutional Neural Network
for Multi-Timescale State Prediction of Lithium-Ion Batteries. Energies 2022, 15, 5053. [CrossRef]

24. Pan, H.; Lü, Z.; Wang, H.; Wei, H.; Chen, L. Novel battery state-of-health online estimation method using multiple health
indicators and an extreme learning machine. Energy 2018, 160, 466–477. [CrossRef]

25. Chen, L.; Ding, Y.; Wang, H.; Wang, Y.; Liu, B.; Wu, S.; Li, H.; Pan, H. Online estimating state of health of lithium-ion batteries
using hierarchical extreme learning machine. IEEE Trans. Transp. Electr. 2022, 8, 965–975. [CrossRef]

26. Qin, T.; Zeng, S.; Guo, J. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR
model. Microelectron. Reliab. 2015, 55, 1280–1284. [CrossRef]

27. Zhou, Y.; Huang, M.; Chen, Y.; Tao, Y. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J.
Power Sources 2016, 321, 1–10. [CrossRef]

28. Coleman, M.; Hurley, W.G.; Lee, C.K. An improved battery characterization method using a two-pulse load test. IEEE Trans.
Energy Convers. 2008, 23, 708–713. [CrossRef]

http://doi.org/10.1016/j.rser.2017.05.001
http://doi.org/10.1016/j.joule.2019.11.018
http://doi.org/10.1109/TVT.2020.3014932
http://doi.org/10.1016/j.jclepro.2018.09.065
http://doi.org/10.3390/wevj11040066
http://doi.org/10.1109/ACCESS.2021.3111927
http://doi.org/10.1002/er.3598
http://doi.org/10.1016/j.jpowsour.2014.02.026
http://doi.org/10.1016/j.jpowsour.2014.02.045
http://doi.org/10.1109/ACCESS.2022.3217095
http://doi.org/10.1109/TPEL.2011.2158554
http://doi.org/10.1016/j.jpowsour.2012.10.058
http://doi.org/10.1016/j.microrel.2012.12.004
http://doi.org/10.1016/j.jpowsour.2013.01.041
http://doi.org/10.1016/j.microrel.2013.01.006
http://doi.org/10.1109/ACCESS.2018.2797976
http://doi.org/10.1016/j.est.2019.100951
http://doi.org/10.1016/j.est.2019.100817
http://doi.org/10.1016/j.ijepes.2012.04.050
http://doi.org/10.1109/TVT.2018.2805189
http://doi.org/10.1016/j.energy.2022.124224
http://doi.org/10.3390/en15145053
http://doi.org/10.1016/j.energy.2018.06.220
http://doi.org/10.1109/TTE.2021.3107727
http://doi.org/10.1016/j.microrel.2015.06.133
http://doi.org/10.1016/j.jpowsour.2016.04.119
http://doi.org/10.1109/TEC.2007.914329


Energies 2023, 16, 1240 17 of 17

29. Zhao, Y.; Pohl, O.; Bhatt, A.I.; Collis, G.E.; Mahon, P.J.; Rüther, T.; Hollenkamp, A.F. A Review on Battery Market Trends,
Second-Life Reuse, and Recycling. Sustain. Chem. 2021, 2, 167–205. [CrossRef]

30. Grand View Research. Battery Market Share, Size & Trend Analysis Report By Product (Lead Acid, Li-ion, Nickle Metal Hydride,
Ni-Cd) By Application (Automotive, Industrial, Portable), By Region, and Segment Forecasts 2020–2027. 2018. Available online:
https://www.grandviewresearch.com/industry-analysis/battery-market/segmentation (accessed on 30 November 2021).

31. International Energy Agency. Global EV Outlook 2021; International Energy Agency: Paris, France, 2021.
32. MarketsandMarkets. Global Battery Market; AT 2836; MarketsandMarkets: Chicago, IL, USA, 2016; Available online: https:

//www.marketsandmarkets.com/Market-Reports/automotive-battery-market-247045197.html (accessed on 30 November 2021).
33. Kumar, R. Electric Vehicle Market. 2021. Available online: https://www.alliedmarketresearch.com/electric-vehicle-market

(accessed on 30 November 2021).
34. National Instruments. LabVIEW User Manual. 2003. Available online: https://www.ni.com/pdf/manuals/320999e.pdf

(accessed on 30 November 2021).
35. Yuasa Battery Co., Ltd. UXH Type Battery. 2016. Available online: http://www.yuasa.com.tw/product-detail.php?lang=&nId=33

(accessed on 30 November 2021).
36. Shu, X.; Shen, S.Q.; Shen, J.W.; Zhang, Y.J.; Li, G.; Chen, Z.; Liu, Y.G. State of health prediction of lithium-ion batteries based on

machine learning: Advances and perspectives. iScience 2021, 24, 103265. [CrossRef]
37. Hioki. HIOKI BT3554 Battery Tester—Instruction Manual; Hioki: Nagano, Japan, 2021; Available online: https://www.hioki.com/

download/37347 (accessed on 30 November 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/suschem2010011
https://www.grandviewresearch.com/industry-analysis/battery-market/segmentation
https://www.marketsandmarkets.com/Market-Reports/automotive-battery-market-247045197.html
https://www.marketsandmarkets.com/Market-Reports/automotive-battery-market-247045197.html
https://www.alliedmarketresearch.com/electric-vehicle-market
https://www.ni.com/pdf/manuals/320999e.pdf
http://www.yuasa.com.tw/product-detail.php?lang=&nId=33
http://doi.org/10.1016/j.isci.2021.103265
https://www.hioki.com/download/37347
https://www.hioki.com/download/37347

	Introduction 
	Basic Concepts of SOH-E 
	Experimental Platform and Data Acquisition 
	Proposed SOH-E Methodology 
	Test Results and Discussions 
	Conclusions 
	References

