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Abstract: The hybrid modular multilevel converter (MMC) consisting of half-bridge submodules
(HBSMs) and full-bridge submodules (FBSMs) is a promising solution for overhead lines high-voltage
direct current systems (HVDC) due to the advantages of direct current short circuit fault ride-through
(DC-FRT) capability. This paper proposes an improved phase-disposition pulse width modulation
(PDPWM) method for the hybrid modular multilevel converter. The number of carriers can be
reduced from 3N (N is the number of submodules in each arm) to 6. The theoretical harmonic analysis
of the improved PDPWM method for hybrid MMC is performed by using double Fourier integral
analysis. The influence of three carrier displacement angles between HBSMs and FBSMs in the
upper and lower arms on harmonic characteristics is investigated. The output voltage harmonics
minimization PDPWM scheme and circulating current harmonics cancellation PDPWM scheme
can be achieved by selecting the optimum carrier displacement angles, respectively. The proposed
method for hybrid MMC is verified by the simulation and experimental results.

Keywords: hybrid modular multilevel converter; phase-disposition pulse width modulation;
carrier displacement angles; theoretical harmonic analysis

1. Introduction

Recently, the half-bridge submodules (SMs)-based modular multilevel converter
(MMC), due to its high modularity, high scalability, excellent harmonic characteristics, and
low switching losses, has become one of the most promising multilevel converter topologies
for high-voltage applications, especially for high-voltage direct current (HVDC) transmis-
sion systems [1–4]. The application scope of the half-bridge submodules (HBSMs)-based
MMC (HB-MMC) can be extended to the medium voltage applications, such as railway
power conditioner (RPC) [5,6], unified power flow controller (UPFC) [7,8], static syn-
chronous compensator (STATCOM) [9,10], variable speed motor drive [11,12], and so on.

However, the HB-MMC cannot block the fault currents during dc-cable short circuits,
which will cause serious damage to the power devices and other components of the HB-
MMC. Thus, the HB-MMC is limited in the applications of the long-distance overhead lines
HVDC transmission systems, where the dc-cable short circuit faults occur at times [13].
Compared with the HB-MMC, the full-bridge submodules (FBSMs)-based MMC (FB-MMC)
can block the fault currents during dc-cable short circuits and has direct current short
circuit fault ride-through (DC-FRT) capability. However, the number of power devices is
double and power losses are increased a lot [14]. The hybrid MMC, consisting of HBSMs
and FBSMs, is a promising solution for the long-distance overhead line VSC-HVDC due
to the advantages of DC-FRT capability, and it has less power devices and lower system
losses than the FB-MMC [15].

Several academic papers have concentrated on topology [16,17], control [18–21], and
the modulation method for the hybrid MMC. The modulation method is fundamental to
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both the HB-MMC and hybrid MMC, which greatly influences the harmonic characteristics,
capacitor voltage balancing, system efficiency, and dynamic performance [22]. Therefore,
the modulation method has been a major research field. Several modulation methods have
been developed in the HB-MMC, mainly including the nearest level modulation (NLM)
method [23–25], space vector pulse width modulation (SVPWM) method [26,27], selective
harmonic elimination pulse width modulation (SHEPWM) method [28,29], alternate phase
opposition disposition pulse width modulation (APOD-PWM) method [30], phase shifted
carrier pulse width modulation (PSCPWM) method [31–33], and phase-disposition pulse
width modulation (PDPWM) method [34–36]. In high voltage applications, the NLM
method for the HB-MMC is easy to be implemented with a large number of SMs. However,
when the NLM method for the HB-MMC is used in medium applications with a small
number of SMs, the output voltage contains low order harmonics, which cause the high
total harmonic distortion (THD) of output current [23]. The improved level increased
NLM method can improve the harmonic performance by increasing the output phase
voltage levels to 2N + 1 [24,25]. The SHEPWM method for the HB-MMC achieves better
harmonic performance with low switching losses but the computational burden increases
greatly with large amounts of SMs. Thus, the SHEPWM method is suitable for the medium
applications with a small amount of SMs [26,27]. The SVPWM method for the HB-MMC
provides flexibility in choosing voltage vectors to acquire multiple objectives. However,
the computational burden of SVPWM increases exponentially with the increasing of the
SMs. The simplified SVPWM methods can greatly reduce the computational burden [28,29].
When the equivalent switching frequency is the same, the APOD-PWM method has the
same harmonic performance with the PSCPWM method. In [30], the APOD-PWM method
was proposed for the HB-MMC. The PSCPWM method is an effective PWM solution for the
the HB-MMC due to its even loss distribution [31]. However, the PSCPWM method needs
hundreds of carriers for the HB-MMC in the VSC-HVDC [32,33]. The PDPWM method
for the MMC has better harmonic performance than the PSCPWM method. However, the
power distribution of the PDPWM is uneven, thus the capacitor voltage balancing method
based on sorting should be added to distribute PWM signals of SMs [34]. The improved
PDPWM method for the HB-MMC is easy to implement as it only needs a single carrier or
double carriers [35,36].

The modulation methods for the HB-MMC can be modified to be fit for the hybrid
MMC. In order to improve the harmonic performance of the NLM method for the hybrid
MMC in medium voltage applications, the authors in [37] presented the nearest level
PWM (NL-PWM) method for the hybrid MMC, consisting of two SiC FBSMs and N − 1
Si HBSMs in each arm, and the PWM signals are distributed to two SiC FBSMs to reduce
the switching losses. However, the NLM method for the hybrid MMC achieves the total
number of on-state SMs and distributes the PWM signals to FBSMs and HBSMs using the
sorting algorithm. Thus, the number of on-state HBSMs and FBSMs is not calculated and
distinguished, respectively. Because the topologies of HBSMs and FBSMs are different,
the power losses and switching frequency are not evenly distributed between HBSMs and
FBSMs. The PSCPWM method for the hybrid MMC can evenly distribute the PWM signals
to HBSMs and FBSMs; the switching losses of HBSMs and FBSMs are basically the same [38].
To eliminate the mismatch pulses of the phase voltage, an improved phase-shifted carrier
pulse width modulation (PSC-PWM) method was proposed for the hybrid MMC in [38],
and the theoretical analysis of the PSCPWM was investigated in detail by applying the
double Fourier analysis. An improved PSCPWM method for the hybrid MMC with a
boosted modulation index was presented in [39]. In [40], the improved PSC-PWM method
for the hybrid MMC was proposed for over modulation operations, which significantly
increases the complexity. However, 2N triangular carriers are needed for the PSCPWM
method for the hybrid MMC. When the PSCPWM method for the hybrid MMC is applied in
HVDC transmission systems, the total number of HBSMs and FBSMs is over two hundreds,
and the total number of HBSMs and FBSMs is N ∈ [200,400]. There are 2N ∈ [400,800]
carriers needed for the PSCPWM, which is hard to be implemented in the application of
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the HVDC with a large amount of SMs. Therefore, the PSCPWM method is only suitable
for medium voltage applications with a small amount of SMs.

To the best knowledge of the authors, few papers have studied the PDPWM method for
the hybrid MMC. As the topology and characteristics of the hybrid MMC are different with
the HB-MMC, the traditional PDPWM method for the HB-MMC cannot be used directly for
the hybrid MMC. When the traditional PDPWM method for the hybrid MMC is applied in
long-distance overhead lines HVDC transmission systems, the traditional PDPWM method
needs more carriers than the PSCPWM method. The traditional PDPWM method for the
hybrid MMC needs 3N ∈ [600,1200] carriers. It can be seen that the traditional PDPWM
is relatively complex in the application of HVDC transmission systems and is difficult to
implement due to so many carriers. Moreover, few literatures have studied the principle
of PDPWM for the hybrid MMC, because the displacement angles between HBSMs and
FBSMs in the upper and lower arms determine the harmonic characteristics of output
voltage and circulating current [38], thus it is still not clear how the displacement angles
between HBSMs and FBSMs in the upper and lower arms affect the harmonic characteristics
of the hybrid MMC. The aim of this paper is to simplify the PDPWM method for the hybrid
MMC and extend the application scope of the PDPWM method to high voltage applications
such as HVDC with a large amount of SMs. Further, the aim of this paper is to provide the
theoretical analysis of the PDPWM method for the hybrid MMC in detail, to analyze the
influence of displacement angles on output voltages and circulating current, and to derive
the optimum displacement angles to minimize the harmonics in the output voltage and
circulating current.

In this paper, an improved phase-disposition pulse width modulation (PDPWM)
method is presented for hybrid MMC. The improved PDPWM method for hybrid MMC
only needs six carriers for any number of SMs in each arm. Therefore, the improved
PDPWM method is easy to be implemented in the long-distance overhead lines HVDC
transmission systems. Moreover, the theoretical analysis of the improved PDPWM method
for hybrid MMC is carried out by using the double Fourier integral analysis method. Based
on the double Fourier integral analysis, three optimum displacement angles are identified
for the circulating current harmonics cancellation scheme and output voltage harmonics
minimization scheme for the hybrid MMC, respectively.

The paper is organized as follows. Section 2 introduces the basic operating principles
of the hybrid MMC. Section 3 presents the traditional PDPWM method for the hybrid
MMC. Further, an improved PDPWM method by using six carriers for the hybrid MMC
is proposed. Section 4 shows the theoretical analysis of the improved PDPWM for the
hybrid MMC by using the double Fourier integral analysis method, and three optimum dis-
placement angles are specified for the circulating current harmonics cancellation PDPWM
scheme and output voltage harmonics minimization PDPWM scheme for the hybrid MMC,
respectively. Finally, simulations and experiments are illustrated and discussed in Sections 5
and 6, respectively. The conclusions are given in Section 7.

2. Basic Operating Principles of Hybrid MMC

The topology of the three-phase hybrid MMC is shown in Figure 1. Each arm consists
of Nh HBSMs and Nf FBSMs. Where Nh, Nf are the number of HBSMs and FBSMs, respectively.
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Figure 1. Topology of the three-phase hybrid MMC. 

According to Kirchhoff’s voltage law, the following equations can be derived as: 
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where unj,h and unj,f are the output voltages of HBSMs and FBSMs in the lower arm, respec-
tively. upj,h and upj,f are the output voltages of HBSMs and FBSMs in the upper arm, respec-
tively. Udc is the dc-link voltage. uj denotes the phase voltage of phase-j (j = a, b, c). upj and 
unj are the output voltages of the upper and the lower arms, respectively. ipj and inj refer to 
the current of the upper arm and the lower arm, respectively. Lp and Ln are the self-induct-
ances of the coupling inductance for the upper and lower arms, respectively. Lmu is the 
mutual inductance, assuming the two inductors are closely coupled and the leakage in-
ductance can be ignored (i.e., Lp = Ln = Lmu =L). uLj is the voltage of coupling inductance. 
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According to Kirchhoff’s voltage law, the following equations can be derived as:

Udc
2

= upj,h + upj, f + Lp
dipj

dt
+ Lmu

dinj

dt
+ uj (1)

Udc
2

= unj,h + unj, f + Ln
dinj

dt
+ Lmu

dipj

dt
− uj (2)

uLj = Lp
dipj

dt
+ Lmu

dinj

dt
+ Ln

dinj

dt
+ Lmu

dipj

dt
(3)

where unj,h and unj,f are the output voltages of HBSMs and FBSMs in the lower arm,
respectively. upj,h and upj,f are the output voltages of HBSMs and FBSMs in the upper arm,
respectively. Udc is the dc-link voltage. uj denotes the phase voltage of phase-j (j = a, b, c).
upj and unj are the output voltages of the upper and the lower arms, respectively. ipj and
inj refer to the current of the upper arm and the lower arm, respectively. Lp and Ln are the
self-inductances of the coupling inductance for the upper and lower arms, respectively. Lmu
is the mutual inductance, assuming the two inductors are closely coupled and the leakage
inductance can be ignored (i.e., Lp = Ln = Lmu =L). uLj is the voltage of coupling inductance.

According to Kirchhoff’s current law, the following equations can be obtained as:

ipj = icj +
ij

2
(4)
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inj = icj −
ij

2
(5)

where ij and icj are the output current and circulating current of phase-j, respectively.

uj =
1
2
(
unj − upj

)
=

1
2

[(
unj,h + unj, f

)
−
(

upj,h + upj, f

)]
(6)

icj =
1
2
(
ipj + inj

)
(7)

4L
dicj

dt
= Udc −

(
upj,h + upj, f

)
−
(

unj,h + unj, f

)
(8)

icj = Icj +

t∫
0

Udc −
(

upj,h + upj, f

)
−
(

unj,h + unj, f

)
4L

dt (9)

3. An Improved PDPWM Method for Hybrid MMC

The PDPWM method for the hybrid MMC is shown in Figure 2, where the number of
SMs per arm N = 4. For simplicity, the number of HBSMs and FBSMs is the same (N = Nf
+ Nh, Nf = Nh, where Nh, Nf are the number of HBSMs and FBSMs, respectively), and the
output voltage of FBSMs is UC and 0. Note that the magnitude of carriers for FBSMs is 0.5,
and the phase angles of left bridge and right bridge for FBSMs are opposite, so the output
voltage of FBSMs is 0 and UC.
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Figure 2. The traditional PDPWM method for hybrid MMC. (a) Modulation of FBSMs in the lower
arm. (b) Modulation of HBSMs in the lower arm. (c) Modulation of FBSMs in the upper arm.
(d) Modulation of HBSMs in the upper arm. (e) Number of on-state FBSMs in the lower arm. (f)
Number of on-state HBSMs in the lower arm. (g) Number of on-state FBSMs in the upper arm. (h)
Number of on-state HBSMs in the upper arm.
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The reference voltage of HBSMs in the upper arm and lower arm can be expressed as:

ur,nj,h =
Udc

4
+

Udc
4

M cos
(
ωot + ϕj

)
(10)

ur,pj,h =
Udc

4
+

Udc
4

M cos
(
ωot + π + ϕj

)
(11)

where ur,nj,h and ur,pj,h are the reference voltages of HBSMs in the upper arm and lower arm,
respectively. M is modulation index, ω0 is the angular frequency of the reference voltage,
ϕj is the phase angle of phase j.

The reference voltage of FBSMs in the upper arm can be expressed as:{
ur,pj, f l =

3Udc
8 + Udc

8 M cos
(
ωot + π + ϕj

)
ur,pj, f r =

Udc
8 + Udc

8 M cos
(
ωot + ϕj

) (12)

where ur,pj,fl, ur,pj,fr are the reference voltages of the left bridge and right bridge for FBSMs
in the upper arm, respectively.

The reference voltage of FBSMs in the lower arm can be expressed as:{
ur,nj, f l =

3Udc
8 + Udc

8 M cos
(
ωot + ϕj

)
ur,nj, f r =

Udc
8 + Udc

8 M cos
(
ωot + π + ϕj

) (13)

where ur,nj,fl, ur,nj,fr are the reference voltages of the left bridge and right bridge of FBSMs in
the lower arm.

It can be seen that the number of carriers of the traditional PDPWM for the hybrid
MMC are 3N (where N is the number of SMs). The number of carriers of FBSMs and HBSMs
are 2N and N, respectively. When the hybrid MMC is used in the HVDC, hundreds of SMs
per arm are needed. Thus, the traditional PDPWM method for hybrid MMC is difficult to
be implemented.

In order to simplify the PDPWM method for the hybrid MMC, an improved PDPWM
method for the hybrid MMC is presented. The principle of an improved PDPWM method
for the hybrid MMC is shown in Figure 3. Where Nh, Nf are the number of HBSMs and
FBSMs (Nh = Nf = 4), respectively.

Only six carriers are needed for an improved PDPWM method, which greatly sim-
plifies the implementation of the PDPWM method for the hybrid MMC. Two carriers are
needed for the modulation of HBSMs and four carriers are needed for the modulation
of FBSMs.

The triangular carrier of left bridge HBSMs in the upper arm can be expressed as:

uc,pj,h =

{
UC
π (ωct + θh − 2kπ), 2kπ ≤ ωct + θh < 2kπ + π

−UC
π (ωct + θh − 2kπ − 2π), 2kπ + π ≤ ωct + θh < 2kπ + 2π

(14)

The triangular carrier of left bridge HBSMs in the lower arm can be expressed as:

uc,nj,h =

{
UC
π (ωct− 2kπ), 2kπ ≤ ωct < 2kπ + π

−UC
π (ωct− 2kπ − 2π), 2kπ + π ≤ ωct < 2kπ + 2π

(15)

The triangular carrier of left bridge FBSMs in the upper arm can be expressed as:

uc,pj, f l =


UC
2π

(
ωct + θh, f + θ f − 2kπ

)
, 2kπ ≤ ωct + θh, f + θ f < 2kπ + π

−UC
2π

(
ωct + θh, f + θ f − 2kπ − 2π

)
, 2kπ + π ≤ ωct + θh, f + θ f < 2kπ + 2π

(16)

where uc,pj,fl, uc,pj,fr are the triangular carrier of the left bridge and right bridge for FBSMs in
the upper arm, respectively. ωc is the angular frequency of triangle carrier. k (k∈[0,1, . . . , n])
is the carrier period.
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The triangular carrier of the left bridge for FBSMs in the lower arm can be expressed as:

uc,nj, f l =


UC
2π

(
ωct + θh, f − 2kπ

)
, 2kπ ≤ ωct + θh, f < 2kπ + π

−UC
2π

(
ωct + θh, f − 2kπ − 2π

)
, 2kπ + π ≤ ωct + θh, f < 2kπ + 2π

(17)
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where uc,nj,fl, uc,nj,fr are the triangular carrier of the left bridge and right bridge for FBSMs
in the lower arm, respectively.

The integer part of on-state HBSMs can be derived as:

Nint,xj,h = f loor
(ur,xj,h

UC

)
= f loor

(
um,xj,h

)
(18)

The remainder of the reference voltage of HBSMs can be obtained as:

urem,xj,h = ur,xj,h −UC × Nint,xj,h (19)

By comparing the remainder of the reference voltage and triangular carrier, the PWM
part of on-state HBSMs can be achieved as:

Npwm,xj,h =

{
1, urem,xj,h > uc,xj,h

0, urem,xj,h ≤ uc,xj,h
(20)

By adding an integer part and PWM part, the number of on-state HBSMs can be
derived as:

Nxj,h = Nint,xj,h + Npwm,xj,h (21)

Note that x = (p, n), where p, n refer to upper arm and lower arm, respectively.
h, f refer to HBSMs and FBSMs, respectively. urem,xj,h is the remainder part of reference
voltage of HBSMs. Nint,xj,h, Npwm,xj,h are the integer part and PWM part of on-state HBSMs,
respectively. Nxj,h is the number of on-state HBSMs of phase-j, which can be obtained by
adding an integer part Nint,xj,h and PWM part Nint,xj,h. The integer part of on-state FBSMs
for upper and lower arms can be obtained as:

Nint,xj, f y =
f loor

( ur,xj, f y
0.5UC

)
2

=
f loor

(
2um,xj, f y

)
2

(22)

where y = (l, r), l, r refer to the left bridge and right bridge of FBSMs, respectively. Nint,xj,fy
is the integer part of the left bridge and right bridge of FBSMs.

The remainder of the reference voltage of FBSMs for upper and lower arms can be
derived as:

urem,xj, f y = ur,xj, f y − 0.5UC × uint,xj, f y (23)

The PWM part of on-state FBSMs can be achieved as:

Npwm,xj, f y =

{
0.5, urem,xj, f y > uc,xj, f y

0, urem,xj, f y ≤ uc,xj, f y
(24)

The number of on-state FBSMs can be derived as:{
Nxj, f l = Nint,xj, f l + Npwm,xj, f l
Nxj, f r = Nint,xj, f r + Npwm,xj, f r

(25)

Nxj, f = Nxj, f l − Nxj, f r (26)

where urem,xj,fy is the remainder of the left bridge and right bridge of FBSMs reference
voltage in the upper and lower arms. Npwm,xj,fy is the PWM part of on-state FBSMs. Nxj,fl,
Nxj,fr are the output of the left bridge and right bridge of FBSMs, respectively. Nxj,f is the
number of on-state FBSMs in the upper and lower arm.

Three carrier displacement angles of an improved PDPWM method for hybrid MMC
are shown in Figure 4. Where θh is the carrier displacement angle between HBSMs in the
upper arm and HBSMs in the lower arm, θf is the carrier displacement angle between FBSMs
in the upper arm and FBSMs in the lower arm, and θh,f is the carrier displacement angle
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between HBSMs and left bridge of FBSMs in the upper arm. Three carrier displacement angles
of the improved PDPWM method determine the harmonic performance of the hybrid MMC.Energies 2023, 16, 1192 10 of 28 
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voltage balancing algorithm [41]. 

Figure 4. Three carrier displacement angles of an improved PDPWM method for hybrid MMC.
(a) Carrier displacement angle between HBSMs in the upper arm and HBSMs in the lower arm.
(b) Carrier displacement angle between FBSMs in the upper arm and FBSMs in the lower arm.
(c) Carrier displacement angle between HBSMs and left bridge of FBSMs in the upper arm.

Figure 5 shows the block diagram of an improved PDPWM method for the hybrid
MMC. Firstly, the number of on-state HBSMs and FBSMs for each arm are obtained through
the improved PDPWM for the hybrid MMC, respectively. Then, the selection of the
HBSMs and FBSMs is performed based on the reducing switching frequency (RSF) voltage
balancing algorithm [41].
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Figure 5. Block diagram of an improved PDPWM method for hybrid MMC. 
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Figure 5. Block diagram of an improved PDPWM method for hybrid MMC.

Where upj,h[i], unj,h[i] are the ith (1,2, . . . , Nh) capacitor voltages of HBSMs for the
upper arm and lower arm, respectively. upj,f[i], unj,f[i] are the ith (1,2, . . . , Nf) capacitor
voltage of FBSMs for the upper arm and lower arm, respectively.

4. Harmonic Performance of Hybrid MMC with the Improved PDPWM Method

The mathematical analysis of the improved PDPWM method for the hybrid MMC
is performed by a double Fourier integral analysis method [36,42]. The Fourier series
expression of the output phase voltage and circulating current for the hybrid MMC is
derived. Further, three optimum displacement angles between HBSMs and FBSMs in
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the upper and lower arms are chosen for the circulating current harmonics cancellation
PDPWM scheme and output voltage harmonics minimization PDPWM scheme for hybrid
MMC, respectively.

Note that the following harmonics analysis focuses on the switching harmonics caused
by the improved PDPWM for the hybrid MMC. For simplicity, the low-frequency harmonics
in the circulating current are not considered, which can be reduced by adding the circulating
current suppressing method.

According to (6), (A9) and (A13) (see Appendix A), the double Fourier integral series
expression of the output voltage of phase-j can be derived as:

uj =
1
2
(
unj − upj

)
= MUdc

2 cos
(
ωot + ϕj

)
+

4Udc
Nπ2

∞
∑

m=0

C0

2m + 1

 sin
[
(2m+1)θh

2

]
cos
[
(2m + 1)ωct + (2m+1)θh

2 − π
2

]
+ sin

[
(2m+1)θ f

2

]
cos
[
(2m + 1)ωct + (2m + 1)

(
θh, f +

θ f
2

)
− π

2

]


+
2Udc
Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1

2m + 1
×

 sin
[
(2m+1)θh

2

]
cos
[
(2m + 1)ωct + 2n

(
ωot + ϕj

)
+ (2m+1)θh

2 − π
2

]
+ sin

[
(2m+1)θ f

2

]
cos
[
(2m + 1)ωct + 2n

(
ωot + ϕj

)
+ (2m + 1)

(
θh, f +

θ f
2

)
− π

2

]


+
Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2

2m

{
cos(mθh) cos

[
2mωct + (2n− 1)

(
ωot + ϕj

)
+ mθh

]
+ cos

(
mθ f

)
cos
[
2mωct + (2n− 1)

(
ωot + ϕj

)
+ m

(
2θh, f + θ f

)] }
(27)

The double Fourier integral series expression of line-to-line voltage can be derived as:

uab = ua − ub =
√

3MUdc
2 cos

(
ωot + π

6
)

+
4Udc
Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1

2m + 1

 sin
( 2nπ

3
)

sin
[
(2m+1)θh

2

]
× cos

[
(2m + 1)ωct + 2nωot + (2m+1)θh

2 − 2nπ
3

]
+ sin

( 2nπ
3
)

sin
[
(2m+1)θ f

2

]
× cos

[
(2m + 1)ωct + 2nωot + (2m + 1)

(
θh, f +

θ f
2

)
− 2nπ

3

]


+
2Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2

2m

 sin
[
(2n−1)π

3

]
cos(mθh)× cos

[
2mωct + (2n− 1)ωot + mθh −

(2n−1)π
3 + π

2

]
+ sin

[
(2n−1)π

3

]
cos
(

mθ f

)
× cos

[
2mωct + (2n− 1)ωot + m

(
2θh, f + θ f

)
− (2n−1)π

3 + π
2

] 
(28)

where uab is the line-to-line voltage between phase A and phase B. Because the amplitude
and phase angle of carrier harmonics in the phase voltage ua and ub are the same, the carrier
harmonics can be eliminated in the line-to-line voltage uab.

According to (9), (A9), and (A13) (see Appendix A), the circulating current of phase-j
can be expressed as:

icj =
Idc
3 + 2Udc

LNωcπ2

∞
∑

m=0

C0
(2m+1)2 ×


cos
[
(2m+1)θh

2

]
cos
[
(2m + 1)ωct + (2m+1)θh

2 + π
2

]
+ cos

[
(2m+1)θ f

2

]
cos
[
(2m + 1)ωct +

(2m+1)(2θh, f +θ f )
2 + π

2

] 
+ Udc

LNπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1

(2m + 1)[(2m + 1)ωc + 2nωo]

×


cos
[
(2m+1)θh

2

]
cos
[
(2m + 1)ωct + 2n

(
ωot + ϕj

)
+ (2m+1)θh

2 + π
2

]
+ cos

[
(2m+1)θ f

2

]
× cos

[
(2m + 1)ωct + 2n

(
ωot + ϕj

)
+

(2m+1)(2θh, f +θ f )
2 + π

2

] 
+

Udc
2LNπ

∞
∑

m=1

∞
∑

n=−∞

C2

2m[2mωc + (2n− 1)ωo]
×
{

sin(mθh) cos
[
2mωct + (2n− 1)

(
ωot + ϕj

)
+ mθh

]
+ sin

(
mθ f

)
cos
[
2mωct + (2n− 1)

(
ωot + ϕj

)
+ m

(
2θh, f + θ f

)] }

(29)

According to (29), it can be seen that the circulating current contains the dc component,
carrier harmonics of the circulating current of FBSMs and HBSMs, the sideband harmonics
of carrier groups of FBSMs and HBSMs. It can be seen that the harmonic characteristic of
the circulating current is determined by the three carrier displacement angles θh, θf, and θh,f.
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4.1. Circulating Current Harmonics Cancellation PDPWM Scheme

The circulating current harmonics cancellation scheme for the hybrid MMC can be
achieved by selecting three carrier displacement angles as:

θh = π
θh, f = π

θ f = π
(30)

According to (29) and (30), the following equation can be obtained as:
cos
[
(2m+1)θh

2

]
= 0

cos
[
(2m+1)θ f

2

]
= 0

sin(mθh) = 0
sin
(

mθ f

)
= 0

(31)

According to (29) and (31), the circulating current can be obtained as:

icj =
Idc
3

(32)

It can be seen that the circulating current only contains the dc component, and the
carrier harmonics, sideband harmonics of carrier groups in the circulating current are fully
eliminated.

According to (27) and (30), the following equation can be derived as:

sin
[
(2m + 1)θh

2

]
cos
[
(2m + 1)ωct +

(2m + 1)θh
2

− π
2

]
+ sin

[
(2m + 1)θ f

2

]
cos
[
(2m + 1)ωct + (2m + 1)

(
θh, f +

θ f
2

)
− π

2

]
= 0

sin
[
(2m + 1)θh

2

]
cos
[
(2m + 1)ωct + 2n

(
ωot + ϕj

)
+

(2m + 1)θh
2

− π
2

]
+ sin

[
(2m + 1)θ f

2

]
cos
[
(2m + 1)ωct + 2n

(
ωot + ϕj

)
+ (2m + 1)

(
θh, f +

θ f
2

)
− π

2

]
= 0

(33)

According to (27), (30), and (33), the output voltage of phase-j can be obtained as:

uj =
MUdc

2 cos
(
ωot + ϕj

)
+ 2Udc

Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2mωct + (2n− 1)

(
ωot + ϕj

)] (34)

It can be seen that the carrier harmonics, even sideband harmonics of odd carrier
groups are eliminated in the output voltage of phase-j. The equivalent switching frequency
of improved PDPWM for the hybrid MMC is twice as much as the carrier frequency of
HBSMs and FBSMs.

According to (28) and (34), the line-to-line voltage can be achieved as:

uab = ua − ub =

√
3MUdc

2
cos
(

ωot +
π

6

)
+

4Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2

2m
sin
[
(2n− 1)π

3

]
cos
[

2mωct + (2n− 1)ωot− (2n− 1)π
3

+
π

2

] (35)

where the magnitudes of odd sideband harmonics of even carrier groups in the line-to-line
voltage can be obtained as:

Amn,ab =

{
4Udc
Nπ

∣∣∣ C2
2m sin

[
(2n−1)π

3

]∣∣∣, i f 2n− 1 6= ±3,±6, . . .
0, i f 2n− 1 = ±3,±6, . . .

(36)
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where Amn,ab is the magnitudes of odd sideband harmonics of even carrier groups in the
line-to-line voltage.

4.2. Output Voltage Harmonics Minimization PDPWM Scheme

The output voltage harmonic minimization scheme of the improved PDPWM for the
hybrid MMC can be obtained by selecting three carrier displacement angles as:

θh = 0
θh, f =

π
2

θ f = 0
(37)

According to (27) and (37), the following equation can be obtained as:
sin
[
(2m+1)θh

2

]
= sin

[
(2m+1)θ f

2

]
= 0

cos
[
2mωct + (2n− 1)

(
ωot + ϕj

)]
+ cos

[
2mωct + (2n− 1)

(
ωot + ϕj

)
+ mπ

]
=
[
1 + (−1)m] cos

[
2mωct + (2n− 1)

(
ωot + ϕj

)] (38)

According to (27), (37), and (38), the output voltage of phase-j can be expressed as:

uj =
MUdc

2 cos
(
ωot + ϕj

)
+ Udc

Nπ

∞
∑

m=1

∞
∑

n=−∞

[
1 + (−1)m] C2

2m cos
[
2mωct + (2n− 1)

(
ωot + ϕj

)] (39)

According to (38), (39), (A9), and (A13) (see Appendix A), it can be seen that the
magnitudes and phase angle of carrier harmonics, even sideband harmonics of odd carrier
groups, are the same for the upper arm and lower arm, which are cancelled in the output
voltage of phase-j. It also can be seen that when m is odd, the magnitudes of odd sideband
harmonics of even carrier groups for output voltage of HBSMs and FBSMs are the same,
however, the phase angles are opposite, 1 + (−1)m = 0, so the odd sideband harmonics of
even carrier groups are cancelled. When m is even, the magnitudes and phase angles of
odd sideband harmonics of even carrier groups for output voltage of HBSMs and FBSMs
are the same, 1 + (−1)m = 2. Thus, the coefficient m can be replaced by 2m(m = 1,2, . . . ),
the (39) can be simplified as:

uj =
MUdc

2 cos
(
ωot + ϕj

)
+ 2Udc

Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
4m cos

[
4mωct + (2n− 1)

(
ωot + ϕj

)] (40)

It can be seen that the equivalent switching frequency of the phase voltage increase to
4fc, which is four times as many as the carrier frequency of FBSMs and HBSMs. Compared
with the circulating current harmonics cancellation scheme, the output voltage harmonics
minimize scheme has better harmonics characters of output voltage. The equivalent
switching frequency of output voltage harmonics minimize scheme is twice as many as the
circulating current harmonics cancellation scheme.

According to (28) and (40), the line-to-line voltage can be obtained as:

uab =
√

3MUdc
2 cos

(
ωot + π

6
)

+ 4Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
4m sin

[
(2n−1)π

3

]
cos
[
4mωct + (2n− 1)ωot− (2n−1)π

3 + π
2

] (41)

According to (29) and (37), the circulating current can be expressed as:
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icj =
Idc
3

+
4Udc

LNωcπ2

∞
∑

m=0

C0

(2m + 1)2 cos
[
(2m + 1)π

4

]
cos
[
(2m + 1)ωct +

(2m + 1)π
4

+
π

2

]
+

2Udc
LNπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1

(2m + 1)[(2m + 1)ωc + 2nωo]

×
{

cos
[
(2m + 1)π

4

]
cos
[
(2m + 1)ωct + 2n

(
ωot + ϕj

)
+

(2m + 1)π
4

+
π

2

]}
(42)

It can be seen that the odd sideband harmonics of even carrier groups are cancelled in
the circulating current. The circulating current contains the carrier hamonics, even sideband
harmonics of odd carrier groups.

The comparison of the PSCPWM, traditional PDPWM, and improved PDPWM meth-
ods for the hybrid MMC is shown in Table 1. It can be seen that compared with the
conventional modulation methods, such as the traditional PDPWM and PSCPWM methods
for the hybrid MMC, the application scope of the improved PDPWM method for hybrid
MMC can be extended to high voltage (HV) applications with a large amount of SMs.
Comparing Equations (34) and (40) with Equations (45) and (49) in [38], it can be seen
that when the equivalent switching frequency of the improved PDPWM method equals
to the PSCPWM method for the hybrid MMC, the output phase voltage of the improved
PDPWM method has the same harmonic performance with the PSCPWM method for the
hybrid MMC. However, it can be seen from Table 1 that the improved PDPWM method
for the hybrid MMC only needs six triangular carriers, while the PSCPWM and traditional
PDPWM methods for the hybrid MMC need 2N and 3N triangular carriers, respectively.
When the hybrid MMC is used in long distance HVDC transmission systems, hundreds of
SMs are needed in each arm, the implementation of the PSCPWM method for the hybrid
MMC is difficult. Because only six carriers are needed for any number of SMs in each arm,
the improved PDPWM method for hybrid MMC is easy to be implemented.

Table 1. Comparison of the PSCPWM, traditional PDPWM, and improved PDPWM methods.

Modulation Methods Carriers Number Harmonic Characteristics Application Scope

PSCPWM 2N The same MV applications
Traditional PDPWM 3N The same MV applications
Improved PDPWM 6 The same MV and HV applications

For the improved PDPWM method for the hybrid MMC, the circulating current har-
monics cancellation PDPWM scheme and output voltage harmonics minimization PDPWM
scheme are compared in the simulation and experiment. When the circulating current
harmonics cancellation PDPWM scheme is applied, the equivalent switching frequency
of the output voltage is 2fpd,hb (fpd,hb is the carrier frequency of HBSMs for PDPWM), the
high frequency harmonics caused by modulation in the circulating current are cancelled.
When the output voltage harmonics minimize PDPWM scheme is applied, the equivalent
switching frequency of the output voltage is 4fpd,hb, but the circulating current contains high
frequency harmonics caused by modulation. It can be concluded that the output voltage
harmonics minimize PDPWM scheme has better output voltage harmonic characteristics
than the circulating current harmonics cancellation PDPWM scheme. However, the cir-
culating current harmonics cancellation PDPWM scheme has better circulating current
harmonic characteristics than the output voltage harmonics minimize PDPWM scheme.
Therefore, the output voltage harmonics minimize PDPWM scheme is a better scheme in
the medium voltage applications with a small amount of SMs in each arm due to better
output voltage harmonic characteristics. The circulating current harmonics cancellation
PDPWM scheme is a better scheme in high voltage applications such as HVDC with a large
amount of SMs in each arm due to better circulating current harmonic characteristics.
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5. Simulation Results

In order to verify the validity of the proposed modulation method, the simulation
model of the three-phase hybrid MMC based on Figure 1 is built in the PSIM environment.
Simulation parameters are shown in Table 2. The number of SMs in each arm N = 8, where
the FBSMs in each arm are equal to the number of HBSMs, Nf = Nh = 4.

Table 2. Simulation parameters.

Parameters Value

DC voltage Udc = 8000 V
Capacitor voltage of SMs UC = 1000 V

Modulation depth M = 0.9
Number of SMs per arm N = 8, Nf = Nh = 4

Capacitor of SMs C = 10 mF
Arm inductance Lp = Lm = Ln = 1 mH

Arm equivalent resistance 0.1 Ω
Load resistance Rd = 30 Ω

Load inductance Ld = 1 mH
Carrier frequency of

the improved PDPWM
fpd,hb = 2000 Hz
fpd,fb = 2000 Hz

The carrier frequencies of HBSMs and FBSMs for an improved PDPWM method are
fpd,hb = fpd,fb = 2000 Hz, where fpd,hb, fpd,fb are the carrier frequency of HBSMs and FBSMs,
respctively, so the equivalent switching frequencies of output voltages of HBSMs and
FBSMs are the same.

Figure 6 presents the simulation waveforms of the improved PDPWM method for the
hybrid MMC with the circulating current harmonics cancellation scheme. The harmonic
spectra of the improved PDPWM method for the hybrid MMC with the circulating current
harmonics cancellation scheme is shown in Figure 7. It can be seen that the level number
of the output phase voltage, output voltages of the upper arm and lower arm is 9. The
equivalent switching frequency of the phase voltage, output voltages of the upper arm and
lower arm and is fequ,j = fequ,pj = fequ,nj = fpd,fb + fpd,hb = 4000 Hz, which is twice as much as
the carrier frequency of HBSMs and FBSMs. Where fequ,j, fequ,pj, fequ,nj are the equivalent
switching frequency of phase voltage, output voltages of upper arm and lower arm for the
hybrid MMC, respectively.Energies 2023, 16, 1192 18 of 28 
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Figure 6. Simulation waveforms of improved PDPWM method for hybrid MMC using circulating 
current harmonics cancellation PDPWM scheme. (a) Output voltage of lower arm. (b) Output volt-
age of upper arm. (c) Phase voltage. (d) Line-to-line voltage. (e) Phase current. (f) Circulating cur-
rent. 
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Figure 6. Simulation waveforms of improved PDPWM method for hybrid MMC using circulating
current harmonics cancellation PDPWM scheme. (a) Output voltage of lower arm. (b) Output voltage
of upper arm. (c) Phase voltage. (d) Line-to-line voltage. (e) Phase current. (f) Circulating current.



Energies 2023, 16, 1192 16 of 25

Energies 2023, 16, 1192 18 of 28 
 

 

0

−5

5

V
ol

ta
ge

 (k
V

)

0.2 0.22 0.24 0.26 0.28 0.3
time (s)

(c) 

0

−8

8

V
ol

ta
ge

 (k
V

)

0.2 0.22 0.24 0.26 0.28 0.3
time (s)

(d) 

0.2 0.22 0.24 0.26 0.28 0.3
time (s)

(e) 

−200

0

200

C
ur

re
nt

 (A
)

0.2 0.22 0.24 0.26 0.28 0.3
time (s)

(f) 

−400

0

400

C
ur

re
nt

 (A
)

0

8

V
ol

ta
ge

 (k
V

)

0.2 0.22 0.24 0.26 0.28 0.3
time (s)

(a) 

0

8

V
ol

ta
ge

 (k
V

)

0.2 0.22 0.24 0.26 0.28 0.3
time (s)

(b) 

 
Figure 6. Simulation waveforms of improved PDPWM method for hybrid MMC using circulating 
current harmonics cancellation PDPWM scheme. (a) Output voltage of lower arm. (b) Output volt-
age of upper arm. (c) Phase voltage. (d) Line-to-line voltage. (e) Phase current. (f) Circulating cur-
rent. 
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Figure 7. Harmonic spectra of improved PDPWM method for hybrid MMC using circulating current
harmonics cancellation PDPWM scheme. (a) output voltage of lower arm. (b) Output voltage of
upper arm. (c) Phase voltage. (d) Line-to-line voltage. (e) Phase current. (f) Circulating current.

According to Figures 6 and 7, it can be seen that the circulating current only contains
the dc component and low frequency harmonics (mainly second order harmonics), while the
high frequency harmonics caused by the improved PDPWM for the hybrid MMC are totally
cancelled when using the circulating current harmonics cancellation PDPWM scheme.

Figure 8 shows the simulation waveforms of the improved PDPWM method for the
hybrid MMC using the output voltage harmonics minimization PDPWM scheme. Figure 9
presents the harmonic spectra of the improved PDPWM method for the hybrid MMC using
the output voltage harmonics minimization PDPWM scheme. It can be seen that the level
number of the upper arm voltage and lower arm voltage is 9, and the level number of
the output phase voltage is 17. The equivalent switching frequency of output voltages
of the upper arm and lower arm are fequ,pj = fequ,nj = 2000 Hz, which is the same as the
carrier frequency of HBSMs and FBSMs. However, the magnitude and phase angle of odd
carrier frequency harmonics and associated sideband harmonics are the same in the output
voltages of the upper arm and lower arm, which are cancelled in the output phase voltage.
Thus the equivalent switching frequency of the output phase voltage is fequ,j = 4 × fpd,fb = 4
× fpd,hb = 8000 Hz, which is four times the carrier frequency of HBSMs and FBSMs.
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Figure 8. Simulation waveforms of improved PDPWM method for hybrid MMC using output volt-
age harmonics minimization PDPWM scheme. (a) Output voltage of lower arm. (b) Output voltage 
of upper arm. (c) Phase voltage. (d) Line-to-line voltage. (e) Phase current. (f) Circulating current. 
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Figure 8. Simulation waveforms of improved PDPWM method for hybrid MMC using output voltage
harmonics minimization PDPWM scheme. (a) Output voltage of lower arm. (b) Output voltage of
upper arm. (c) Phase voltage. (d) Line-to-line voltage. (e) Phase current. (f) Circulating current.
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Figure 8. Simulation waveforms of improved PDPWM method for hybrid MMC using output volt-
age harmonics minimization PDPWM scheme. (a) Output voltage of lower arm. (b) Output voltage 
of upper arm. (c) Phase voltage. (d) Line-to-line voltage. (e) Phase current. (f) Circulating current. 
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Figure 9. Harmonic spectra of improved PDPWM method for hybrid MMC using output voltage
harmonics minimization PDPWM scheme. (a) Output voltage of lower arm. (b) Output voltage of
upper arm. (c) Phase voltage. (d) Line-to-line voltage. (e) Phase current. (f) Circulating current.
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According to Figures 8 and 9, it can be seen that the output phase voltage and line-
to-line voltage have better harmonic performance when the output voltage harmonics
minimization PDPWM scheme is applied. However, the circulating current waveform has
switching ripples, which is caused by carrier frequency harmonics and associated sideband
harmonics in the circulating current waveform.

Table 3 shows the simulation results of the improved PDPWM for the hybrid MMC
with the circulating current harmonics cancellation PDPWM scheme and output voltage
harmonics minimization PDPWM scheme. It can be seen that when the circulating current
harmonics cancellation PDPWM scheme is used, the THD (Total Harmonic Distortion) of
the phase voltage, line-to-line voltage, and phase current are 16.65%, 12.30%, and 7.83%,
respectively. When the output voltage harmonics minimization PDPWM scheme is used,
the THD (Total Harmonic Distortion) of the phase voltage, line-to-line voltage, and phase
current are 7.76%, 5.89%, and 2.29%, respectively.

Table 3. Simulation results of improved PDPWM with circulating current harmonics cancellation
PDPWM scheme and output voltage harmonics minimization PDPWM scheme.

Modulation Schemes Output Voltage Harmonics Minimization Circulating Current Harmonics Cancellation

THD of phase voltage (%) 7.76 16.65
THD of line-to-line voltage (%) 5.89 12.30

THD of phase current (%) 2.29 7.83

It can be concluded that the simulation results are consistent with the mathemat-
ics analysis.

6. Experimental Results

In order to verify the validity of the proposed modulation method for the hybrid
MMC, the experiment prototype of the hybrid MMC was built based on Figure 1. The
experiment parameters are shown in Table 4. The number of SMs per arm is N = 4. The
number of FBSMs and HBSMs is the same, Nf = Nh = 2.

Table 4. Experiment parameters.

Parameters Value

DC voltage Udc = 400 V
Capacitor voltage of SMs UC = 100 V

modulation depth M = 0.9
Number of SMs per arm N = 4, Nf = Nh = 2

SMs capacitance C = 2.2 mF
Arm inductance Lp = Lm = Ln = 1 mH
Load resistance Rd = 20 Ω

Load inductance Ld = 1 mH
Carrier frequency of

the improved PDPWM
fpd,hb = 4000 Hz
fpd,fb = 4000 Hz

The carrier frequency of HBSMs and FBSMs for the improved PDPWM is fpd,hb = 4000 Hz
and fpd,fb = 4000 Hz, respctively, so the equivalent switching frequency of HBSMs and FBSMs
is the same.

Figure 10 presents the experiment waveforms of the improved PDPWM method for
the hybrid MMC using the circulating current harmonics cancellation PDPWM scheme.
Figure 11 shows the harmonic spectra of the improved PDPWM method for the hybrid
MMC using the circulating current harmonics cancellation PDPWM scheme. It can be seen
that the level number of output phase voltage and line-to-line voltage are five and nine,
respectively. The equivalent switching frequency of output phase voltage is fequ,j = fpd,fb
+ fpd,hb = 8000 Hz, which is twice as much as the carrier frequency of HBSMs and FBSMs.
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Note that the switching frequency harmonic components are basically cancelled in the
circulating current waveform.
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Figure 10. Experiment waveforms of improved PDPWM method for hybrid MMC using circulating 
current harmonics cancellation PDPWM scheme. (a) Output phase voltage and circulating current. 
(b) Line-to-line voltage and output phase current. 
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Figure 11. Harmonic spectra of improved PDPWM method for hybrid MMC with circulating cur-
rent harmonics cancellation scheme. (a) Output phase voltage. (b) Line-to-line voltage. (c) Output 
phase current. (d) Circulating current. 

Figure 12 shows the experiment waveforms of the improved PDPWM method for the 
hybrid MMC using the output voltage harmonics minimization PDPWM scheme. Figure 
13 presents the harmonic spectra of the improved PDPWM method for the hybrid MMC 
using the output voltage harmonics minimization PDPWM scheme. It can be seen that the 
level number of output phase voltage and line-to-line voltage are nine and seventeen, re-
spectively. The equivalent switching frequency of the output phase voltage is fequ,j = 4×fpd,fb 
= 4×fpd,hb = 16 kHz. However, the circulating current contains switching harmonics caused 
by the output voltage harmonics minimization PDPWM scheme. 

Figure 10. Experiment waveforms of improved PDPWM method for hybrid MMC using circulating
current harmonics cancellation PDPWM scheme. (a) Output phase voltage and circulating current.
(b) Line-to-line voltage and output phase current.

Energies 2023, 16, 1192 21 of 28 
 

 

that the level number of output phase voltage and line-to-line voltage are five and nine, 
respectively. The equivalent switching frequency of output phase voltage is fequ,j = fpd,fb + 
fpd,hb = 8000 Hz, which is twice as much as the carrier frequency of HBSMs and FBSMs. 
Note that the switching frequency harmonic components are basically cancelled in the 
circulating current waveform. 

ua

ica

uab

ia

(a) (b) 

5A
/d

iv
20

0V
/d

iv

20
0V

/d
iv

10
A

/d
iv

 
Figure 10. Experiment waveforms of improved PDPWM method for hybrid MMC using circulating 
current harmonics cancellation PDPWM scheme. (a) Output phase voltage and circulating current. 
(b) Line-to-line voltage and output phase current. 

0
4 8 12 16 200

10

20

30

40
50

0
4 8 12 16 200

0.2

0.4

0.6

0.8

1

Frequency (kHz)

M
ag

ni
tu

de
 (V

)

Frequency (kHz)

M
ag

ni
tu

de
 (A

)

(c)

0 4 8 12 16 20
0

10

20

30

40
50

Frequency (kHz)
(b)

0 4 8 12 16 20
0

0.1

0.2

0.3

0.4
0.5

Frequency (kHz)
(d)

M
ag

ni
tu

de
 (V

)
M

ag
ni

tu
de

 (A
)

(a)

 
Figure 11. Harmonic spectra of improved PDPWM method for hybrid MMC with circulating cur-
rent harmonics cancellation scheme. (a) Output phase voltage. (b) Line-to-line voltage. (c) Output 
phase current. (d) Circulating current. 
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Figure 11. Harmonic spectra of improved PDPWM method for hybrid MMC with circulating current
harmonics cancellation scheme. (a) Output phase voltage. (b) Line-to-line voltage. (c) Output phase
current. (d) Circulating current.

Figure 12 shows the experiment waveforms of the improved PDPWM method for the
hybrid MMC using the output voltage harmonics minimization PDPWM scheme. Figure 13
presents the harmonic spectra of the improved PDPWM method for the hybrid MMC
using the output voltage harmonics minimization PDPWM scheme. It can be seen that
the level number of output phase voltage and line-to-line voltage are nine and seventeen,
respectively. The equivalent switching frequency of the output phase voltage is fequ,j = 4 ×
fpd,fb = 4 × fpd,hb = 16 kHz. However, the circulating current contains switching harmonics
caused by the output voltage harmonics minimization PDPWM scheme.
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Figure 12. Experiment waveforms of improved PDPWM method for hybrid MMC with output volt-
age harmonics minimization scheme. (a) Output phase voltage and circulating current. (b) Line-to-
line voltage and output phase current. 
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Figure 13. Harmonic spectra of improved PDPWM method for hybrid MMC with output voltage 
harmonics minimization scheme. (a) Phase voltage. (b) Line-to-line voltage. (c) Phase current. (d) 
Circulating current. 
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Figure 13. Harmonic spectra of improved PDPWM method for hybrid MMC with output voltage 
harmonics minimization scheme. (a) Phase voltage. (b) Line-to-line voltage. (c) Phase current. (d) 
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It can be seen that when the circulating current harmonics cancellation PDPWM
scheme is applied, the THD of phase voltage, line-to-line voltage, and phase current is
35.84%, 29.99%, and 9.78%, respectively. When the output voltage harmonics minimization
PDPWM scheme is used, the THD (Total Harmonic Distortion) of phase voltage, line-to-line
voltage, and phase current is 18.39%, 13.36%, and 2.76%, respectively.

It can be concluded that the experiment results are consistent with the mathematics
analysis.

7. Conclusions

An improved PDPWM method has been proposed for the hybrid MMC consisting of
HBSMs and FBSMs in this paper. The improved PDPWM method for the hybrid MMC is
greatly simplified, where the number of carriers can be reduced from 3N to 6. Four carriers
are needed for the modulation of FBSMs, and two carriers are needed for the modulation
of HBSMs. Then, the theoretical analysis of the improved PDPWM method for the hybrid
MMC is presented using the double Fourier integral analysis method and the Fourier series
expression of the output phase voltage and circulating current for the hybrid MMC are
derived. Moreover, the impact of three carrier displacement angles between HBSMs and
FBSMs in the upper and lower arms on harmonic performance are investigated. Further,
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three optimum displacement angles are selected for the circulating current harmonics
cancellation PDPWM scheme and output voltage harmonics minimization PDPWM scheme
for the hybrid MMC, respectively. The proposed method and mathematics analysis were
verified by the simulation and experimental results.
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Appendix A

The double Fourier integral series expression of output voltage of HBSMs for the
lower arm can be obtained as:

unj,hb = Udc
4 + MUdc

4 cos
(
ωot + ϕj

)
+ 4Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos[(2m + 1)ωct]

+ 2Udc
Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1 cos

[
(2m + 1)ωct + 2n

(
ωot + ϕj

)]

+ Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2mωct + (2n− 1)

(
ωot + ϕj

)]
(A1)

The double Fourier integral series expression of output voltage of HBSMs for the
upper arm can be obtained as:

upj,hb = Udc
4 + MUdc

4 cos
(
ωot + π + ϕj

)
+ 4Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos[(2m + 1)(ωct + θh)]

+ 2Udc
Nπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1
2m+1 cos

[
(2m + 1)(ωct + θh) + 2n

(
ωot + π + ϕj

)]

+ Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2m(ωct + θh) + (2n− 1)

(
ωot + π + ϕj

)]
(A2)

where θh is the carrier displacement angle between HBSMs of the upper arm and HBSMs
of the lower arm. m,n are the carrier index variable and the baseband index variable,
respectively. unj,hb and upj,hb are the output voltage of HBSMs of the upper arm and HBSMs
of the lower arm, respectively.

Supposing that N is even, the coefficients C0, C1, C2 in (A1) and (A2) can be ex-
pressed as:

C0 =
∞
∑

k=0
cos(kπ)J2k+1

[
(2m+1)NπM

2

]
×
{

1
(2k+1)

[
sin
(
(2k + 1)π

2
)
+ 2

N
2 −1
∑

h=1
sin
(
(2k + 1) cos

(
2h

NM

)−1
)

cos(hπ)

]} (A3)
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C1 =
∞
∑

k=0
cos(kπ)J2k+1

(
(2m + 1)NπM

2

)

×



1
2n−2k−1

 sin
(
(2n− 2k− 1)π

2
)

+2
N
2 −1
∑

h=1
sin
(
(2n− 2k− 1) cos−1

(
2h

NM

))
cos(hπ)


+ 1

2n+2k+1

 sin
[
(2n + 2k + 1)π

2
]

+2
N
2 −1
∑

h=1
sin
[
(2n + 2k + 1) cos−1

(
2h

NM

)]
cos(hπ)




(A4)

C2 = J2n−1(mNπM) cos((n− 1)π) (A5)

where Jn(λ) refers to the Bessel coefficient.
The output voltage of the left bridge of FBSMs for the lower arm can be derived as:

unj, f bl(t) =
3Udc

8 + MUdc
8 cos

(
ωot + ϕj

)
+ 2Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos

[
(2m + 1)

(
ωct + θh, f

)]
+ Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1 cos

[
(2m + 1)

(
ωct + θh, f

)
+ 2n

(
ωot + ϕj

)]

+ Udc
2Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2m
(

ωct + θh, f

)
+ (2n− 1)

(
ωot + ϕj

)]
(A6)

where unj,fbl is the output voltage of the left bridge of FBSMs for the lower arm. θh,f is the
carrier displacement angle between left bridge of FBSMs of the lower arm and HBSMs of
the lower arm.

The output voltage of the right bridge of FBSMs for the lower arm can be derived as:

unj, f br =
Udc

8 + MUdc
8 cos

(
ωot + π + ϕj

)
+ 2Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos

[
(2m + 1)

(
ωct + π + θh, f

)]
+ Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1 cos

[
(2m + 1)

(
ωct + π + θh, f

)
+ 2n

(
ωot + π + ϕj

)]

+ Udc
2Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2m
(

ωct + π + θh, f

)
+ (2n− 1)

(
ωot + π + ϕj

)]
(A7)

where unj,fbr is the output voltage of the right bridge of FBSMs for the lower arm.
The output voltage of FBSMs for the lower arm can be obtained as:

unj, f b = unj, f bl − unj, f br =
Udc

4 + MUdc
4 cos

(
ωot + ϕj

)
+ 4Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos

[
(2m + 1)

(
ωct + θh, f

)]
+ 2Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1 cos

[
(2m + 1)

(
ωct + θh, f

)
+ 2n

(
ωot + ϕj

)]

+ Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2m
(

ωct + θh, f

)
+ (2n− 1)

(
ωot + ϕj

)]
(A8)

where unj,fb is the output voltage of FBSMs in the lower arm. According to (A1) and (A8),
the first carrier harmonics of output voltages for FBSMs and HBSMs are the same, which
means that the equivalent switching frequency of the output voltage of FBSMs and HBSMs
is equal, the mismatch pulses of the output voltage of FBSMs and HBSMs can be eliminated.

According to (A1) and (A8), the sum of output voltages for FBSMs and HBSMs in the
lower arm can be expressed as:
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unj = unj,hb + unj, f b = Udc
2 + MUdc

2 cos
(
ωot + ϕj

)
+ 4Udc

Nπ2

∞
∑

m=0

C0
2m+1

{
cos[(2m + 1)ωct] + cos

[
(2m + 1)

(
ωct + θh, f

)]}
+ 2Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1

{
cos
[
(2m + 1)ωct + 2n

(
ωot + ϕj

)]
+ cos

[
(2m + 1)

(
ωct + θh, f

)
+ 2n

(
ωot + ϕj

)] }

+Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m

{
cos
[
2mωct + (2n− 1)

(
ωot + ϕj

)]
+ cos

[
2m
(

ωct + θh, f

)
+ (2n− 1)

(
ωot + ϕj

)] }
(A9)

where unj is the sum of output voltages for FBSMs and HBSMs in the lower arm. It can be
seen that the harmonic characteristic of unj is determined by the carrier displacement angle
θh,f between left bridge carrier of FBSMs and carrier of HBSMs.

The output voltage of the left bridge of FBSMs in the upper arm can be obtained as:

upj, f bl =
3Udc

8 + MUdc
8 cos

(
ωot + π + ϕj

)
+ 2Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos

[
(2m + 1)

(
ωct + θh, f + θ f

)]
+ Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1 cos

[
(2m + 1)

(
ωct + θh, f + θ f

)
+ 2n

(
ωot + π + ϕj

)]

+ Udc
2Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2m
(

ωct + θh, f + θ f

)
+ (2n− 1)

(
ωot + π + ϕj

)]
(A10)

The output voltage of the right bridge of FBSMs in the upper arm can be expressed as:

upj, f br =
Udc

8 + MUdc
8 cos

(
ωot + ϕj

)
+ 2Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos

[
(2m + 1)

(
ωct + π + θh, f + θ f

)]
+ Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1 cos

[
(2m + 1)

(
ωct + π + θh, f + θ f

)
+ 2n

(
ωot + ϕj

)]

+ Udc
2Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2m
(

ωct + π + θh, f + θ f

)
+ (2n− 1)

(
ωot + ϕj

)]
(A11)

The output voltage of FBSMs in the upper arm can be obtained as:

upj, f b = unj, f bl − unj, f br =
Udc

4 + MUdc
4 cos

(
ωot + π + ϕj

)
+ 4Udc

Nπ2

∞
∑

m=0

C0
2m+1 cos

[
(2m + 1)

(
ωct + θh, f + θ f

)]
+ 2Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
( n 6= 0 )

C1
2m+1 cos

[
(2m + 1)

(
ωct + θh, f + θ f

)
+ 2n

(
ωot + ϕj

)]

− Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m cos

[
2m
(

ωct + θh, f + θ f

)
+ (2n− 1)

(
ωot + ϕj

)]
(A12)

The sum of output voltages for FBSMs and HBSMs in the upper arm can be ex-
pressed as:
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upj = upj,hb + upj, f b = Udc
2 + MUdc

2 cos
(
ωot + π + ϕj

)
+ 4Udc

Nπ2

∞
∑

m=0

C0
2m+1

{
cos[(2m + 1)(ωct + θh)] + cos

[
(2m + 1)

(
ωct + θh, f + θ f

)]}
+ 2Udc

Nπ2

∞
∑

m=0

∞
∑

n = −∞
(n 6= 0)

C1
2m+1 ×

{
cos
[
(2m + 1)(ωct + θh) + 2n

(
ωot + ϕj

)]
+ cos

[
(2m + 1)

(
ωct + θh, f + θ f

)
+ 2n

(
ωot + ϕj

)] }

− Udc
Nπ

∞
∑

m=1

∞
∑

n=−∞

C2
2m

{
cos
[
2m(ωct + θh) + (2n− 1)

(
ωot + ϕj

)]
+ cos

[
2m
(

ωct + θh, f + θ f

)
+ (2n− 1)

(
ωot + ϕj

)] }
(A13)

where upj is the sum of output voltages for FBSMs and HBSMs in the upper arm. It can be
seen that the harmonic characteristic of upj is determined by the three carrier displacement
angles θh, θf, and θh,f.
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