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Abstract: Nowadays, renewable energy (RE) sources are heavily integrated into the power system
due to the deregulation of the energy market along with environmental and economic benefits.
The intermittent nature of RE and the stochastic behavior of loads create frequency aberrations
in interconnected hybrid power systems (HPS). This paper attempts to develop an optimization
technique to tune the controller optimally to regulate frequency. A hybrid Sparrow Search Algorithm-
Grey Wolf Optimizer (SSAGWO) is proposed to optimize the gain values of the proportional integral
derivative controller. The proposed algorithm helps to improve the original algorithms’ exploration
and exploitation. The optimization technique is coded in MATLAB and applied for frequency
regulation of a two-area HPS developed in Simulink. The efficacy of the proffered hybrid SSAGWO is
first assessed on standard benchmark functions and then applied to the frequency control of the HPS
model. The results obtained from the multi-area multi-source HPS demonstrate that the proposed
hybrid SSAGWO optimized PID controller performs significantly by 53%, 60%, 20%, and 70% in
terms of settling time, peak undershoot, control effort, and steady-state error values, respectively,
than other state-of-the-art algorithms presented in the literature. The robustness of the proffered
method is also evaluated under the random varying load, variation of HPS system parameters, and
weather intermittency of RE resources in real-time conditions. Furthermore, the controller’s efficacy
was also demonstrated by performing a sensitivity analysis of the proposed system with variations
of 75% and 125% in the inertia constant and system loading, respectively, from the nominal values.
The results show that the proposed technique damped out the transient oscillations with minimum
settling time. Moreover, the stability of the system is analyzed in the frequency domain using Bode
analysis.

Keywords: automatic load frequency control; renewable energy resources; hybrid sparrow search
algorithm-grey wolf optimization; hybrid power system; stability

1. Introduction

Currently, rising energy demand and the depletion of fossil fuel resources have ne-
cessitated the extensive use of Renewable Energy (RE), which is considered clean and
cost-effective, and likely to be connected to interconnected power systems for distributed
utilization [1]. The integration of RE such as solar and wind leads to an uncertain variation
in the generation of power due to the intermittent nature of RE, which introduces frequency
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oscillation that leads to multiple protection relays trip in the power system [2]. Auto-
matic Load Frequency Control (ALFC) has proven very effective in regulating the system
frequency by adjusting the generation system. Hence, the overall generation matches
the load demand to successfully operate the interconnected power networks. To achieve
this, a robust control technique is vital in each area of the interconnected power network
to maintain the nominal system frequency within the prescribed limits of ±0.2 Hz and
planned tie-line power exchange [3]. To study this, the system frequency and tie-line power
exchange parameters are considered as Area Control Error (ACE), which serves as input to
the controller [4].

For ALFC applications, researchers have developed numerous controllers in the past.
A conventional Proportional-Integral (PI) controller is used to enhance the frequency
stability of the power system using an electric vehicle as an energy storage unit [5]. In refer-
ence [6], a four-area multi-source thermal system is controlled using linear quadrat/linear
Gaussian control. Usually, the conventional Proportional-Integral-Derivative (PID) con-
trollers are the best option due to their extra degree of freedom, affordability, and simplicity
when compared to more robust controllers such as the Sliding Mode Control (SMC) [7],
the Model Predictive Controller (MPC) [8], and H2/H∞ controllers [9]. In reference [10], a
hybrid fuzzy logic controller with sliding mode was implemented for a microgrid system
to evaluate the penetration of Renewable Energy Resources (RERs) connected with a power
system. Another hybrid controller based on PID with fuzzy logic technique has been evalu-
ated for a microgrid system [11]. In this paper, the effect of designing high performance
power converters has been demonstrated to achieve a stable power system. All these
controllers are challenging to implement in real-time and need advanced mathematics to
derive the control law [12]. On the other hand, tuning the parameters of the PID controller
is critical for a large dynamic HPS model. Instability in the system may result from the
improper tuning of the PID parameters, which displays poor dynamic response in the
frequency regulation of the system. To resolve this, several papers have been published
in the literature to optimize the gain values of the PID controller using Artificial Neural
Network (ANN) [13] and Fuzzy Logic control (FLC) [14]. Despite their benefits, their
application in the actual ALFC system is constrained by the computational time required to
choose a rule foundation fuzzy logic and a big training database for ANN [15]. However,
the selection has no precise mathematical meaning, which might occasionally result in poor
ALFC performance.

On the other hand, numerous heuristic approaches are used to optimize the parameters
of the PID controller for ALFC, as illustrated in Table 1. PID or other modified forms of PID
controllers for ALFC applications, the system model considered, the recent optimization
algorithms used, and the limitations of the control method are briefly depicted in Table 1.

Table 1. Review of optimization algorithms used to study the ALFC.

Ref. No. Controller Type Optimization Model Description Limitations

[16] PID GWO Two-area thermal system

GRC, GDB, and BD nonlinearities in
thermal systems and RER have not been

considered in this work. The most
significant limitation of this

optimization technique is trapping in
local optimal points

[17] PFMPID GOA
Three-area multi-source power

system comprises thermal,
hydro, wind, diesel, and RFB

with GDB and GRC

BD has not been considered in this
study. Moreover, the GOA optimization
search process begins with a population

or flock of grasshoppers whose
locations are comparable to design

vectors which leads to poor exploration
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Table 1. Cont.

Ref. No. Controller Type Optimization Model Description Limitations

[18] PID CTO
Two-area multi-source with

thermal, hydro, and gas units in
each area

Non-conventional power resources have
not been considered in this study. The
CTO algorithm has the drawback of a

greater number of parameters to be
initialized

[19] PID GWO
Single area multi-source power

system comprises thermal,
hydro, and gas units

RER has not been considered, and the
limitation of GWO is that poor

exploration leads to trapping in local
optimal points

[15] PID Hybrid PSO-GSA
Considering a two-area thermal

system with GRC and GDB

For a highly nonlinear and big
dimensional system such as ALFC, PSO

exhibits poor exploration and takes
longer to find global minima.

The PSO-GSA approach overcomes this,
although the study considered only a

conventional source

[20] PID MPA

Two-area multi-source systems
were taken into consideration,
with WTPG, STPP, BES, and

thermal plants in area 2 as well
as STPP, PV, SMES, and thermal
power plants combining GDB

and GRC in area 1, and a reheat
generator with wind and PV

RERs in area 2. GRC has been
considered in the two-area

MPA’s main drawback is a slow
convergence rate with poor

exploration ability

[21] PID HIO
Two-area reheat turbine power
plant with gas and hydro units

in each area

RER has not been considered in
this study

[22] PID DE
Two-area multi-source with

hydro, thermal, and wind power
plants in each area

Nonlinearities are not considered. The
limitation of DE is inapplicable to
solving many complex real-world
problems in continuous domains

[23] PIDA MPA
Two-area non-reheat thermal

system
This study has not considered RER,

GRC, BD, or GDB

[24] PID WOA Two-area reheat thermal system

Nonlinearities are not considered. The
limitation of WOA is that whales are

drawn to the coefficient vector during
the later phases of WOA iteration

convergence, and as a result, the whole
whale population quickly enters the

local optimum for the high-dimensional
optimization problem

[25] PID SSO

Two-area thermal system with
GRC and GDB considered with

the wind power plant in both the
areas

The drawback of SSO is that the update
rule fails when one of the dimensions

has a lower bound other than zero

The optimization algorithm listed in Table 1 is an individual metaheuristic algorithm.
Individual algorithms are advantageous due to their minimum requirements for function
evaluation and ease of usage throughout the whole optimization process. However, the
probability of local optima stagnation is very high, and individual meta-heuristic algorithms
have difficulty in balancing between exploration and exploitation in order to find the global
optima [26]. To cater to this issue, various modifications are performed in meta-heuristic
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algorithms to enhance their performance. One of the most recent and popular methods
is to apply chaos theory in meta-heuristic algorithms to improve the global convergence
speed and exploration/exploitation capabilities of optimization algorithms, resulting in
more diversity in solutions. Another way is by hybridizing two algorithms.

Hybrid algorithms have recently been a popular topic applied in several domains [27–30].
Combining the qualities and features of two different algorithms would provide an op-
timization tool that is more dependable and potent for solving complex problems. It is
recognized that combining evolutionary algorithms can increase their performances with
problem-dependent local searches [31]. In recent years, numerous swarm intelligence
optimization algorithms have been proposed and investigated in the literature, such as
the Ant Colony Optimization (ACO) [32], Manta-Ray Foraging Optimizer (MRFO) [33],
Salp Swarm Optimization (SSO) [34], SSA [35], and GWO [36]. Among them, SSA is a
new optimization intelligence algorithm proposed in 2020 [35] that mimics the foraging
behavior of sparrows to tackle particular optimization problems. SSA is distinct from other
intelligent optimization algorithms by its high search accuracy, quick convergence time,
superior stability, and robustness [36]. However, in the later stages of convergence, SSA
is prone to local optima due to poor exploitation [37]. These issues directly impact SSA’s
optimization effect, resulting in the inability to discover the optimal global solution.

Another popular swarm intelligence algorithm is GWO, developed by Mirjalili et al. [36],
which has received a great reception in the optimization field. This algorithm simulates the
natural hunting and dominance behavior of grey wolves. GWO has received great attention
because of its simplicity and ease of implementation, and it has been used to tackle many
real-time optimization problems. However, when handling complex, high-dimensional,
and unimodal problems, GWO can be stuck in local optima due to its poor exploration [37].
Hence, to improve the convergence speed and avoid the optima problems, GWO can be
hybridized with a good exploration ability algorithm.

Therefore, based on the advantages and disadvantages of SSA and GWO, the hybrid
method is the possible solution to eradicate the limitations and combine the advantages
of the two algorithms. Hence, this paper attempts to hybridize SSA with GWO to balance
the exploration and exploitation phases, improving the controller performance in terms
of steady-state and dynamic responses for frequency and power flow variation in inter-
connected power systems. The main contributions of this research study are summarized
as follows:

1. A hybrid SSAGWO algorithm is proposed to improve the SSA algorithm exploitation
ability, and the algorithm is tested using various classical benchmark functions to
prove its effectiveness against other algorithms.

2. Auto-tuning of the PID controller parameters for ALFC of an RER-integrated HPS net-
work is implemented using various optimization algorithms to verify the robustness
of the proposed algorithm.

3. The proposed system is tested using the data of an actual solar power plant, emulated
for extreme operating conditions.

4. A stability analysis is conducted to prove the efficacy and robustness of the proposed
technique.

The paper is organized as follows: Section 2 presents the mathematical modeling of
the two-area power system considered in this study. Next, Section 3 discusses the control
strategy for load frequency control of the two-area power system. Section 4 discusses
in detail the formulation procedure of the proposed hybrid SSAGWO algorithm. The
results and critical analysis of the obtained results are discussed in Section 5, and Section 6
concludes the paper.

2. System Model

The study proposed in this paper consists of a two-area reheat steam power turbine,
Photovoltaic (PV), and Wind Turbine Power Generator (WTPG) conversion, as shown
in Figure 1. The two-area power system consists of a governor, reheat power thermal
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turbine generators with 0.05% of Governor Dead Band (GDB) and 10% of Generator Rate
Constraints (GRC), and Boiler Dynamics (BD). In this research, two symmetrical power
generator areas have been proposed with the parameters shown in Appendix A [15,38].
The BD has been considered for the realistic two-area reheat power systems. The thermal
power plant uses the boiler dynamics arrangement to generate steam under high pressure.
The long-term process of the steam flow on the boiler drum is considered in this model
as combustion control. The block diagram configuration of the BD is shown in Figure 2.
Oil-fired boiler type parameters [39] are listed in Appendix A.
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2.1. SPV Model

SPV cells comprising semiconductor materials can convert photon energy directly into
electrical energy. Power loss is also modeled because of the boundary and external contact,
represented by series resistors, and a leakage current, represented by parallel resistance.
SPV power generation is intermittent and dependent on sun irradiation and temperature;
thus, a random power source can represent SPV behavior [40]. The block diagram of the
SPV is shown in Figure 3. The linearized SPV model, which is considered for the ALFC
model, is given by [40]:
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Where ∆TPV is the time constant of the SPV, ∆PSolar is the change in solar irradiation
power, and ∆PPV denotes the change in power generated from solar to the power system.

2.2. WTPG Model

The mathematical model implementation for the wind power plant comprises a
hydraulic pitch actuator, data fit pitch response, and blade characteristics, as shown in
Figure 4. The pitch angle control mechanism keeps the pitch angle at the desired value
based on wind speed. Thus, wind turbine production may be controlled by adjusting the
pitch angle regardless of wind speed. The wind’s mathematical modeling transfer function
model can be given in [41]:
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Where ∆TWT is the time constant of the wind turbine, ∆PWind is the change in wind
speed, and ∆PW is the change in power generated by the power system.

2.3. RFB Structure

RFB is a type of electrochemical energy storage compensation device that can convert
energy from its electrical form to its chemical form and vice versa through electrochemical
reaction processes [42]. RFB is an efficient method for reducing frequency deviations and
tie-line power and is considered a fast active power compensation energy device. The RFB
block diagram model integrated with areas 1 and 2 is shown in Figure 5 [41]:
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Where TRFB and KRFB are the time and gain constant of the RFB. The main objective of
the RFB is to charge and store energy from the power system as a very small load during a
normally operating system, and it delivers the stored energy to the interconnected power
system during any sudden change in load to reduce frequency fluctuations.

3. Control Strategy

The closed loop of the two-area power system can be simplified as shown in Figure 6:



Energies 2023, 16, 1177 7 of 28

Energies 2023, 16, x FOR PEER REVIEW 7 of 28 
 

 

3. Control Strategy 

The closed loop of the two-area power system can be simplified as shown in Figure 

6: 

Power System
Governor-Turbine 

Model
Kp+s-1Ki+sKd

Proposed SSAGWO Algorithm

System 

Frequency

ITAE

KP Ki Kd

Renewable 

Energy Sources
Load Demand 

1

Ri

Reference 

Signal

_

__

 

Figure 6. Close loop control system tuning. 

where ∆Ptie is the power deviation of the tie line of the power system. The transfer 

function of the PID controller is given by: 

( )   i

p d

k
C s k sk

s  
(1) 

where kp is the proportional gain, ki is the integral gain, and kd is the derivative gain. The 

PID controller output of the power system is as follows: 

1,2

1,2 1 1,2 1,2
0

  
t

p i

dACE
u k ACE k ACE dt

dt  
(2) 

The gain of the PID controller in this study is designed to minimize the steady-state 

error guides, such as the performance index ITAE as given below: 

 ,
0 0

-   D D 
t t

i i tie i jJ ITAE t ACE dt t f P dt  (3) 

where i and j are the area numbers from 1,2,3, 4, …. n with i ≠ j. 

This study aims to minimize J by tuning the values of PID controller parameters by 

using techniques such as the Z–N technique and intelligence optimization algorithms 

techniques such as PSO, GWO, SSA, and the proposed new hybrid SSAGWO. 

4. Proposed Hybrid SSA-GWO 

In this section, an effort was made to develop a new hybrid metaheuristic algorithm 

that combines the strength of swarm-inspired algorithms such as SSA with GWO to tune 

the values of the PID controller for a multi-area power system. 

4.1. Grey Wolf Optimization 

GWO is a well-known swarm intelligence optimization technique. The algorithm 

searches and optimizes by simulating the process of tracking, enclosing, and hunting, 

which was inspired by the predation behavior of the grey wolf population. There are var-

ious types of members in a wolf pack depending on the level of dominance, such as α, β, 

δ, and ω. The best three solutions are α, β, and δ, who leads the pack ω. The grey wolves 

hunt in a pack and collaborate to catch prey. The technique is to chase the prey and encir-

cle it [43]. The mathematical model of the encircling behavior of grey wolves is in the 

following equations: 

1 2 3( 1)
3

 
 

X X X
X t

 
(4) 

Figure 6. Close loop control system tuning.

Where ∆Ptie is the power deviation of the tie line of the power system. The transfer
function of the PID controller is given by:

C(s) = kp +
ki
s
+ skd (1)

where kp is the proportional gain, ki is the integral gain, and kd is the derivative gain. The
PID controller output of the power system is as follows:

u1,2 = kp1 ACE1,2 + ki

∫ t

0
ACE1,2dt +

dACE1,2

dt
(2)

The gain of the PID controller in this study is designed to minimize the steady-state
error guides, such as the performance index ITAE as given below:

J = ITAE =
∫ t

0
t|ACEi|dt =

∫ t

0
t
{∣∣∆ fi + ∆Ptie,i−j

∣∣}dt (3)

where i and j are the area numbers from 1,2,3, 4, . . . . n with i 6= j.
This study aims to minimize J by tuning the values of PID controller parameters

by using techniques such as the Z–N technique and intelligence optimization algorithms
techniques such as PSO, GWO, SSA, and the proposed new hybrid SSAGWO.

4. Proposed Hybrid SSA-GWO

In this section, an effort was made to develop a new hybrid metaheuristic algorithm
that combines the strength of swarm-inspired algorithms such as SSA with GWO to tune
the values of the PID controller for a multi-area power system.

4.1. Grey Wolf Optimization

GWO is a well-known swarm intelligence optimization technique. The algorithm
searches and optimizes by simulating the process of tracking, enclosing, and hunting,
which was inspired by the predation behavior of the grey wolf population. There are
various types of members in a wolf pack depending on the level of dominance, such as
α, β, δ, and ω. The best three solutions are α, β, and δ, who leads the pack ω. The grey
wolves hunt in a pack and collaborate to catch prey. The technique is to chase the prey and
encircle it [43]. The mathematical model of the encircling behavior of grey wolves is in the
following equations:

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(4)

→
X1 =

→
Xα(t)−

→
A ·
→
Dα,

→
X2 =

→
Xβ(t)−

→
A ·
→
Dβ, and

→
X3 =

→
Xδ(t)−

→
A ·
→
Dδ (5)

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣,→Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣, and

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣ (6)
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→
X(t) represents the current position of the grey wolf;

→
A is a coefficient vector;

→
D

represent the distance that varies according to the place of the prey
→
Xp;

→
a is a factor that

reduces from 2 to 0 linearly during optimization;
→
r 1 and

→
r 2 are random numbers between

0 and 1; t represents as the current iteration, and T is the maximum iteration [44].
To predict the prey, we suppose that the best solution discovered so far (the alpha

wolf) is the prey’s location because he is leading the pack and knows the prey’s location,
while the second-best solution is for β wolf, and the third-best solution is δ wolf in the
current iteration [45]. A is a random number in the gap [−2a, 2a]. The wolves move to
attack the prey when the value of |A| < 1. Exploration is the ability to search for prey,
while exploitation is the ability to attack the prey. The arbitrary values of A are used to
force the wolves to move away from the prey. Furthermore, when the value of |A| > 1, the
wolves are forced to diverge from the prey (local minimum).

4.2. Sparrow Search Algorithm

The SSA is a swarm intelligence optimization technique. This technique mimics
sparrow foraging behavior. It has three sorts of individual behavior: discoverer, follower,
and investigator, and the sparrows update their locations according to their own rules. The
discoverer searches for food and guides the rest of the community [35]. After discovering
the discoverer’s location, followers search for food around this location. The follower’s
location is updated according to Equation (7) [46,47]:

Xt+1
i =

 Q · exp(Xworst−Xt
i

i2 ), i > n
2

Xt+1
best +

∣∣∣Xt
i − Xt+1

best

∣∣∣ · A · L, i ≤ n
2

 (7)

where Xbest represents the best individual position, which means the best current location;
Xworst is the current worst global location; A is a d × dmatrix, which contains each factor
randomly assigned 1 or −1; n represents the number of sparrows; when i ≤ n/2, it proposes
the ith entrant is searching for food close to the best location, if i > n/2, it means the ith
entrant needs to fly to another location for food.

Individuals from the population are chosen at random to be investigators. When
predators attack, they send out signals that cause sparrows to flee to a safe location [46].

The mutation strategy in SSA directly affects convergence accuracy and speed. The
SSA performs better in solving complex optimization problems but has the disadvantages
of reduced population diversity and insufficient convergence accuracy. It could have
a chance to fall into the local optimum, failing to achieve the optimum solution to the
problems.

4.3. Proposed Optimization Algorithm

A new hybrid sparrow search algorithm based on the GWO, namely SSAGWO, is
proposed in this paper. Its features allow the SSAGWO to avoid the local optimum
while improving convergence speed and accuracy. The exploitation capability of the
GWO is introduced into the sparrow search algorithm to improve its exploitation ability.
The modification in the structure of SSA is improving the exploitation ability by using
the behavior of exploration ability in GWO to compromise between exploitation and
exploration. Improving the exploitation in SSA with the exploration effort should be
achieved by hybridization between SSA and GWO. The variants of the position of SSA
Equation (7) are mixed with the distance equation of GWO by new weight factor (θ) to keep
the problem’s final solutions near the optimal values. The modification-guided equations
are rewritten as follows:

→
Dα =

∣∣∣∣→C1 ·
→
Xα − θ

→
X
∣∣∣∣,→Dβ =

∣∣∣∣→C2 ·
→
Xβ − θ

→
X
∣∣∣∣, and

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ − θ

→
X
∣∣∣∣ (8)
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The probability of shifting the position of all agents is calculated using Equation (9):

Γ[X(t + 1)− X(t)] =

∣∣∣∣∣∣ [X(t + 1)− X(t)]√
[X(t + 1)− X(t)]2 + 1

∣∣∣∣∣∣ (9)

where Γ is the probability factor. If the result of [X(t + 1) − X(t)] is positive, the sparrows
select the food, while if the result is negative, the sparrows move far away from predators. It
is worth noting that the correct position is quickly achieved by selecting well the boundaries
of the PID factors. The SSAGWO’s specific steps are described in detail:

Step 1: Initialize the sparrow search population and its parameters (n is the total number
of sparrows, Tmax maximum iteration, d is the number of variables).
Step 2: While (t < Tmax), rank the sparrows according to their fitness values by minimizing
J in Equation (3). Find the current best value, which is the minimum fitness value, and the
current worst value, which is the maximum fitness value.
Step 3: Update the sparrow location for the discoverer by using Equation (10).

Xt+1
i =

{
Xt

i × exp( −i
α·Tmax

), R2 < STh
Xt

i + Q · L, R2 ≥ STh

}
(10)

With X = [X1, X2, X3, . . . Xi . . . Xn]
T , Xi = [Xi,1, Xi,2, Xi,3 . . . Xi,d].

Where t denotes the current iteration; Xt
i is the location of the ith sparrow at iteration

t; α is a random number between 0 and 1; R2 is the alarm value, which is 0 < R2 ≤ 1;
the safety threshold is STh, and it is valued 0.5 ≤ STh <1; L is a 1 × dmatrix; dmatrix is the
matrix including 1 in each factor; and Q is a random value with a mean of zero and a
variance of one that follows the normal distribution. If R2 < STh, it indicates that the
foraging surroundings are safe, while R2 ≥ STh denotes that some individuals already have
faced dangerous animals and that all sparrows must flee to other safe locations as soon
as possible.

Step 4: If the ith individuals at the current iteration are less or equal to half the sparrow
population, then update the follower’s position using Equation (7) and go to step 9. Except
for that, run the GWO algorithm.
Step 5: Initialize the values of a, A, and C.
Step 6: Calculate the first-best value of the alpha wolf, the second-best value of the beta
wolf, and third best value of the gamma wolf.
Step 7: Determine the distance between the wolves and prey using Equation (6). After that,
calculate the value of the new position using Equations (4) and (5).
Step 8: Export the position of the best three wolves and exchange it with the current
sparrows. The flowchart of the SSAGWO is shown in Figure 7.
Step 9: Update the follower’s position using Equation (7). Then, update the investigator’s
location using Equation (11).

Xt+1
i =

{
Xt

best + βe
∣∣Xt

i − Xt
best

∣∣, fi > fb

Xt+1
best + K |X

t
i−Xt+1

best |
( fi− fw)+ε

, fi = fb

}
(11)

where βe denotes the random step length control coefficient, which has a variance of 1 and
a mean value of 0 and follows the normal distribution; K is a random number between −1
and 1; fi is the fitness value of the ith individual; fb is the current global best fitness; and fw
is the current global worst fitness.



Energies 2023, 16, 1177 10 of 28

Energies 2023, 16, x FOR PEER REVIEW 10 of 28 
 

 

where βe denotes the random step length control coefficient, which has a variance of 1 

and a mean value of 0 and follows the normal distribution; K is a random number be-

tween −1 and 1; fi is the fitness value of the ith individual; fb is the current global best fit-

ness; and fw is the current global worst fitness. 

Step 10: By using Equation (9), if the probability factor is a positive value, calculate the 

fitness value using Equation (3) and compare it with the best fitness solution to obtain 

the minimum optimal value. However, if the probability factor is negative, go to step 5. 

The parameters of the proposed SSAGWO algorithm technique are initialized at 

maximum iteration = 100, the number of search agents = 50, and the percentage of the total 

population size is selected as 0.2. 

Start

Initialize SSA Parameters: 

n, Tmax, d, R2, and STh

Update Sparrows 

Location (Eq.10)

i≤n/2

Yes

Update Followers 

Location (Eq.7)

Sat Values of 

a,A,and C

Evaluate Fitness 

Function of WolvesNo

Evaluate Fitness Function (ITAE)

Calculate the First Best 

Value (Xa), the Second 

Best Value (Xb), and the 

Third Best Value (Xd).

Calculate Da, Db, 

and Dd

Calculate X1, X2, 

and X3

If t=Tmax

Update Values of 

a,A,and C

Update the Location 

of the Grey Wolves

No

Export the Position of the 

Best Three Wolves

Exchange With the 

Current Sparrows

Yes

Calculate the 

Fitness Function 

(J) for the Best 

Solution 

Calculate the Fittness 

Value J and Compare 

with the Previous 

Value of J for 

Minimum Optimal

t= t+1

If t=Tmax

End

Yes

No

Update Investigators 

Location (Eq.11)

If 0

Yes

No

Define the Initialize Functions PID
Power 

System
fref

GWO

SSA

fmea

 

Figure 7. Flow chart of the proposed hybrid SSAGWO algorithm technique. 

5. Simulation Results and Discussion 

In this section, the proposed SSAGWO algorithm performance is first evaluated by 

comparing it with SSA and GWO algorithms in terms of statistical findings using five 

well-known benchmark functions from the literature. Furthermore, the proposed 

SSAGWO-tuned PID controller is analyzed for a two-area multi-source interconnected 

Figure 7. Flow chart of the proposed hybrid SSAGWO algorithm technique.

Step 10: By using Equation (9), if the probability factor is a positive value, calculate the
fitness value using Equation (3) and compare it with the best fitness solution to obtain the
minimum optimal value. However, if the probability factor is negative, go to step 5.

The parameters of the proposed SSAGWO algorithm technique are initialized at
maximum iteration = 100, the number of search agents = 50, and the percentage of the total
population size is selected as 0.2.

5. Simulation Results and Discussion

In this section, the proposed SSAGWO algorithm performance is first evaluated
by comparing it with SSA and GWO algorithms in terms of statistical findings using five
well-known benchmark functions from the literature. Furthermore, the proposed SSAGWO-
tuned PID controller is analyzed for a two-area multi-source interconnected power system.
The proposed SSAGWO optimized PID controller results are compared with SSA and GWO
techniques. The obtained results for benchmark functions and various scenarios of the
system model considered are discussed in detail in the following sections.
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5.1. Validation of Benchmark Functions

Six classical benchmark functions with a wide range of characteristics are used to
compare the proposed SSAGWO algorithm’s performance to that of GWO and SSA al-
gorithms. The description of the benchmark functions used to verify the performance
of various hybrid SSAGWO algorithms is shown in Table 2. When referring to Table 2,
the letter U indicates that the benchmark functions F1–F4 have a single global best and
are unimodal. A function is said to be separable if and only if the letter S appears after
the letter U in the notation. While if the letter N is written after the letter U, then the
function is non-separable [3]. The exploitation ability of the optimization algorithm is
investigated by the F1–F4 unimodal benchmark functions, as shown in Table 2, and they
indicate that a robust local search capability is necessary for achieving good results. F5 and
F6 are multimodal functions. These functions have multiple global bests and are used to
investigate the optimization algorithm’s exploration ability. The multimodal functions are
denoted with the letter M as shown in Table 2. The multimodal functions are also classified
into separable and non-separable functions.

Table 2. Benchmark functions.

Function Name Type Formula Dimension (d) Range

Sphere F1 US f (x) = ∑d
i=1 x2

i 30 [−100, 100]

Schwefel 2.21 F2 US f (x) = maxi{|xi |, 1 ≤ i ≤ d} 30 [−100, 100]

Schwefel 2.22 F3 UN f (x) = ∑d
i=1 |xi |+ ∏d

i=1|xi | 30 [−10, 10]

Rosenbrock F4 UN f (x) = ∑d−1
i=1

[
100(xi+1 − x2

i )
2
+ (xi − 1)2

]
30 [−30, 30]

Rastrigin F5 MS f (x) = 10d + ∑d
i=1
[
xd

i − 10 cos(2πxi)
]

30 [−5.12, 5.12]

Ackley F6 MN f (x) = −20 exp
(
−0.2

√
1
d ∑d

i=1 x2
i

)
− exp

(
1
d ∑d

i=1 cos 2πxi

)
+ 20 + e 30 [−32, 32]

Table 3 illustrates the statistical results of the optimization algorithm on the conven-
tional benchmark functions. The results are compared based on the mean, minimum, and
standard deviation of reaching the best values. The results were recorded for each algorithm
30 times running. Different benchmark functions are used to assess the algorithms GWO
and SSA with SSAGWO by suggesting the algorithm population of 30 and 100 as a number
of iterations. The results in Table 3 show that the SSAGWO has improved the exploration
and exploitation ability compared with other optimization techniques. SSAGWO has mean,
min, and standard deviation less than other algorithms.

Three cases are presented to analyze the time domain response of the HPS as follows.
Case I: In this case, area 1 is integrated with an SPV source, and area 2 is integrated with a
WPG source. A step load change of 50 MW and 35 MW of the rated power system occurs in
area 1 and area 2, respectively. Figure 8 shows the frequency deviation of four optimization
techniques for tuning PID controller parameters (PSO, GWO, SSA, and SSAGWO) and the
Z–N technique. It is clear from the figure that the ST of the proposed SSAGWO-optimized
PID controller is much faster than the other optimization-tuned PID controller and Z–N-
tuned PID controller. Table 4 shows the results of the frequency deviation of area 1 and
area 2 and the power deviation in the tie-line power. The ST of the proposed technique
is improved by 75.06%, 74.29%, 71.60%, and 71.04% over Z–N, PSO, GWO, and SSA,
respectively. Moreover, the RT of the frequency deviation of the proposed algorithm is less
than other techniques by 85.18%, 78.54%, 73.65%, and 67.38%, respectively. In addition,
the value of the undershoot of the frequency deviation is less than other techniques by
9.19%, 0.59%, 7.69%, and 0.59%, respectively. Furthermore, the results show that the steady-
state error of the power system frequency when using the proposed SSAGWO is less by
85.06%, 78.49%, 73.60%, and 67.34%, respectively, than when using the other optimization
techniques mentioned above. Furthermore, the steady-state values of the performance
indices of the frequency deviation are improved by 30.43%, 70.45%, 39.50%, and 64.08%
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for the ISE, ITSE, IAE, and ITAE, respectively, compared with the best performance index
of the optimization techniques presented in Table 5. Moreover, the proposed algorithm
reduces the controller efforts by 40.67%, 18.60%, 51.70%, and 9.85% for Z–N, PSO, GWO,
and SSA, respectively.

Table 3. Benchmark functions statistics.

Function Index SSAGWO SSA GWO

F1

Best 2.2339 × 10−31 2.7901 × 10−23 42.0302
SD 3.3466 × 10−17 1.8513 × 10−19 10.11

Mean 1.0642 × 10−17 6.6255 × 10−20 19.9949
Min 0 2.4457 × 10−47 8.9247

F2

Best 5.1938 × 10−13 8.0550 × 10−12 22.7455
SD 1.0443 × 10−10 2.2659 × 10−10 3.9943

Mean 3.7025 × 10−11 7.8765 × 10−11 9.4191
Min 1.6096 × 10−80 4.3857 × 10−55 5.3553

F3

Best 3.6567 × 10−13 1.6810 × 10−11 1.4005
SD 4.9149 × 10−09 6.1537 × 10−10 0.3749

Mean 1.7859 × 10−09 3.9256 × 10−10 1.3875
Min 8.6574 × 10−58 1.2831 × 10−24 0.7203

F4

Best 2.8199 × 10−4 2.7812 × 10−2 548.2237
SD 1.873 × 10−1 4.97 × 10−2 492.196

Mean 1.113 × 10−1 5.28 × 10−2 963.3173
Min 2 × 10−4 9.3 × 10−3 435.8798

F5

Best 0 0 76.6652
SD 0 0 14.1344

Mean 0 0 61.2244
Min 0 0 36.401

F6

Best 8.8818 × 10−16 8.8818 × 10−16 2.4941
SD 8.5631 × 10−11 7.1236 × 10−10 0.6564

Mean 4.7806 × 10−11 3.0156 × 10−10 3.0160
Min 8.8817 × 10−16 8.8817 × 10−16 1.3413
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Table 4. Frequency and power deviation in the tie-line power of case I.

Optimization
Technique

Controller
Effort ST (s) RT (s) Undershoot Steady-State

Error

∆f1

Z–N 10.03 × 10−2 15.5747 1.3000 × 10−3 −1.85 × 10−2 −2.416 × 10−4

PSO 7.31 × 10−2 15.1049 8.9766 × 10−4 −1.69 × 10−2 −1.678 × 10−4

GWO 12.32 × 10−2 13.6758 7.3107 × 10−4 −1.82 × 10−2 −1.367 × 10−4

SSA 6.60 × 10−2 13.4111 5.9055 × 10−4 −1.69 × 10−2 −1.105 × 10−4

SSAGWO 5.95 × 10−2 3.8834 1.9259 × 10−4 −1.68 × 10−2 −3.608 × 10−5

∆f2

Z–N 7.14 × 10−2 16.7079 1.8 × 10−3 −1.23 × 10−2 −2.366 × 10−4

PSO 7.14 × 10−2 16.1989 1.3 × 10−3 −1.14 × 10−2 −1.643 × 10−4

GWO 6.24 × 10−2 15.1067 1.0 × 10−3 −1.22 × 10−2 −1.337 × 10−4

SSA 6.02 × 10−2 14.7612 8.2627 × 10−4 −1.14 × 10−2 −1.081 × 10−4

SSAGWO 5.18 × 10−2 9.9788 2.6857 × 10−4 −1.13 × 10−2 −3.521 × 10−5

∆Ptie

Z–N 6.6906 × 10−4 13.6500 2.957 × 10−1 −1.2 × 10−3 10.035 × 10−6

PSO 5.5430 × 10−4 14.0710 4.0090 −0.8 × 10−3 7.325 × 10−6

GWO 3.4650 × 10−4 11.5746 5.7 × 10−3 −1.1 × 10−3 6.509 × 10−6

SSA 5.3688 × 10−4 12.0433 2.87 × 10−2 −0.8 × 10−3 5.096 × 10−6

SSAGWO 1.1460 × 10−4 4.9285 2.0 × 10−3 −0.7 × 10−3 1.912 × 10−6

Table 5. Steady-state indices in case I.

Performance Index
∆f1

Z–N PSO GWO SSA SSAGWO

ITAE 22.81 × 10−2 20.45 × 10−2 14.77 × 10−2 13.860 × 10−2 4.978 × 10−2

IAE 5.787 × 10−2 4.785 × 10−2 4.296 × 10−2 3.625 × 10−2 2.193 × 10−2

ITSE 9.9 × 10−4 8.1 × 10−4 5 × 10−4 4.4 × 10−4 1.3 × 10−4

ISE 5 × 10−4 3.4 × 10−4 3.4 × 10−4 2.3 × 10−4 1.6 × 10−4

Performance Index
∆f2

Z–N PSO GWO SSA SSAGWO

ITAE 22.22 × 10−2 20.070 × 10−2 14.4 × 10−2 13.64 × 10−2 4.845 × 10−2

IAE 5.236 × 10−2 4.425 × 10−2 3.816 × 10−2 3.322 × 10−2 1.862 × 10−2

ITSE 8.9 × 10−4 7.5 × 10−4 4.3 × 10−4 4 × 10−4 1 × 10−4

ISE 3.8 × 10−4 2.7 × 10−4 2.3 × 10−4 1.7 × 10−4 0.997 × 10−4

Case II: In this case, area 1 and area 2 are integrated with SPV resources. The step
change in demand load applied in case II is similar to that of case I. Figure 9 shows the
frequency deviation of the two areas and the power deviation in tie-line power for tuning
PID parameters of the proposed SSAGWO compared with PSO, GWO, and SSA and the
Z–N technique. Figure 9 demonstrates that the ST of the proposed SSAGWO-optimized
PID controller is significantly less than that of the other optimization-tuned PID controllers
and the Z–N-tuned PID controller. The results of the frequency deviation and tie-line power
of case II are shown in Table 6. The ST of the proposed algorithm has been enhanced by
75.94%, 74.23%, 72.53%, and 70.83% compared with the ST of Z–N, PSO, GWO, and SSA,
respectively. In addition, the RT of the frequency deviation of the proposed SSAGWO is
less than other techniques by 85.63%, 80.60%, 75.24%, and 69.86%, respectively. Moreover,
the peak undershoots value of the frequency deviation is less than other techniques by
8.15%, 8.15%, 7.65%, and 7.65%, respectively. Furthermore, the results shown in Table 6
depict that the steady-state error of the frequency deviation of the power system is less
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than other techniques by 85.93%, 80.54%, 75.20%, and 69.83%, respectively, when using the
proposed SSAGWO to tune PID controller parameters.
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Table 6. Frequency and power deviation in the tie-line power of case II.

Optimization Technique Controller Effort ST (s) RT (s) Undershoot Steady-State Error

∆f1

Z–N 14.71 × 10−2 15.5119 12.000 × 10−4 −1.84 × 10−2 −2.296 × 10−4

PSO 17.09 × 10−2 14.4838 8.8905 × 10−4 −1.84 × 10−2 −1.661 × 10−4

GWO 19.04 × 10−2 13.5912 6.9661 × 10−4 −1.83 × 10−2 −1.303 × 10−4

SSA 20.49 × 10−2 12.7962 5.7231 × 10−4 −1.83 × 10−2 −1.071 × 10−4

SSAGWO 8.060 × 10−2 3.73260 1.7247 × 10−4 −1.69 × 10−2 −3.231 × 10−5

∆f2

Z–N 8.96 × 10−2 16.7318 17.000 × 10−4 −1.16 × 10−2 −2.264 × 10−4

PSO 9.55 × 10−2 15.9302 13.000 × 10−4 −1.16 × 10−2 −1.637 × 10−4

GWO 10.32 × 10−2 15.1767 9.8148 × 10−4 −1.16 × 10−2 −1.283 × 10−4

SSA 11.09 × 10−2 14.4961 8.0590 × 10−4 −1.16 × 10−2 −1.054 × 10−4

SSAGWO 5.19 × 10−2 9.69000 2.4235 × 10−4 −1.09 × 10−2 −3.178 × 10−5

∆Ptie

Z–N 6.8776 × 10−4 12.0385 6.85 × 10−2 −1.5 × 10−3 6.506 × 10−6

PSO 6.9817 × 10−4 11.2029 81.85 × 10−2 −1.3 × 10−3 5.092 × 10−6

GWO 8.2955 × 10−4 10.5142 7.3 × 10−3 −1.3 × 10−3 4.183 × 10−6

SSA 17.000 × 10−4 9.7186 10.9 × 10−3 −1.2 × 10−3 3.547 × 10−6

SSAGWO 6.1746 × 10−4 6.4993 3.6 × 10−3 −0.8 × 10−3 1.167 × 10−6

The steady-state values of the ISE, ITSE, IAE, and ITAE all improve when using
the proposed SSAGWO upon the best performance index of the optimization strategies
shown in Table 7 by 57.57%, 74.42%, 46.93%, and 62.58%, respectively. Moreover, the
controller effort was reduced by 45.20%, 52.83%, 57.66%, and 60.66%, respectively, when
using SSAGWO compared with other optimization techniques.
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Table 7. Steady-state indices in case II.

Performance Index
∆f1

Z–N PSO GWO SSA SSAGWO

ITAE 22.71 × 10−2 17.88 × 10−2 14.71 × 10−2 12.45 × 10−2 4.658 × 10−2

IAE 5.845 × 10−2 4.97 × 10−2 4.356 × 10−2 3.899 × 10−2 2.069 × 10−2

ITSE 10.1 × 10−4 7 × 10−4 5.3 × 10−4 4.3 × 10−4 1.1 × 10−4

ISE 5.2 × 10−4 4.2 × 10−4 3.6 × 10−4 3.3 × 10−4 1.4 × 10−4

Performance Index
∆f2

Z–N PSO GWO SSA SSAGWO

ITAE 21.72 × 10−2 17.07 × 10−2 14.03 × 10−2 11.91 × 10−2 4.393 × 10−2

IAE 5.146 × 10−2 4.32 × 10−2 3.747 × 10−2 3.33 × 10−2 1.679 × 10−2

ITSE 8.5 × 10−4 5.7 × 10−4 4.1 × 10−4 3.1 × 10−4 0.801 × 10−4

ISE 3.7 × 10−4 2.8 × 10−4 2.2 × 10−4 1.9 × 10−4 0.792 × 10−4

Case III: In this case, WTPG resources are integrated into both areas 1 and area 2.
Figure 10 shows the frequency deviation and tie-line power of the HPS model. The figures
show that the ST of the frequency deviation when using SSAGWO is less than the other
optimization-tuned PID controller parameters mentioned above. The detailed results of this
case are shown in Table 7. With the same sequence of comparing the proposed SSAGWO
with other optimization techniques illustrated in case I and case II, the ST was improved
by 75.40%, 73.66%, 71.88%, and 70.03%, respectively. In addition, the RT of the frequency
deviation was reduced by 88.10%, 84.01%, 79.56%, and 75.15%, respectively. There is also a
reduction in the peak undershoot value of the frequency deviation of 8.37%, 7.89%, 7.89%,
and 7.41, respectively, compared to the other techniques. Table 8 further demonstrates that
using the proposed SSAGWO to tune PID controller parameters decreased the steady-state
error of the frequency deviation of the power system by 88.41%, 83.97%, 79.52%, and
75.10%, respectively.
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Figure 10. The frequency deviation responses of the optimization techniques and conventional
Ziegler–Nichols method for tuning PID controller parameters for case III: (a) The frequency deviation
of area 1; (b) The frequency deviation of area 2; (c) The power deviation of the tie line.
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Table 8. Frequency and power deviation in the tie-line power of case III.

Optimization
Technique

Controller
Effort ST (s) RT (s) Undershoot Steady-State

Error

∆f1

Z–N 12.84 × 10−2 15.5405 13.000 × 10−4 −1.91 × 10−2 −2.5010 × 10−4

PSO 14.98 × 10−2 14.5127 9.6740 × 10−4 −1.90 × 10−2 −1.8080 × 10−4

GWO 17.32 × 10−2 13.5950 7.5658 × 10−4 −1.90 × 10−2 −1.4150 × 10−4

SSA 12.73 × 10−2 12.7563 6.2227 × 10−4 −1.89 × 10−2 −1.1640 × 10−4

SSAGWO 10.25 × 10−2 3.8229 1.5464 × 10−4 −1.75 × 10−2 −0.2898 × 10−4

∆f2

Z–N 8.55 × 10−2 16.7930 19 × 10−4 −1.22 × 10−2 −2.469 × 10−4

PSO 7.93 × 10−2 15.9452 14 × 10−4 −1.22 × 10−2 −1.783 × 10−4

GWO 8.88 × 10−2 15.1851 11 × 10−4 −1.22 × 10−2 −1.395 × 10−4

SSA 9.99 × 10−2 14.5028 8.7753 × 10−4 −1.22 × 10−2 −1.148 × 10−4

SSAGWO 6.48 × 10−2 8.8496 2.1741 × 10−4 −1.06 × 10−2 −0.285 × 10−4

∆Ptie

Z–N 7.2857 × 10−4 12.0973 58.7 × 10−3 −15 × 10−4 6.501 × 10−6

PSO 6.2357 × 10−4 11.2433 34.6 × 10−3 −14 × 10−4 5.083 × 10−6

GWO 8.4564 × 10−4 10.5482 7.9 × 10−3 −13 × 10−4 4.173 × 10−6

SSA 5.4 × 10−4 9.9408 9.1 × 10−3 −12 × 10−4 3.536 × 10−6

SSAGWO 1.7 × 10−4 3.8952 3.2793 × 10−3 −9 × 10−4 1.022 × 10−6

Compared to the best performance index of the optimization strategies presented in
Table 9, the proposed SSAGWO improves the steady-state values of the ISE, ITSE, IAE, and
ITAE by 50%, 74.42%, 49.88%, and 68.96%, respectively. In addition, SSAGWO reduced
controller effort by 20.17%, 31.57%, 40.82%, and 19.48%, respectively, compared to other
optimization methods.

Table 9. Steady-state indices in case III.

Performance Index
∆f1

Z–N PSO GWO SSA SSAGWO

ITAE 23.42 × 10−2 18.45 × 10−2 15.17 × 10−2 12.87 × 10−2 3.995 × 10−2

IAE 5.882 × 10−2 5.01 × 10−2 4.401 × 10−2 3.947 × 10−2 1.978 × 10−2

ITSE 10.3 × 10−4 7.1 × 10−4 5.3 × 10−4 4.3 × 10−4 1.1 × 10−4

ISE 5.1 × 10−4 4.1 × 10−4 3.5 × 10−4 3.2 × 10−4 1.6 × 10−4

Performance Index
∆f2

Z–N PSO GWO SSA SSAGWO

ITAE 22.43 × 10−2 17.65 × 10−2 14.51 × 10−2 12.29 × 10−2 3.749 × 10−2

IAE 5.18 × 10−2 4.357 × 10−2 3.787 × 10−2 3.366 × 10−2 1.524 × 10−2

ITSE 8.7 × 10−4 5.9 × 10−4 4.2 × 10−4 3.2 × 10−4 0.671 × 10−4

ISE 3.6 × 10−4 2.7 × 10−4 2.2 × 10−4 1.8 × 10−4 0.731 × 10−4

A comparison of the performance of the proposed hybrid SSAGWO optimization
technique with the performance of the Grasshopper Optimization Algorithm (GOA) [17],
Marine Predator Algorithm (MPA) [20], and Salp Swarm Optimization (SSO) [25] has been
implemented in order to demonstrate the robustness of the suggested approach. Within
the context of this discussion, case I has been utilized as a case study. Figure 11 depicts the
dynamic response of the HPS model to the frequency deviation and the change in tie-line
power. When compared with GOA, MPA, and SSO, the results demonstrate that the ST,
overshoot, and oscillations of the frequency deviation, as well as the tie-line power, are
improved when SSAGWO is utilized.
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Figure 11. The frequency deviation responses and change in tie line power of SSAGWO compared
with GOA, MPA, and SSO for tuning PID controller parameters for case I: (a) The frequency deviation
of area 1; (b) The frequency deviation of area 2; (c) The power deviation of the tie line.

To study the effectiveness of the proposed algorithm, a random step change in load
demand is applied in area 1, as shown in Figure 12. The frequency response of area 1, area 2,
and tie-line power for this scenario are depicted in Figure 13. According to the findings, the
proposed algorithm tunes the PID controller response more quickly for a sudden change
in load than other optimization techniques do. Additionally, the power supplied by the
tie-line changed in response to the changing load demands of the system while keeping a
constant level of output despite these changes.
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Figure 12. Random change load.

To further prove the robustness of the proposed technique, solar radiation data col-
lected at Universiti Putra Malaysia, the output power from the SPV, is integrated with area
1 [3]. As shown in Figure 14, the solar irradiation values were measured from January
through December 2014 for a total of 200 time-slots of 0.5 s. The multi-area power system in
case I has been chosen to assess the dynamic response for real-time solar power fluctuations
with all optimization techniques used in this study. The frequency deviation of area 1 and
area 2 is shown in Figure 15 for this scenario. It can be deduced that the proffered SSAGWO
algorithm-tuned PID controller shows a better and smoother response than other tuning
methods, along with minimal undershoot, less ST, RT, steady-state error, and controller
efforts.
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Figure 15. Dynamic response comparison of the multi-area power system using various optimization
techniques: (a) The frequency deviation of area 1; (b) The frequency deviation of area 2; (c) The power
deviation of the tie line.

The sensitivity analysis of the proposed controller technique has been performed to
prove the robustness of the controller parameters obtained under a variation of the inertia
constant and change in the nominal loading of the power system.

The value of the inertia constant of the power system changed from 75% to 125% of its
nominal value (H = 5), and the loading condition changed by ±25% compared with the
nominal system loading (50% loading). The controller’s efficacy is demonstrated by using
the value of the PID controller parameters under the nominal condition. Changing the
inertia constant of the power system will affect the value of the time constant Tps. Likewise,
the time constant of the power system block Tps and the gain constant Kps are affected
by changes in load conditions. Figure 16 illustrates the dynamic response of the power
system with variation in the inertia constant value. Figure 17 shows the dynamic response
of the power system under change in the nominal loading. The result demonstrates a high
tolerance for a wide range of changes in system parameters, as measured by the gain values
obtained under nominal conditions. Because of this, one can draw the conclusion that the
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parameters do not need to be re-tuned even if there is a large amount of change in the
system’s conditions and parameters.
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Figure 17. The dynamic response of the power system under different system loading (±25% of the
nominal load).

This section presents the convergence curves obtained by the proposed SSAGWO al-
gorithm and other optimization algorithms. The convergence curve showing the minimum
ITAE of ACE for the model is presented in Figure 18. The hybrid SSAGWO approach is
shown to converge faster than other optimization methods, proving that the proposed
SSAGWO has a better balance between exploration and exploitation than the standard
GWO and SSA algorithms.
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5.2. Stability Analysis

It is essential to take into consideration the effects of optimization techniques for PID
tuning and validation of the stability analysis by calculating the state space of the system
based on the Simulink model of the system. To assess the frequency stability of the power
system and the HPS model optimized with SSAGWO-tuned PID controller parameters,
two scenarios are considered. In scenario 1, Area I is considered as the input signal of the
transfer function, while in scenario 2, Area II is considered as the input signal of the transfer
function. The state-space equations with estimation of the Close Loop Transfer Function
(CLTF) are illustrated as follows:

Let, ∆fi = X1, ∆PTi = X2, ∆TT = X3, ∆Ptie,i = X5, ∆PWT = X6, ∆PPV = X7, and ∆PRFB = X8

The vector form of the state variables of the proposed model is present in Equation (12):

X = [X1, X2, X3, X4, X5, X6, X7, X8]
T (12)

System parameters and their associated state variables are shown as below:

X = [∆ fi∆X1T∆X1RE∆Ptie,i]
T (13)

where
∆X1T = [∆PT∆TT∆GT ] (14)

∆X1RE = [∆PWT∆PPV∆PRFB] (15)

The state-space equation of the HPS is illustrated as follows:

X•1 =
Kpi

Tpi
[−X1 + X2 + X3 + X4 + X5 + X6 + X7 − X8 − ∆PDi] (16)

The state-space modeling of the reheat turbine generator is also derived in Equations
(17)–(19):

X•2 = −X2

Tti
+

X3

Tti
(17)

X•3 = −X3

Tri
+

[
1

Tri
− Kr

TGi

]
X4 +

1
Tri

∆Pci −
X1

TriRi
(18)

X•4 = − X4

TGi
+

∆Pci
TGi
− 1

RiTGi
X1 (19)

In general, the state-space of the tie line power can be emulated as follows:

X•5 = ∆Ptie,i = 2π

[
n

∑
i=1,i 6=j

TijXi

]
(20)

The wind turbine model in state space is given in Equation (21):

X•6 = − X6

TWT
+ KWT PW (21)

The PV model in state space is obtained in Equation (22):

X•7 = − X7

TPV
+ KPV PV (22)

The state-space model of the RFB is shown below:

X•8 = − X8

TRFB
+ KRFBPRFB (23)
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The general state-space representation is given below:

X• = AX + Bu (24)

where A is the state matrix, B is the input matrix, and C is the output matrix. According to
the previous mathematical steps, A, B, and C can be calculated.

The control input can be presented as:

u = [∆Pci]
T (25)

The definition of the output matrix of the proposed system is:

Y = CX (26)

The closed loop control of the HPS shown in Figure 6, can be simplified as shows in
Figure 19 in order to estimate the CLTF equation:
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The derivation of the total response of the closed-loop transfer function of the inter-
connected power system was modeled with PID controller as the following:

R(s)G2(s)G1(s)C− BiY(s)CG2(s)G1(s)−Y(s)
1
Ri

G2(s)G1(s)− D1(s)G1(s) = Y(s) (27)

Y(s) =
R(s)G1(s)G2(s)C

Z
− D1(s)G1(s)

Z
(28)

∴ Y(s) = Y11(s) + Y12(s) (29)

where
Z = 1 + BiCG1(s)G2(s) +

1
Ri

G1(s)G2(s) (30)

The change in load demand (∆PD) is addressed for using the following expression for
the CLTF of the system for the proposed controller:

∆ f =
−G1

1 + G1G2

[
CBi +

1
R

]∆PD (31)

The CLTF can be applied to variations in tie-line power, as indicated by the definition
of power variation:

∆ f =
CG1G2

1 + G1G2

[
CBi +

1
R

]∆Ptie (32)

By using superposition theorem, the CLTF for the total variations of the frequency
response can be defined as:

∆ f =
−G1∆PD + CG1G2∆Ptie

1 + G1G2

[
CBi +

1
R

] (33)
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By using the state-space analysis, the CLTF for the two scenarios (i.e., area 1 and area 2)
can be presented as:

CLTF =
num
den

(34)

Appendix B shows the state-space matrix, definition of the num, and den of the
proposed power system model.

The proposed SSAGWO-tuned PID controller is of a higher order (11th), making
stability analysis challenging. Therefore, the higher-order CLTF is reduced to a second-
order transfer function using the Hankel matrix (HM) norm approximation method [48].
Detailed steps for reducing the higher-order transfer function are given below.

From the state-space in Appendix B, HM can be obtained. The general form of the
HM can be presented as:

H0
nn =

n

∑
i=1

n

∑
j=1

(CA−n+1B)i,j (35)

The value of n = 13, therefore the HM is shown in Equation (35), which can be
expressed as below:

H0
1313 =

13

∑
i=1

13

∑
j=1

ei,j (36)

More detail about the HM technique to reduce the order of the CLTF of the proposed
power system model has been given in [48]. To stabilize power generators, grid frequency
should be controlled based on the droop characteristic that relates to the generator out-
put [49]. Figure 20 depicts the frequency response of the Bode plot for the HPS model
considering the two scenarios proposed in stability analysis, with a gain margin of 1.57
and 8.71 dB and a gain cross-over frequency of 3.65 and 0.81 (rad/s) for Area I and Area
II, respectively. According to the Bode analysis response, the closed-loop system for the
proposed SSAGWO optimized PID controller of the HPS network is stable.
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6. Conclusions

In this manuscript, a hybrid SSAGWO algorithm is developed for optimal tuning of a
PID controller for the load frequency control of multi-area interconnected power system.
The proposed power system includes a high nonlinearity reheat steam station integrated
with various RERs. The proposed SSAGWO optimization algorithm was utilized to enhance
the parameters of the PID controller to minimize the frequency deviation in the presence of
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a PV system, wind turbine system generation, and load disturbance and to improve the
robustness of the PID controller with SSAGWO contrary to the penetration of RERs and
the effect of nonlinearities of the conventional plants of the HPS. Since the performance of
the SSAGWO algorithm depends on minimizing the complexity of the fitness functions,
the constraints and the boundaries of the proposed algorithm was modified by using the
SSA algorithm and the GWO algorithm. This modified approach improves the dynamic
performance of the LFC, while considering reduced-order of the entire transfer function for
the sensitivity and stability analyses. In order to validate the dynamic performance and
rigidity of the proposed optimization algorithm, a state-space model of the high-order close
loop transfer function was computed in this work. Furthermore, the dynamic performance
of the optimization algorithm was compared with PSO, GWO, SSA, GOA, MPA, and SSO. It
is concluded that the SSAGWO achieved the best performance (i.e., settling time is 3.8834 s)
in comparison with PSO, GWO and SSA; where the settling time values are 15.1049 s,
13.6758 s, and 13.4111 s, respectively.
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read and agreed to the published version of the manuscript.
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Abbreviations

ACE Area Control Error
ACO Ant Colony Optimization
ANN Artificial Neural Network
ALFC Automatic Load Frequency Control
BD Boiler Dynamics
BES Battery Energy System
CLTF Closed-Loop Transfer Function
CTO Class Topper Optimization
DE Differential Evolutionary
FLC Fuzzy Logic Controller
GDB Governor Dead Band
GOA Grasshopper Optimization Algorithm
GRC Generator Rate Constraints
GWO Grey Wolf Optimizer
HIO Hybrid Intelligent Optimization
HPS Hybrid Power System
IAE Integral Absolute Error
ISE Integral Square Error
ITAE Integral Time Absolute Error
ITSE Integral Time Square Error
MPA Marine Predator Algorithm
MPC Model Predictive Control
MRFO Manta-Ray Foraging Optimizer
PFMPID Predictive Functional Modified Proportional Integral Derivative
PID Proportional Integral Derivative
PIDA Proportional-Integral-Derivative-Acceleration
PSO-GSA Particle Swarm Optimized-Gravitational Search Algorithm
PV Photovoltaic Cell
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RER Renewable Energy Resources
RFB Redox Flow Battery
RT Rise Time
SMC Sliding Mode Control
SMES Superconducting Magnetic Energy Storage
SPV Solar PV
SSAGWO Sparrow Search Algorithm-Grey Wolf Optimizer
SSO Salp Swarm Optimization
ST Settling Time
STPP Solar Thermal Power Plant
WOA Whale Optimization Algorithm
WTPG Wind Turbine Power Generator
Z–N Ziegler-Nichols

Appendix A

Table A1. The parameters of the proposed HPS and RERs.

System Parameters Value

Base Rated Power of area 1 and area 2 PR1 = PR2 2000 MW
The gains of power system KP1 = KP2 120 Hz/p.u.MW
The time constant of the power system TP1 = TP2 0.08 s
The turbine time constant TT1 = TT2 0.3 s
The time constant of the Reheat Tr1 = Tr2 10 s
The gains of the Reheat Kr1 = Kr2 0.5
The governor adjustment deviation coefficients R1 = R2 2.4 Hz/p.u.MW
The frequency response coefficients B1 = B2 0.425 p.u.MW/Hz
The system damping coefficient D1 = D2 0.00833 p.u.MW/Hz
The time constants of tie-line flow T12 = T21 0.08674 p.u.MW/rad
System inertia H1 = H2 5 s
Solar PV time constant TPV 1.3
Wind turbine time constant TWT 1.5

Table A2. The parameters of the steam boiler for the power plant.

Boiler Parameters Value

K1 0.85
K2 0.095
K3 0.92
CB 200
TD 0
KIB 0.03
TIB 26
TRB 69
TF 10
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Appendix B

A =



−4.07 0 −0.44 4.81 0.04 0 0 0 0 0 0 0.77 0
0 −4.07 0.44 0 0 4.81 0.04 0 0 0 0 0 0.67
6 −6 0 0 0 0 0 0 0 0 0 0 0
−10.2 0 −1.43 −12.5 0 0 0 −0.22 0.8 0 0 0 0

0 0 0 12.5 −0.1 0 0 0 0 0 0 0 0
0 −10.2 1.43 0 0 −12.5 0 0 0 −0.22 0.8 0 0
0 0 0 0 0 12.5 −0.1 0 0 0 0 0 0
−0.05 0 −0.01 0 0 0 0 −0.28 0 0 0 0 0
−10.2 0 −1.78 0 0 0 0 0 0 0 0 0 0

0 −0.05 0.01 0 0 0 0 0 0 −0.28 0 0 0
0 −10.2 1.78 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −0.77 0
0 0 0 0 0 0 0 0 0 0 0 0 −0.67



(A1)

B =
[
−1 0 0 0 0 0 0 0 0 0 0 0 0

]T (A2)

C =
[

6 0 0 0 0 0 0 0 0 0 0 0 0
]

(A3)

num = −6s10 − 179s9 − 1991s8 − 9844s7 − 1.591× 104s6 − 1.231× 104s5 − 5013s4 − 1088s3 − 117s2 + 4.747s (A4)

den = s11 + 33.9s10 + 505s9 + 4006s8 + 1.739× 104s7 + 3.727× 104s6 + 4.061× 104s5 + 2.468× 104s4+
8800s3 + 1837s2 + 208.3s + 9.932

(A5)
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