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Abstract: The Brazilian Power System is mainly composed of renewable generation from hydroelec-
tric and wind. Hence, spot and forward electricity prices tend to represent the inherently stochastic
nature of these resources, while risk management is a measure taken by agents, especially hydro
power plants (HPPs) to hedge against deep financial losses. A HPP goal is to maximize its profit
considering uncertainties in forward electricity prices, spot prices, and generation scaling factor
(GSF) for years ahead. Therefore, the objective of this work is to simulate the real decision-making
process of a HPP, where they need to have a perspective of the forward market and future spot
price assessment to negotiate forward electricity contracts. To do so, the present work models the
uncertainty in electricity forward prices via two-stage stochastic programming, assessing the benefits
of the stochastic solution in comparison to the deterministic one. In addition, different risk aversion
levels are assessed using conditional value at risk (CVaR). An important conclusion is that the results
show that the greater the HPP risk aversion is, the greater the energy selling via electricity forward
contracts. Moreover, the proposed model has benefits in comparison to a deterministic approach.

Keywords: decision making under uncertainty; electricity forward price; stochastic programming;
risk management; renewable energy sources

1. Introduction
1.1. Motivation and Background

In electricity markets, a player must deal with different types of uncertainties, such
as spot prices, forward contract prices, regulation, and resource availability. Therefore,
players must perform an exhaustive financial analysis to accomplish their goal, which
usually involves maximizing profit while performing risk management. The latter can be
done via negotiating forward contracts to hedge spot prices (no capacity investment) or via
portfolio diversification with different assets (capacity investment) [1].

The financial risk analysis of a HPP in the Brazilian electricity market considers the
mentioned elements while also appraising the uncertainty in inflows to reservoirs and
HPP’s generation levels. Both aspects are uncontrollable since the HPP’s generation is
determined via a tight pool centralized chain of models [2]. Then, it is important to
thoroughly contemplate the decision-making process and HPP’s risk aversion level in
favour of maximizing HPP’s objectives and hedging against deep financial losses.

Therefore, this work presents a model that simulates the real decision-making process
of a HPP, where they need to assess the forward contract prices and spot price development
to negotiate electricity contracts at the right time.

1.2. Literature Review

Usually, risk analysis regarding the electricity market takes into account the retail agent.
In [3], the authors propose a financial hedge method for a retailer with fixed price contracts.
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With the exposure of its portfolio to hourly load variations and real-time market prices,
the authors propose a risk-averse stochastic programming model with hourly periods for
hedging. The Value at Risk (VaR) and Conditional Value at Risk (CVaR) metrics are used
in the model. In [4], the authors aim to maximize the profit of a retailer with Renewable
Energy Source (RES) generation. For that, a risk-averse stochastic programming model is
proposed to define the bidding in the day-ahead market, as well as the participation of its
consumers in the demand response (DR) market. The results showed that participation in
the DR market raises the retail agent’s profit considerably. In addition, the authors in [5]
propose a risk-averse two-stage stochastic programming model with the CVaR that assists
retailers in dividing their portfolio between forward contracts and bids to the day-ahead
market. The authors also analysed how retailers could sell energy to their consumers:
flat tariff, time-of-use (TOU) tariff or real-time price tariffs. The results showed that the
best option is to offer the type of contract according to the load profile and uncertainty
of each consumer. Note that only [5] considers medium and long-term contracts, but not
its volatility.

With respect to agents with RES generation, the authors in [6] showed that an agent
with a wind generator and energy storage has higher profits than an agent with only one
of them. This is explained by the fact that this agent can offer the market a generation
with less uncertainty and even with a more desirable profile in the face of the projection
of hourly prices, and also has the option to take part in the reserve market. The authors
used a risk-averse stochastic programming model with the CVaR metric. In [7], the authors
propose a risk-constrained two-stage stochastic optimization model for the decision-making
of a RES aggregator with clean energy participating in the day-ahead market. The model
can be useful for planning different sources, allowing for their further integration. The
authors in [8] applied a downside risk constraints method to define the operation of a
pumped-storage HPP in the electricity market. Note that none of these works ponder about
mitigating financial risk through forward contracts.

In addition to the risk analysis of different agents in the electricity market, another
important aspect is the expansion of generation considering these risks. In [1], the authors
use bilevel programming to assist the decision-making of a generating agent that has to
decide its positioning in the future market, its exposure in the spot market, and whether
to invest in a new generating unit. The results showed that one must invest in a new
generating unit and that the positioning in the forward market depends on the arbitrage
opportunity, which is limited due to the competitiveness in both markets. Regarding the
electricity market in Brazil, the authors in [9] address the portfolio optimization problem
through generation expansion using one or more RESs and the diversification of contracts
between the free and regulated markets. The proposed model also uses the CVaR and the
results showed that a portfolio composed of complementary sources leads to higher profits,
and risk-neutral agents seek to compose the portfolio with more free market contracts,
while risk-averse agents tend to do so with more regulated market contracts. The models
proposed in both works assume that the agent has only one moment to decide on the
investment, not contemplating forward price volatility.

Regarding Firm Energy Certificates (FECs) in the Brazilian electricity market, HPPs can
choose on a monthly basis how they allocate their electricity contracts. In [10], the authors
propose a stochastic, risk-averse and game theory-based methodology for deciding the next
year’s monthly allocation of FEC. The proposed model takes into account the uncertainty
in demand, electricity prices, GSF and other players’ behaviours and preferences to find
the optimal FEC monthly allocation strategy for a HPP. Note that this work proposes
optimizing FEC’s monthly allocation and do not deal with electricity prices.

1.3. Main Contributions

Considering a free electricity market, HPPs are able to negotiate forward contracts
years ahead or to be exposed to spot prices. Thus, this work proposes to model the
real decision-making process of a HPP, in which it deals with uncertainties in forward
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contract prices, future spot prices, and the GSF. This is an important feature of the decision-
making process since HPPs can have the perspective of market forward price evaluation to
negotiate forward electricity contracts at the right time. Appraising this feature is the main
contribution of this work.

To do so, this work models uncertainty in forward contract prices in a two-stage
stochastic problem while also handling uncertainty in future spot prices and GSFs. The
proposed model will be evaluated according to the benefit of the stochastic forward contract
prices formulation compared to a deterministic one.

In addition, given the nature of the problem, this work will also assess different levels
of risk aversion for a HPP using the CVaR approach.

1.4. Paper Organization

The rest of this paper is organized as follows: Section 2 presents an overview of the
Brazilian market organization. Section 3 is a review of stochastic programming and risk
modelling mathematical formulation. Section 4 formulates the proposed model by applying
stochastic programming and risk modelling to the HPP problem. Section 5 provides an
analysis of the proposed model based on real data from the Brazilian electricity market.
Section 6 delivers the most important conclusions of this work.

2. Brazilian Electricity Market Overview

The Brazilian power system is a large-scale hydro-thermo-wind system centrally
dispatched by the independent system operator (ISO). The Operador Nacional do Sistema
Elétrico (ONS), the Brazilian ISO, is responsible for optimizing the National Interconnected
System dispatch to minimize the operating cost while meeting the load demand. To do so,
a chain of optimization models for different planning horizons is required [2], namely:

• Long term: due to the large participation of HPPs in the Brazilian electricity matrix,
which accounts for more than 60% of the total installed capacity, uncertainty about
future hydrological conditions makes it necessary to consider the dispatch of the
system five years ahead. For this purpose, the optimization model is used on a monthly
basis that emphasizes the stochastic inflows and simplifies the NIS representation,
such as considering the aggregation of individual reservoirs into equivalent reservoirs.
This horizon usually sets forward prices for the years ahead, A+1 until A+5, where
A is the current year.

• Short term: aiming at planning the system a few months ahead, it is necessary to
simulate the dispatch on a weekly basis and with individual reservoirs. In this horizon,
the forward prices are set for the months ahead.

• Hourly Basis: aiming at setting the day-ahead operation. It is necessary to model the
system in as much detail as possible, with transmission line flow limits and generation
unit constraints. For this horizon, the inflow is known, and the model provides the
day-ahead hourly prices.

The Lagrange multipliers of the load demand-supply equation define the spot price for
each area and are named Marginal Operating Cost (CMO). The CMO, limited by regulatory
limits, is named at Settlement Price for the Differences (PLD) and is used to evaluate the
Short-Term Market financial surplus. The PLD is defined on an hourly basis and for each
Brazilian area: Southeast, South, Northeast, and North. These day-ahead prices are used to
financially settle the Brazilian electricity market [11].

2.1. Brazilian Electricity Regulatory Environment

Brazilian electricity commercialization can take place in the Free Market (ACL),
which has free negotiation between its counterparts, or in the Regulated Market (ACR),
through electricity Commercialization Contracts (CCEAR) firmed by auctions held by the
Chamber of Commercialization of Electric Energy (CCEE) [11]. Therefore, the electric-
ity price in the ACR is defined from energy auctions settled by the Brazilian National
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Agency of Electric Energy (ANEEL), while in the ACL, this price is negotiated considering
counterpart expectations.

2.2. The Settlement Price and the Generation Scaling Factor

The PLD is obtained by computational models in a central dispatch model. Since
the Brazilian electricity system has a matrix composed mainly of hydro power plants, the
optimization model has a stochastic characteristic that depends on future inflows. In the
face of the inherent uncertainties of the inflows and RES generation, it is possible to observe
high volatility in PLD, as indicated in Figure 1.

Figure 1. Historical Southeast PLD.

Since Brazil has continental dimensions and presents different inflows seasonality
for each region, these regions are connected by transmission lines to form the NIS. There-
fore, the ONS is responsible for operating the system, optimizing the hydraulic source,
while taking advantage of some region surplus to supply other regions. Considering this
complementary energy between regions, the Energy Reallocation Mechanism (MRE) was
created [12]. The MRE is responsible for sharing the total hydraulic energy generated
among the HPPs through a financial instrument. The agents that overshoots their Firm
Energy Certificate (FEC) transfer their surplus to the ones that generated below their FEC.
The HPP’s FEC is calculated considering its capacity to contribute to a critical load consid-
ering a critical inflow period. The sum of all MRE agents’ FECs is defined as MRE Firm
Energy Certificate (MRE-FEC).

In addition, the GSF is evaluated on a monthly basis and is defined as the ratio between
the MRE hydraulic generation and the MRE-FEC. This factor represents the NIS hydraulic
generation performance. In recent years, the GSF has frequently performed below 1 due
to severe hydrological conditions (droughts) nationwide. The monthly GSF values are
depicted in Figure 2.

For further discussion about the financial impacts on HPPs caused by the ongoing
severe drought in Brazil and the current state of the MRE and FEC, interested readers are
directed to [12,13].

Figure 2. Historical Flat GSF.

2.3. Forward Electricity Prices

Long-term contracts of different supply horizons essentially protect agents against
PLD uncertainty. The forward electricity price negotiated between the ACL counterparts
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is calculated based on price expectations and defines a forward curve. This curve sets a
reference for the electricity price according to the product maturity. There are different
approaches for calculating forward curves in the literature, as described in [14,15].

Price uncertainty affects both short- and long-term contracts. Although the volatility
tends to be higher in the short-term, long-term contracts also present uncertainties due to
many variables in the market, such as regulatory changes. Thus, this work aims to consider
the uncertainty of the forward curve and the GSF expectations to obtain the long-term
optimal contract level for a HPP.

Another important aspect of forward price formation in Brazil is that the HPP is
procured after a concession auction based on the lowest price of energy sold to consumers.
Then, a quota of the HPP’s FEC is reserved for the regulated consumers (ACR) and also
guarantees a future cash flow increasing the feasibility of the investment [16]. Hence, the
Levelized cost of electricity (LCOE) is not considered in this paper as the LCOE is more
relevant in project than in energy trading decision-making.

3. Stochastic Programming and Risk Modeling
3.1. Two-Stage Stochastic Programming

A decision-making problem under uncertainty is a process that models a timely
sequence of optimal decisions made under uncertainty. Two-stage stochastic programming
techniques are applied to solve this problem, whether the stages model when the decision-
maker has to make a decision and when the uncertainty is taken into account [17,18]. The
two-stage decisions can be defined as follows:

1. First-stage or here-and-now: models the decision made before the realization of
uncertainty, i.e., it does not depend on each realization of the stochastic process.

2. Second-stage or wait-and-see: models the decisions made after the realization of
the uncertainty. It models the corrective actions and consequences of the first-stage
decision according to the realization of the stochastic process.

The mathematical modeling of the two-stage stochastic problem is defined as fol-
lows: [7,17,18]:

Max cTx + ε{Q(w)} (1)

subject to:
Ax = b (2)

x ∈ X (3)

where:

Q(w) =

{
Max q(w)Ty(w) (4)

subject to : T(w)x + W(w)y(w) = h(w) (5)

y(w) ∈ Y ∀w ∈ Ω

}
(6)

where x are the first-stage variables and y(w) are the second-stage variables. The stochastic
process is represented via scenarios by w. c, q(w), b, h(w), A, T(w) and W(w) are
known vectors and matrices. Equations (1)–(3) represent the first-stage problem, while
Equations (4)–(6) model the second-stage problem, which is a function of the decision made
on the first-stage problem. Equations (1)–(6) can be expressed as follows [17,18]:

Max cTx + ∑
w∈Ω

π(w)q(w)Ty(w) (7)

subject to:
Ax = b (8)
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T(w)x + W(w)y(w) = h(w), ∀w ∈ Ω (9)

x ∈ X, y(w) ∈ Y, ∀ω ∈ Ω (10)

where π(w) is the probability of scenario w.

3.2. Risk Modeling

Risk management is very important when dealing with uncertainty in an investment
portfolio. Risk can also be modeled in an optimization problem, and a well-known metric
is the CVaR, which is a coherent risk measure [19]. This metric quantifies the risk of an
investment or decision by pondering the expected return in all scenarios and the expected
return of a quantile of the worst scenarios. Namely, given α ∈ (0, 1), CVaR can be expressed
as the expected value of a quantile-(1− α) of a distribution [17]. The mathematical model is
represented as follows and is based on [7,17]:

Max η − 1
1− α

·
W

∑
w=1

πwsw (11)

subject to:
η − (cTx + q(w)Ty(w)) ≤ sw ∀ω ∈ Ω (12)

sw ≥ 0 ∀ω ∈ Ω (13)

where α is a confidence level, and η and sw are auxiliary variables.
CVaR can be introduced in (7)–(10) as follows:

Max (1 − β) ·
(

cTx + ∑
w∈Ω

π(w)q(w)Ty(w)

)
+ β ·

(
η − 1

1− α
·

W

∑
w=1

πwsw

)
(14)

subject to: (9), (10), (12), and (13). β ∈ (0, 1) is the risk aversion parameter. For example,
β = 0 means that the decision-maker is neutral to risk, and β = 1 expresses maximum
risk aversion.

4. Proposed Model
4.1. Decision-Making Process of a Hydro Power Plant

In the Brazilian electricity market, the optimal portfolio and contract management of a
HPP in the long term, i.e., one year (A+1) or five years (A+5) ahead, depends on market
expectations of future PLD, on future GSF and on the evolution of those forward electricity
contract prices. The latter is modeled considering the uncertainties of forward contracts.

Figure 3 shows the flowchart of the proposed decision-making methodology and
Figure 4 details the decision-making process over time. One can note that in the first stage
(n = 1), the HPP has full knowledge of A+1 (one year ahead) electricity forward contract
price λn=1. Similarly, the HPP has a set of scenarios of PLD and GSF for each month t of
year A+1. However, the HPP does not need to make the portfolio decision in stage n = 1
because the A+1 electricity forward contract price can (and will) change while some of the
uncertainty vanishes and the distribution of one year ahead PLD and GSF evolves.

Then, the decision-making process of years ahead electricity forward contract price
uncertainty can be formulated as follows:

1. Define n = 1, . . . , N electricity forward contract negotiation stages
2. Define f = 1, . . . , F electricity forward contract price scenarios
3. Define w = 1, . . . , W scenarios of PLD and GSF for each electricity forward contract

price scenario f
4. evaluate the expected profit considering that the decision in n = 1 is the same for all

scenarios f (here-and-now decision)

In addition, the HPP is not able to negotiate more energy than their FEC.
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Figure 3. Proposed decision-making methodology flow chart.

Figure 4. Decision-making process flow chart of a HPP participation in the Brazilian electricity market.

4.2. Mathematical Modelling

In this subsection, the full modelling of the HPP participating in the Brazillian electric-
ity market under uncertainty and risk management (based on [17]) can be written as:

Max(1− β) ·
(

F

∑
f=1

π f ·
N

∑
n=1

T

∑
t=1

λ f ,nx f ,n+

+
F

∑
f=1

π f ·
W

∑
w=1

π′f ,w ·
T

∑
t=1

y f ,w,t

)
+

+ β ·
(

η − 1
1− α

·
F

∑
f=1

W

∑
w=1

π f π′f ,ws f ,w

)
(15)
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subject to:

y f ,w,t = PLD f ,w,t · (GSFf ,w,t · FEC−
N

∑
n=1

x f ,n)

f = 1, . . . , F, t = 1, . . . , T, w = 1, . . . , W (16)

x f=1,n=1 = x f=2,n=1 = . . . = x f=F,n=1 (17)

0 ≤
N

∑
n=1

x f ,n ≤ FEC, f = 1, . . . , F (18)

η −
(

N

∑
n=1

T

∑
t=1

λ f ,nx f ,n +
T

∑
t=1

y f ,w,t

)
≤ s f ,w,

f = 1, . . . , F, w = 1, . . . , W (19)

s f ,w ≥ 0, f = 1, . . . , F, w = 1, . . . , W (20)

where:

• π f is the probability of electricity forward contract price scenario f = 1, . . . , F
• π′f ,w is the probability of PLD scenario w = 1, . . . , W of electricity forward contract

price scenario f = 1, . . . , F
• λ f ,n is the electricity forward contract price scenario f = 1, . . . , F on stage n = 1, . . . , N
• x f ,n is the amount of electricity negotiated on forward contract price scenario f = 1, . . . , F

on stage n = 1, . . . , N
• y f ,w,t is the spot market revenue on intra-stage t = 1, . . . , T of PLD scenario w = 1, . . . , W

of electricity forward contract price scenario f = 1, . . . , F
• PLD f ,w,t is the spot price realization of intra-stage t = 1, . . . , T of PLD scenario

w = 1, . . . , W of electricity forward contract price scenario f = 1, . . . , F
• GSFf ,w,t is the GSF of intra-stage t = 1, . . . , T of PLD scenario w = 1, . . . , W of electric-

ity forward contract price scenario f = 1, . . . , F
• FEC is the hydro power plant’s Firm Energy Certificate
• η and s f ,w are CVaR auxiliary variables

The objective function (15) expresses the profit on electricity forward contract ne-
gotiation and on spot market revenues (SMR). The SMR is defined in Equation (16) as
the spot price valuation of the difference between the total negotiated future electricity
contracts and the product of that month’s GSF and its FEC. Equation (17) assures that the
first-stage decision is the same for all forward contract price scenarios. Next, Equation (18)
imposes that the HPP is not able to sell more energy on forward contracts than their FEC.
Equations (19) and (20) are due to CVaR modelling.

Additionally, one can consider GSFf ,w,t = 1.0 (to all stages and scenarios) for a
generalization to other electricity markets that do not have a GSF mechanism.

5. Case Study

This section presents a test case of decision-making under uncertainty of a HPP, which
can decide one year ahead (A+1) when and how much energy to negotiate on electricity
forward contracts and how much to be exposed on spot market contracts. Therefore, this
case study defines the HPP portfolio for one year ahead (A+1).

It is considered that the HPP FEC is 100 MW flat all year round. Although we have
presented a case study with 100 MW, the results are insensitive to the FEC’s actual value.
Thus, we present the decision in the percentage of FEC rather than its amount in MW.

For each HPP portfolio decision stage, the spot market and GSF scenario are monthly
while the forward contract is annual. The HPP has two stages to decide “when” and
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“how much” energy to negotiate on forward contracts. It can be highlighted that only
the first-stage decision will be taken into account, as the HPP will be able to reassess its
next stages’ decisions in the near future with more information and the realization of
some uncertainties. This case study also assesses the benefit of the stochastic modelling of
electricity forward contract prices via the Value of the Stochastic Solution (VSS) metric. In
addition, the efficient frontier of the risk aversion parameterization will be displayed.

The following subsections describe the stochastic process of PLD, GSF and electricity
forward contract prices.

5.1. PLD and GSF Scenarios

For the one-year-ahead analysis (A+1), the monthly PLD and GSF scenarios are
obtained through the assessment of the chain of optimization models. This is a commonly
adopted practice in Brazil’s electricity market since these models define each NIS generation
unit dispatch and determine the spot price.

For this paper, a set of 75, 12-month scenarios of PLD and GSF was generated by the
described process, and they will be valid for all electricity forward contract price scenarios.
Note that the PLD and GSF scenarios could vary for each forward contract price scenario.

Figure 5 displays in blue the permanence curve of the annual mean value of PLD on
the left vertical axis and their respective annual mean value of the GSF on the right vertical
axis in red. The mean annual PLD is 207.00 R$/MWh.

Figure 5. Permanence curve of the annual mean value of PLD (blue, left axis) and their respective
annual mean value of the GSF (red, right axis).

5.2. Forward Prices

As described in the introduction section, there are many methods to determine the
electricity forward contract price. As it is not the main goal of this work, we considered
that the negotiated electricity forward contract price in the first stage is equal to the
mean annual PLD of one year ahead (A+1)-207.00 R$/MWh. For the second stage, we
take into consideration a normal distribution with 207.00 R$/MWh as the mean and
20.70 R$/MWh (10%) as the standard deviation. Table 1 displays the electricity forward
contract price scenarios.



Energies 2023, 16, 1173 10 of 13

Table 1. Forward contract price scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Forward Contract Price
Stage 1 (R$/MWh) 207.00 207.00 207.00 207.00 207.00

Forward Contract Price
Stage 2 (R$/MWh) 165.00 186.00 207.00 228.00 249.00

Probability 0.09070 0.23863 0.34134 0.23863 0.09070

5.3. Results

The proposed model was implemented in GAMS and was evaluated for two cases:
(i) electricity forward contract price modeled as a deterministic value, i.e., 207.00 R$/MWh,
and (ii) electricity forward contract price modeled as a stochastic value, as shown in Table 1.
In both cases, the CVaR methodology was applied for the (1− α) = 10% worst scenarios
and for different risk aversion levels (β).

Figure 6 shows the efficient frontier for the deterministic case. Note that more risk-
averse HPP can have a greater CVaR (+92.3%) without having a significant reduction in the
expected profit (−0.2%). This result indicates that any degree of risk aversion protects the
HPP from the worst scenarios without reducing its expected profit.

For this deterministic case, the optimal energy selling via forward contracts is 60.43% of
FEC except for the risk-neutral plan that indicates no energy selling, as indicated in Figure 7.
One can note that the amount of non-negotiated FEC is available for future decisions.

Figure 8 shows the efficient frontier for the stochastic case. Notably, the greater the
risk aversion level is, the lower the expected profit. This result demonstrates the trade-off
between better protection from the worst scenarios and the expected profit.

Also, the optimal energy selling via forward contracts for different risk aversion levels
is displayed in Figure 9 as a percentile of its Firm Energy Certificate (FEC). One can note that
a less risk aversion HPP prefers to wait on selling electricity in the forward market favoring
the higher expected profit whereas a more risk aversion agent tends to sell electricity now
for better coverage of losses.

Figure 6. Efficient frontier for the deterministic case.
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Figure 7. Optimal energy selling via forward contracts for different risk aversion levels-
deterministic case.

Figure 8. Efficient Frontier for the stochastic case.

Figure 9. Optimal energy selling via forward contracts for different risk aversion levels-
stochastic case.

In addition, the benefit of the stochastic modeling of the electricity forward contract
prices via the VSS metric was assessed. For a maximization problem, VSS is defined by
the difference between the optimal value of the stochastic problem (RP) and the value of
the objective function of the stochastic problem while applying the deterministic problem
solution (EEV). For further details, see [20].

Table 2 shows the absolute and relative values of VSS for different levels of risk
aversion. One can observe that stochastic modeling is more convenient for lower risk
aversion levels as indicated by the higher VSS . This analysis highlights the benefits of
applying the proposed method.

Table 2. Stochastic model benefit evaluation.

RP (R$) EEV (R$) VSS (R$) VSS(%)

β = 0 1.47 × 108 1.39 × 108 7.59 × 106 5.2%
β = 0.1 1.47 × 108 1.39 × 108 7.79 × 106 5.3%
β = 0.2 1.40 × 108 1.39 × 108 1.12 × 106 0.8%
β = 0.30 1.40 × 108 1.39 × 108 3.72 × 105 0.3%
β = 0.5 1.39 × 108 1.39 × 108 2.92 × 105 0.2%
β = 0.75 1.39 × 108 1.39 × 108 1.90 × 105 0.1%
β = 1 1.39 × 108 1.39 × 108 1.85 × 105 0.1%
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6. Conclusions

This work proposes a methodology that simulates the real decision-making process of
a HPP based on the uncertainty of forward contract prices and of years ahead spot prices
and GSF. In addition, CVaR was applied to handle the risk in this problem.

The results show that (i) the greater the HPP risk aversion is, the greater the energy
selling via electricity forward contracts and that (ii) the proposed model has benefits in
comparison to a deterministic approach, highlighted by the VSS metric, especially with
low risk-aversion HPP’s strategy.

Therefore, the authors concluded that the work reached its goal, which was to model
the true decision-making process of a HPP for years ahead aiming at improving portfolio
management through stochastic optimization.

Future works will include the decision-making process of a HPP considering hourly
spot prices and hydro generation instead of a monthly-basis price, thus evaluating the
models under discussion in the Brazilian regulatory studies.
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