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Abstract: This paper investigates relative aggregate energy efficiency for a panel of 39 developing
countries by econometrically estimating an energy-demand function (EDF) using the stochastic
frontier analysis (SFA) approach to provide relative energy efficiency scores over the period 1989
to 2008. Energy efficiency is arguably difficult to define or even conceptualise with several inter-
pretations in the literature but here it is based on an economists’ perspective of efficiency. Hence,
the estimates of ‘true’ energy efficiency found in the paper using this approach approximate the
economically efficient use of energy capturing both technical and allocative efficiency and the results
confirm that energy intensity should not be considered as a de facto standard indicator of energy
efficiency. While, by controlling for a range of socio-economic factors, the measurements of energy
efficiency obtained by the analysis are deemed more appropriate and hence it is argued that this
analysis should be undertaken to avoid potentially misleading advice to policy makers. This study
contributes to the literature since it is, as far as is known, the first attempt to apply the benchmarking
parametric stochastic frontier technique to econometrically estimate energy efficiency for a large
panel of only developing counties around the world. Moreover, the results from such analysis are
arguably particularly relevant in a world dominated by environmental concerns, especially in the
aftermath of energy price increase as a result of the unrest in Ukraine.
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1. Introduction

Amid growing concerns over volatility in energy prices and the global attention
towards limiting CO2 emissions, the need for action by both developed and developing
counties to address energy security, climate change and economic stability is under the
spotlight as never before. The Paris agreement, the first ever universal legally binding
climate deal, was the fruit of more than two decades of tortuous international negotiations
on combating climate change. However, despite the concerted efforts, the International
Energy Agency (IEA) highlights that global energy-related CO2 emissions have risen by
more than 60% since 1992, from 20.56 Giga tonnes (Gt) to about 34 Gt in 2019, driven
mainly by economic growth and increasing share of fossil-energy use especially in non-
Organisation for Economic Cooperation and Development (non-OECD) regions [1].

Developed countries traditionally emit the vast majority of anthropogenic greenhouse
gases (GHGs). However, according to [1], the relative share of developing countries’ emis-
sions surpassed those of industrialised countries in 2005, and have kept rising very rapidly
as a result of increasing energy use. In particular, emissions from emerging economies
accounted for the majority of global emissions (66.7%) in 2019, up from only 33.3% in
1973 [1]. Several historic shifts have altered the global energy map. Energy demand in
developing countries has risen more than threefold over the past three decades and ac-
cording to [2] is expected to continue increasing rapidly in the future. Many developing
countries transitioned from agricultural to the more energy intensive phase of industrial
development with concomitant growth in demand for ‘modern’ energy intensive goods
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and services. Furthermore, according to [2], increasing energy demand, particularly in de-
veloping counties, has been further augmented by demographic pressure and the increased
urbanisation rate while [3] highlights that access to clean, reliable, and affordable energy
services is indispensable for the prosperity of a country and in case of failure to harness
the increasing demand, sustained development, may be put in jeopardy. It is also worth
pointing out that the nature of the changes and the energy demand profile may also evolve
due to the changing environment. The recent COVID-19 pandemic for example, had a
considerable impact on the energy industry [4].

According to [5], improved energy efficiency is a critical response to the pressing
climate change, economic development, and energy security challenges facing the world
today. Therefore, improvements in energy efficiency have become a key policy and an
important pillar of national energy strategies for many countries around the world. (A joint
statement by 26 Governments during the 7th Annual Global Conference on energy efficiency
highlights the importance of energy efficiency as a central pillar of achieving the global
goals for net zero emissions from energy use [6]. In addition, the IEA [6] also suggests
that energy efficiency can play a significant role in Ukrainian reconstruction, where huge
investment packages from both the European Union and the United States will help to
rebuild destroyed infrastructure and critical social facilities so that the future of Ukraine will
not only be prosperous but also environmental friendly [7]). It is therefore crucial to develop
and maintain well-founded indicators and measurements to better inform policymaking
and assist decision makers to formulate policies that are best suited to national objectives.
This is of vital importance, especially where developing countries are concerned, given
that, according to the IEA, in 2022 nearly 775 million people would have had no access to
electricity [8]. Hence, it is vitally important for developing countries to meet their growing
appetite for energy needs in order to maintain robust socio-economic development and
increase living standards.

Despite energy efficiency being often referred to by analysts and policy makers, it is
arguably difficult to define or even conceptualise. At the most fundamental level, energy
efficiency seems to be an engineering concept. However, it is used by many people in
many different ways depending on the focus of analysis since, as a contextual concept, it
meets various definitions in the literature. Furthermore, the concepts of energy intensity
and energy efficiency are often used interchangeably, although this is not entirely accurate
since trends in energy intensity can be influenced by factors other than efficiency. Such
factors can be the structure of an economy, the level of industrialisation, affordability of
energy services, climate, demographic, as well as policy implemented and lifestyle. In
addition, according to [9], energy intensity measures are at best a rough surrogate for
energy efficiency. Additionally, the IEA [9] highlights the problem of using energy intensity
as a proxy of energy efficiency and noting that this is not entirely accurate. Thus, efficiency
impact can be masked by variations in those non-energy related factors and it is impossible
to remove or even consider all of the behavioural or structural factors that would be
necessary to obtain a ‘true’ measurement of energy efficiency [9]. This clearly unveils the
weakness of using energy intensity as a measure of energy efficiency and highlights the
need to control for the influence of the non-energy related factors in order to get a ‘true’
measurement of energy efficiency.

Given all the problems discussed above, one of the objectives of this study is, following
the approach proposed by [10], to estimate an aggregate energy economy demand function
in a panel of developing countries using Stochastic Frontier Analysis (SFA) and after
controlling for a series of important economic and non-economic factors, to get a ‘true’
measurement of energy efficiency that is consistent with economic theory of production
(which [10] refer to as ‘underlying energy efficiency’). Thus, generating a more reliable
energy efficiency indicator and providing valuable information to policy makers to address
national and international energy, economic, and environmental issues.

The remainder of the paper is organised as follows: Section 2 highlights the existing
empirical evidence and the contribution of this study. Section 3 elaborates on the method-
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ological framework applied in this study while data used in the analysis and different
econometric specifications are introduced in Section 4. The econometric results and eco-
nomic interpretation, as well as the estimated energy efficiency scores are presented in
Section 5 which is followed by Section 6 that concludes the paper.

2. Literature Review

SFA is a parametric approach that disentangles inefficiency from random noise, pro-
viding researchers with strong analytical capabilities in estimating efficiency scores. Energy
economic literature picked up the concept of best practice frontier analysis to provide
accurate estimates of energy efficiency. Existing literature can be divided into three basic ap-
proaches, namely the Shephard Energy Distance Function (SEDF), the Energy Requirement
Function (IRF) and the Energy Demand Function (EDF). According to [11], the first two
approaches give estimates only for the technical efficiency in the use of energy, as an input
in the production process. However, from an economic point of view it is quite important
to have information on the level of overall or cost efficiency (i.e., technical and allocative
efficiency). Hence [10,12] built upon the theoretical framework introduced by [13] and
motivated by the notion of non-radial input specific efficiency introduced by [14], propose a
way to measure energy efficiency by estimating a single conditional input demand frontier
function, namely the demand function for energy. The waste use of energy (energy ineffi-
ciency) is defined as the distance between the optimal use of energy that corresponds to the
cost minimising input combination to produce any given level of energy services and the
observed use of energy. Estimated inefficiency in this case represents both technically and
allocative inefficiency. The rest of this section focuses on reviewing the existing literature
using the SFA to estimate energy efficiency scores.

In particular, Filippini and Hunt [10] use data from 1978 to 2006 to estimate what
they call ‘underline energy efficiency’ for a panel of 29 OECD countries. They provide
empirical evidence that energy intensity, at least for some of the countries, is a very poor
proxy for energy efficiency according to their measure while they argue that efficiency
measurement from the estimation of an energy demand function after controlling for
several socio-economic factors is a more appropriate measurement of energy efficiency.
Furthermore, Filippini and Hunt [15] use a stochastic aggregate energy demand frontier to
estimate residential energy efficiency using data for 48 US ‘states’ over the period 1995 to
2007. This approach estimates the efficient level of residential energy use for each state and
measures the relative energy efficiency across the states suggesting that energy intensity
should not be considered as an informative proxy of energy efficiency. Moreover, Filippini
et al. [16] estimate residential energy efficiency in EU 27 member states over the period
1996 to 2009. They also assess the impact of various energy efficiency policies on efficiency.
Their estimates confirm that there is significant potential for energy savings while they
also find that financial incentives and energy performance standards as policy instruments
have indeed promoted energy efficiency improvements. Following [10], Otsuka and Goto
[17] apply the EDF approach to derive estimates of energy efficiency using data from 47
Japanese prefectures over the period between 1991 and 2007 and suggest that the correlation
of the ranking between energy intensity and estimated energy efficiency scores for their
data are quite high.

Unlike previous empirical work that did not consider the distinction between per-
sistent and transient inefficiency, Alberini and Filippini [18] estimate the persistent and
transient aggregate energy efficiency in 49 US ‘states’. Based upon [19] they simultaneously
estimate both the persistent and the transient components of energy efficiency using a
household dataset of 40,246 observations over the period 1997–2009. In the same vein,
Filippini and Hunt [20] estimate the persistent and transient aggregate energy efficiency
in 49 US ‘states’ over the period 1995–2009 but unlike [18] they make use of two separate
estimation techniques. In particular, they argue that the Mundlak version of the REM
approximates persistent notion of energy efficiency while the TRE model gives estimates
about transient energy efficiency. Following [20], Filippini and Zhang [21] also estimate the
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persistent and transient energy efficiency of Chinese provinces using data on 29 provinces
observed over the period 2003 to 2012.

For 14 sectors in Swedish manufacturing at the firm level, Lundgren et al. [22] estimate
energy demand and energy efficiency for the period 2000–2008, using SFA. In line with
[10] they argue that energy intensity is not a good proxy of energy efficiency. Furthermore,
Broadstock et al. [23] estimate electricity consumption efficiency at a household level,
using a cross-section dataset for more than 7000 Chinese households in 2012. They extend
the framework analysis in [10], by employing a metafrontier analysis which envelopes
sub-group frontiers differentiated by cities, towns, and villages. Finally, Marin and Palma
[24] apply EDF and stochastic frontier analysis to investigate the energy efficiency in 10 EU
countries. They use household data for the period 1995–2013.

Even though SFA has gained popularity in recent years, literature that attempts to
monitor and analyse energy efficiency performance in developing countries at an aggregate
level is scarce and mainly focused on China. Therefore, even though this study focuses
on the parametric frontier analysis, some non-parametric and/or non-frontier studies that
deal with the concept of energy efficiency in developing counties, are selectively presented
in the rest of this section. In particular, in the content of non-parametric frontier analysis,
Zhang et al. [25] use a total-factor framework to investigate energy efficiency performance
in 23 developing countries for the period 1980–2005 applying Data Envelopment Analysis
(DEA). They argue that Botswana, Mexico, and Panama are the most efficient counties on
average while among the panel of Asian developing counties (i.e., China, India, Thailand,
Sri Lanka, and Zambia) that appear to have an increasing trend in their total factor energy
efficiency scores over the research period, 11 countries (i.e., Dominican, Ecuador, Guatemala,
Honduras, Iran, Morocco, Paraguay, Peru, Syria, and Venezuela) show a decline in their
total factor energy efficiency scores and, finally, Argentina, Bolivia, Botswana, Chile, Kenya,
Mexico, and Panama present significant fluctuations.

Finally, Adom et al. [26] estimate persistent and transient energy efficiency for a panel
of African counties using a model proposed by [27]. Their results suggest great energy
saving potential, emphasising the structural nature of energy inefficiency in those counties.
However, as they separate the persistent and transient inefficiency, they fail to control for
unobservable country specific heterogeneity. On the contrary, Sun et al. [28] following
the methodology in [19], which discerns between persistent and transient inefficiencies
and time invariant inefficiencies from country effects, estimate the total energy efficiency
for 48 Belt and Road Countries. In line with [26], their results highlight that structural
(persistent) inefficiencies are higher than transient inefficiencies, while efficiency scores
vary significantly across the countries, with less-developed countries appearing to be less
efficient.

Unlike frontier analysis, non-frontier analysis to measure energy efficiency in devel-
oping counties appears more often in the literature. Using the non-frontier, Fisher Ideal
Index energy intensity decomposition technique in a panel of 20 developing countries,
Cantore [29] assesses the role of energy efficiency and economic structural components
in determining the energy intensity. His results suggest that the majority of the counties
present a negative trend in their energy intensity and that energy efficiency dominate the
structural effects. He also argues that there appears to be a great heterogeneity across coun-
tries since some countries show significant fluctuations in their energy efficiency effects.
The Index Decomposition Analysis (IDA) approach is used by [30] to decompose the energy
intensity into the relative contributions of energy efficiency and economic structure in a
panel of 75 countries. They suggest that the overall downward sloping of energy intensity
is mainly attributable to efficiency improvements, while the structural effect does not repre-
sent a clear source of change. They also highlight the case of Latin America countries where
results show that energy intensity has decreased on average by 17% during the period
1970–2010 but presenting a great valuation and slightly increased for the period 1990–2000.
Finally, Voigt et al. [31] use IDA in several sectors of 40 major economies, including some
developing economies. The decomposition analysis highlights that the decline in aggregate
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energy intensity over the period 1995–2007 is driven mainly by an increase in the efficiency
of production through the use of better technology.

Table 1 presents a summary of the SFA empirical studies reviewed in this section. It is
obvious that the substantial body of the energy economic literature focuses on industrialised
countries rather than the developing world, China has attracted the main attention of the
researchers while studies on energy efficiency in developing countries is quite limited and
suggests a great heterogeneity across the research countries.

Table 1. Summary of cited SFA studies on energy efficiency.

Author(s) Country Analysis Level Period Methodology Econometric
Techniques

Developed countries

[32] US manufacturing 1992–1997 ERF —
[10] OECD aggregate 1978–2006 EDF POOLED, TRE
[15] US residential 1995–2007 EDF POOLED, REM, MREM
[33] OECD aggregate 1992 SEDF —
[16] EU-27 residential 1996–2009 EDF BC95, MBC95, TFEM
[18] US households 1997–2009 EDF REM, TREM, GTREM

[34] OECD/non-OECD aggregate 1980–2010 SEDF BC92, POOLED, RSCFGH,
Hadri99

[17] Japan regional 1991–2007 SEDF POOLED
[20] US aggregate 1995–2009 EDF MREM, TREM
[22] Sweden multi-sectors 2000–2008 EDF BC95
[24] EU-10 aggregate 1995–2013 SEDF TREM, TFEM

Developing countries

[35] China regional 1997–2010 SEDF BC92
[36] China multi-industries 2005–2011 ERF BC95
[37] China chemical industry 2005–2011 SEDF BC92
[23] China household 2012 EDF BC95

[21] China regional 2003–2012 EDF REM, MREM, TREM,
MTREM

[38] China sub-industies 2002–2014 SEDF BC92
[26] African countries aggregate 1988–2014 SEDF FEM, TFEM, CTFEM, K-H
[28] Belt and Road Countries aggregate 1990–2015 SEDF FEM, CTFEM, K-L-H

Note: POOLED: pooled panel data model initially proposed by [39], TREM: True Random Effects Model initially
proposed by [40], REM: Random Effects Model initially proposed by [39], MREM: Mundlak Random Effects
Model initially proposed by [41], GTREM: Generalised True Random Effects Model initially proposed by [19],
BC92: Battesse Coelli model initially proposed by [42], BC95: Battesse Coelli model initially proposed by [43],
TFEM: True Fixed Effect Model initially proposed by [40], MTREM: Mundlak True Random Effects Model, K-H:
Kumbhakar and Heshmati model initially proposed by [27], K-L-H: Kumbhakar, Lien, and Hardaker model
initially proposed by [44], CTFEM: Consistent True Fixed Effect Model initially proposed by [45].

Hence, a key aim of this study is to estimate the ‘true’ energy efficiency in a large panel
of developing countries over the period 1989–2008. To that end, an EDF with SFA analysis
will be used and after controlling for a series of important socio-economic factors, this study
provides measurement of the ‘true’ energy efficiency levels for each country in the panel.
As illustrated by [10,15,16], SFA is considered to provide more appropriate measures of
energy efficiency than energy intensity. Hence, this study contributes to available literature
as this is, as far as is known, the first attempt to apply benchmarking parametric stochastic
frontier technique to econometrically estimate the energy efficiency for a panel of only
developing counties around the world.

This study also contributes to the literature from an econometric perspective since
the novel approach introduced by [19] is applied allowing for the separation of the level
of energy efficiency into a transient part and a persistent part. In the aftermath of the
Paris agreement in December 2015, where almost all developed and developing countries
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armed their emissions reduction, this study could offer an ample scope and indispensable
guide for policy makers around the world operating as a useful tool in designing and
implementing national energy strategies and assist to avoid potentially misleading policy
decisions.

3. Methodology

The main objective of this study is to estimate an aggregate frontier energy demand
function synthesising the approaches of energy-demand modelling and frontier analysis
based on microeconomic production theory, as proposed by [10,15]. After controlling for
economic and other factors that can vary between countries and affect energy demand,
such as income, energy price, climate effects, the size and the structure of economy, as
well as exogenous technical progress and other exogenous factors, this analysis produces
measurement of ‘true’ energy efficiency. Furthermore, the use of the econometric technique
proposed by [19] allows for the estimation of the persistent and the transient energy
efficiency simultaneously. The distinguish between the transient and persistent component
of energy efficiency is crucial from a policy perspective as it refers to different sources of
inefficiency and thus completely different strategies and instrument options that could be
applied by policy makers.

Energy demand is not a demand per se but it is a derived demand. In particular,
aggregate energy demand stems from the demand of an economy for energy services,
such as heating, cooling, lighting, motion, etc. In that context, energy along with labour
and capital can be considered as inputs for the production of a desired level of energy
services. From a theoretical point of view, the estimation of such a production function
within the stochastic frontier framework provides information about the level of technical
efficiency while the estimation of a cost frontier function allows for estimation of the overall
productive efficiency. In addition, Kumbhakar [46] illustrates that utilising Shephard
lemma it is also possible to estimate a system consisting of the cost frontier function and the
associated cost-minimising input demand functions. Thus, an input demand function gives
the minimum level of input used to produce any given level of output and the actual input
demand function differs from the stochastic input demand due to the presence of both
technical and allocative inefficiency. Furthermore, Evans et al. and Filippini et al. [12,16]
suggest that due to data limitations on some inputs or input prices it is possible to estimate
only one input demand function, in particular an energy demand function. (It should be
noted that [12] point out that this approach does not completely consider the theoretical
restrictions imposed by the production theory but it allows for the measurement, in an
approximate way, of the energy efficiency and appears to be more precise than energy
intensity). Therefore the energy demand frontier gives the minimum level of energy that
can be exploited by an economy in order to produce the desired level of energy services and
the difference between the actual energy demand and the estimated frontier represents the
inefficiency in the use of energy. Hence, following [10,15] the following aggregate energy
demand function is specified:

Eit = E(Pit, Yit, POPit, Ai, HDDit, CDDit, ISHit, ASHit, UEDTt, EFit) (1)

where Eit represents the final aggregate energy demand for country i in year t, Pit the real
energy price, Yit is the GDP, POPit is the population, Ai is the area size of each country
and is constant over time, HDDit and CDDit denote the heating and cooling degree
days, respectively, while ISHit and ASHit the shares of value added of the industrial and
agricultural sector accordingly. Additionally, UEDTt is an underlying energy demand
trend (see [47] for more discussion) that captures the common impact of technical progress
and other unobserved exogenous factors that influence all countries simultaneously. Finally,
EFit is the unobserved level of the ‘true’ energy efficiency of each country in the panel.

Nevertheless, since EFit is not observed directly, it has to be estimated. Therefore, the
stochastic frontier approach introduced by [48] is used where the level of energy inefficiency
of each country is estimated as a regression residual and can be approximated by a one-
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sided, non-negative term following the half-normal distribution. Then a panel log–log
function of Equation (1) above can be specified in the following way:

eit = αp pit + αyyit + αpop popit + αaai + αhddhddit + αcddcddit + αishishit + αashashit + αtt + αt2
t2 + uit + vit (2)

where eit is the natural logarithm of the final aggregate energy demand, pit the natural
logarithm of the real energy price, yit is the natural logarithm of the GDP, popit represents
the natural logarithm of the population, ai the natural logarithm of the area size, hddit and
cddit denote the natural logarithms of the heating and cooling degree days, respectively,
while ishit and ashit are the shares of value added of the industrial and agricultural sector
accordingly as described above. Furthermore, t and t2 represent a non-linear time trend
that proxies the UEDTt. As stated in [15] an alternative way to capture the effect of a
homogenous UEDT is to use time dummies. However, this study does not follow this
approach since preliminary analysis showed the group of the dummies to be insignificant.
The quadratic time trend was, therefore, preferred instead to capture, at least partially
the non-linear nature of the UEDT as discussed in [47]. Moreover, the general estimation
results with time dummies and time trend were relatively similar. Finally, the error term in
Equation (2) is comprised of two independent constituents. In particular, vit is a symmetric
disturbance that capture the effect of noise and is assumed to be normally distributed
and uit that represents the ‘waste’ energy and assumed to be one-sided, non-negative
disturbance that follows the half-normal distribution.

4. Data and Econometric Specification

The study employs an unbalanced panel dataset of 39 developing countries (i =
1, . . . , 39) over the period 1989 to 2008 (t = 1989, . . . , 2008). Countries are selected follow-
ing the IMF classification for developed and developing counties according to [49] and
represented in Table 2 while Table 3 presents the descriptive statistics of the variables used
in the analysis. The selection of the countries in the panel among the pool of developing
countries is based initially on the availability of the data. Nonetheless, countries included
in the panel should also meet criteria imposed as preliminary evidence of the existence of
inefficiency use of energy. Indicators, such as electricity access and energy use per capita,
were essential since countries with low access to electricity and low energy use per capita is
more likely to underuse rather than overuse energy. Finally, skewness of the OLS residuals
from the regression suggests the existence of the inefficient use of energy in the panel of the
selected countries (Figure A1).

The dataset is based on information gathered from various sources. In particular,
similar to many previous aggregate energy demand studies (such as [10]), the energy
demand variable, E, is the aggregate total final energy consumption in thousand of tonnes
equivalent (ktoe). The set of control variables include the standard economic drivers
of energy demand used in previous energy demand studies (such as [10]); Y, which is
GDP in billion 2005 US dollars in Purchasing Power Parity (PPP) and a real energy price
variable, P, 2005 = 100 as well as each country’s population, POP, in millions with
E, Y, and POP collected from the IEA database [50] and P collected from International
Labour Organisation Statistics [51]. Additionally, to control for economic structure and
geographical size, variables for agricultural value added, ASH, industry value added, ISH,
respectively, and land area, A in square kilometres (sq. km) are included with the data
collected from the World Bank database [52]. Finally, to control for the influences of the
different climate conditions, heating degree days (HDD) and cooling degree days (CDD)
variables are included with the data taken from the King Abdullah Petroleum Studies and
Research Centre (KAPSARC) dataset [53].
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Table 2. Panel of 39 developing countries used in the analysis.

Country Name ISO-Code Geographic Specification

Albania ALB Europe
Algeria DZA Africa
Argentina ARG Latin America
Armenia ARM Commonwealth of Independent States
Azerbaijan AZE Commonwealth of Independent States
Belarus BLR Commonwealth of Independent States
Bolivia BOL Latin America
Botswana BWA Africa
Brazil BRA Latin America
Bulgaria BGR Europe
China CHN Asia
Congo COG Africa
Costa Rica CRI Latin America
Croatia HRV Europe
Egypt EGY Africa
El Salvador SLV Latin America
North Macedonia MKD Europe
Georgia GEO Commonwealth of Independent States
Honduras HND Latin America
India IND Asia
Indonesia IDN Asia
Iran IRN Middle East
Jordan JOR Middle East
Kazakhstan KAZ Commonwealth of Independent States
Kyrgyzstan KGZ Commonwealth of Independent States
Malaysia MYS Asia
Morocco MAR Africa
Nepal NPL Asia
Oman OMN Middle East
Pakistan PAK Middle East
Romania ROU Europe
Russia RUS Commonwealth of Independent States
Saudi Arabia SAU Middle East
South Africa ZAF Africa
Sri Lanka LKA Asia
Syria SYR Middle East
Thailand THA Asia
Tunisia TUN Africa
Uruguay URY Latin America

Note: Georgia is not a member of the Commonwealth of Independent States, but is included in this group for
reasons of geography and similarity in economic structure.

Table 3. Descriptive statistics.

Variable Label Mean Std. Dev.
Total final energy consumption (ktoe) E 69,195 177,187
GDP (billion 2005 USD using PPPs) Y 426 975
Real consumer price index, energy P 103 45
Population (millions) POP 99 272
Agriculture, value added (% of GDP) ASH 15 10
Industry value added (% of GDP) ISH 35 10
Land area (sq. km) A 1,500,114 3,135,589
Heating degree days ? (base 70◦F) HDD 18,668 15,288
Cooling degree days ? (base 70◦F) CDD 5798 4604

Note: ? Heating degree days (HDD) and cooling degree days (CDD) are regarded as reliable variables for
appropriately accounting for the effect of weather on energy-demand estimation [54]. HDD and CDD measure,
respectively, how warm or cold a country is compared to the mean recorded outdoor temperature for a given
country to a standard/base temperature. In this study, 70◦F is the base temperature for the HDD and the CDD to
ensure that there are no non-zero values for some equatorial developing counties.
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Following [48], SFA has been the subject of a great body of literature, resulting in many
proposed econometric models to estimate cost and production functions, as described in
Table 1. Among others, Pitt and Lee [39] adapt the original pooled model proposed for panel
data and they propose the Random Effects model (REM) that interprets any unobserved,
individual specific, time invariant heterogeneity as inefficiency. REM estimates efficiency
scores that are constant over time and, hence, intuitively, REM tends to provide information
about persistent efficiency. However, a crucial advantage that panel data models can
offer, namely the control of unobserved heterogeneity is overlooked in REM. Contrariwise,
Greene [40] extends the panel data version of the original model proposed by [48] by
adding individual specific time-invariant effects and, thus, separating the unobserved
time-invariant heterogeneity from time-varying efficiency. In this model, called the True
Random Effects model (TREM), any time invariant inefficiency is completely absorbed by
the individual specific term and therefore estimated efficiencies tend to provide information
about the transient component of efficiency. Additionally, Filippini and Greene [19] propose
a model called Generalised True Random Effects model (GTREM) that uses a maximum
simulated likelihood approach for the estimation of Equation (2) and provides segregated
estimations for the persistent and the transient component of efficiency from the same
model, hereafter TGTREM and PGTREM, respectively.

The level of energy efficiency can be estimated using the conditional mean of the
efficiency term proposed by [55] as follows:

EFit =
EF

it
Eit

= exp{−ûit}

where EF
it is the frontier energy demand and Eit is the observed energy demand of each

country in year t. Efficiency scores closer to unity indicate that countries utilise energy in a
rational and efficient way while moving away from unity to zero countries waste energy.

Furthermore, Farsi et al. [41] argue that RE estimators can be affected by heterogene-
ity bias as it is possible that the unobserved country specific characteristics may not be
distributed independently of the explanatory variables and they propose that the use of
the Mundlak adjustment with the REM and TREM to confine the bias in inefficiency esti-
mates by separating inefficiency from the unobserved heterogeneity and, thus, improving
efficiency estimates. The Mundlak adjustment [56] of the REM considers the correlation
of the country specific effects and the explanatory variables in an auxiliary equation as
shown in Table 4, where X̄it is a vector of the averages of explanatory variables and γ is the
respective vector of coefficients. The use of the Mundlak adjusment is also supported by
[10,15,16,20,21].

Given the discussion above, three alternative models are employed for the estimation
of Equation (2) in an attempt not only to estimate the level of ‘true’ energy efficiency in
developing countries but to also evaluate the persistent and the transient counterparts
of inefficiencies. Three basic models, namely the REM, TREM, and the GTREM, along
with their Mundlak variations (i.e., MREM, MTREM, MGTREM) were tested; however,
only the results of the three preferred models are presented here. Full details about the
model specifications and estimated results, including all the models used are presented
in Tables A1 and A2 in Appendix A. The Mundlak adjustment appears to control, at least
partially, the heterogeneity in the REM and, thus, the MREM was preferred over the REM.
However, concerning the TREM and the GTREM, the estimated parameter coefficients, as
well as the efficiency scores were highly correlated with those produced by the respective
Mundlak variations, but it seems that the introduction of a Mundlak modification in these
models renders some of the variables statistically insignificant. For that reason, TREM and
GTREM were preferred over the MTREM and the MGTREM. As explained previously, the
REM with a Mundlak adjustment (MREM) provides estimations of energy efficiency that
remain constant over time. For that reason, the literature suggest that this model tends
to give information about the persistent energy efficiency of a country [20]. The second
model used in this study is the TREM that gives information about the transient efficiency
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while, finally, the GTREM is used to estimate both components (persistent and transient) of
inefficiency. Table 4 provides detailed econometric specifications of these models.

Table 4. Econometric specification of stochastic energy demand frontier: country specific effects, error
term, and inefficiency.

Model I Model II Model III
MREM TREM GTREM

Country’s effects αi αi = γ X̄it + δi N(α, σ2
w) N(α, σ2

w)

X̄it =
1
T

T

∑
t=1

Xit

Full random error εit εit = δi + vit εit = wi + uit + vit
εit = wi + hit + uit +
vit

δi ∼ N+(0, σ2
δ ) uit ∼ N+(0, σ2

u) uit ∼ N+(0, σ2
u)

vit ∼ N(0, σ2
v ) vit ∼ N(0, σ2

v ) vit ∼ N(0, σ2
v )

wi ∼ N(0, σ2
w) wi ∼ N(0, σ2

w)

hi ∼ N(0, σ2
h )

Persistent inefficiency estimator E(δi|δi + vit) ∅ E(hi|εit)

Transient inefficiency estimator ∅ E(uit|εit) E(uit|εit)

5. Empirical Results and Discussion

The estimation results of the aggregate energy demand frontier models, detailed in
the previous sections, are given in Table 5. The majority of the estimated coefficients, which
for the variables in logarithmic form can be interpreted directly as elasticities of energy
demand, appear to have the expected sign and almost all are statistically significant in the
TREM and the GTREM. Furthermore, estimates of λ are also given in Table 5. (λ = σu/σv
and provides information regarding the relative contribution of the two components of the
error term so that an estimate of λ closer to zero indicates that the disturbance noise is the
dominant component whereas a nearly infinite estimate of λ indicates that the compound
error term is dominated by the one-sided error component). The estimated λ’s are all
greater than one (>1) and statistically significant, demonstrating that the one-sided error
component is relatively large in all models indicating that there is a considerable amount
of estimated energy inefficiency in the models.

The results suggest that energy demand in developing countries is income and price
inelastic. In particular, the estimated income elasticity of demand varies from 0.52 in the
TREM to 0.59 in the REM while the estimated income elasticity in the GTREM lies betwixt
at 0.58. The estimated own price elasticity of demand varies from−0.17 in the MREM to ap-
proximately −0.22 in both the TREM and the GTREM. Additionally, population appears to
have positive influence on the energy demand. Namely, the estimated population elasticity
is 0.92 but insignificant in the MREM while in the TREM and GTREM population elasticity
is notably lower at 0.50 and 0.33, respectively, and both are statistically significant. The area
coefficient is not significant in the MREM but suggests a positive and significant impact on
the energy demand in both the TREM and the GTREM with the respective elasticities being
at 0.30 and 0.11. Furthermore, the two climate variables are not significant in the MREM
while the influence of HDD and CDD on the energy demand appear to be significant and
positive in the TREM and the GTREM. A possible explanation for these results is that
heating and/or cooling systems have yet to be widely used in developing countries.
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Table 5. Estimation results.

MREM TREM GTREM

Main Equation Mundlak

Constant 9.754 ∗∗∗ 6.074 ∗∗∗ 4.158 ∗∗∗

(3.692) (0.094) (0.119)
αy 0.586 ∗∗∗ 0.383 ∗ 0.515 ∗∗∗ 0.578 ∗∗∗

(0.034) (0.215) (0.011) (0.013)
αp −0.172 ∗∗∗ 0.104 −0.213 ∗∗∗ −0.221 ∗∗∗

(0.017) (0.525) (0.008) (0.010)
αpop 0.920 −0.652 ∗∗ 0.495 ∗∗∗ 0.333 ∗∗∗

(0.060) (0.286) (0.010) (0.011)
αa −0.108 0.030 ∗∗∗ 0.115 ∗∗∗

(0.136) (0.005) (0.005)
αhdd 0.027 −0.078 0.017 ∗∗∗ 0.050 ∗∗∗

(0.047) (0.103) (0.003) (0.003)
αcdd −0.029 −0.409 ∗∗ −0.046 ∗∗∗ 0.004

(0.075) (0.171) (0.007) (0.008)
αish 0.000 −0.003 0.002 ∗∗∗ 0.004 ∗∗∗

(0.001) (0.009) (0.000) (0.000)
αash 0.005 ∗∗∗ −0.011 0.004 ∗∗∗ 0.008 ∗∗∗

(0.002) (0.020) (0.001) (0.001)
αt −0.0116 ∗∗∗ 0.0111 ∗∗∗ 0.0101 ∗∗∗

(0.004) (0.002) (0.002)
αt2

0.0004 ∗∗ −0.0002 ∗∗ −0.0001
(0.000) (0.000) (0.000)

λ 4.381∗ 2.901 ∗∗∗ 1.550 ∗∗∗

(2.531) (0.248) (0.171)
σ 0.529 ∗∗∗ 0.183 ∗∗∗ 0.169 ∗∗∗

(0.003) (0.005)
Log Likelihood 374.361 366.791 346.230

Note: *** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level. Standard errors are in
parentheses. Coefficients of the time trend variables are given to four decimal places given they are relatively
small. The sample includes 640 observations. NLOGIT5 econometric software is used for the estimations.

As expected, the estimated coefficients of the shares of the industrial and the agricul-
tural sector are positive, noting that the reference sector is the less energy intensive services
sector. Finally, the UEDT is given by the first differential with respect to t of Equation (2),
i.e., at + 2at2

t. For the MREM, the estimated coefficient of the linear component (at) is
negative and statistically significant whereas the quadratic component (at2

) is positive and
statistically significant suggesting that the estimated UEDT has a relatively strong positive
impact on energy demand. The positive impact of the UEDT possibly reflects an increasing
appetite for energy services in developing countries that overcomes any potential benefits
from the use of new technologies. It is also likely that the rate of adoption of technologies
available in developing countries is quite slow, something that is mirrored in the relatively
small estimated efficiency scores compared to results for developed countries in [10,16].

However, the main focus of SFA is not the estimation of the goal function (i.e., energy
demand function) but the estimation of efficiency scores. Table 6 provides descriptive
statistics of the energy efficiency estimates for the panel of 39 developing counties over the
period 1989–2008, obtained from each econometric specification. The results suggest that
the estimated average values of the persistent efficiency vary from 70.5% in the MREM
to 81.2% in the persistent part of the GTREM (PGTREM) while the transient efficiency is
around 89%. In particular, it is 88.1% in the TREM and 89.6% in the transient part of the
GTREM (TGREM).

These results are in line with the estimated energy efficiency in [34] which were
on average between 81% and 91%. However, it should be noted that using the input
distance function approach they estimate the level of technical efficiency in the use of
energy while in this study the use of energy demand function provides estimations of the
overall energy efficiency (both technical and allocative). Therefore, comparisons between
these two studies should consider this important difference. Additionally, SFA provides
relative efficiency scores given the dataset used. The study by [34] uses a panel of data
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consisting of 55 OECD and non-OECD countries while this study applies a dataset for
solely 39 developing counties. Again, any comparisons of relative efficiency scores and
ranking should consider this aspect. On average the estimated transient energy efficiency
found on this study is higher than the persistent energy efficiency, possibly reflecting the
lack of necessary energy efficiency regulations in developing countries, structural problems
in the production of energy services and any other permanent in character behavioural and
managerial failures. This result is in line with both [26,28] highlighting the low contribution
of structural effect in energy intensity.

Table 6. Descriptive statistics of the estimated energy efficiency scores.

Model Mean Std. Dev. Min Max

MREM 0.705 0.203 0.335 0.969
TREM 0.881 0.077 0.391 0.986
PGTREM 0.812 0.004 0.795 0.823
TGTREM 0.896 0.049 0.560 0.974

The correlation coefficient between the estimated values of the transient efficiency
scores obtained with the TREM and the TGTREM, as illustrated in Table 7, is very high at
0.97, highlighting that both models provide sufficient information regarding the transient
energy efficiency. On the contrary, the value of the correlation coefficient between the esti-
mated values of the persistent efficiency scores obtained from the MREM and the PGTREM
is very low at 0.07 suggesting that the REM may not be a satisfactory indicator of persistent
efficiency. A possible explanation for this, is that the REM considers any unobserved time-
invariant country specific heterogeneity as inefficiency and thus produces lower efficiency
scores. Overall, the preferred model is the GTREM which provides estimates for both the
persistent and the transient energy efficiency. Hence, the analysis hereafter is based on the
estimations of this model. Figure 1 presents the average transient and persistent energy
efficiency by country, while Figure 2 illustrates the map of the countries in the panel given
the estimated average value of their transient energy efficiency.

Table 7. Correlation coefficients for the estimated energy efficiency scores and energy intensity.

MREM TREM PGTREM TGTREM EI

MREM 1
TREM 0.045 1
PGTREM 0.075 −0.009 1
TGTREM 0.048 0.971 −0.054 1
EI −0.460 −0.357 −0.006 −0.354 1

Note: Table provides the simple correlation coefficients of the estimates of the efficiency scores for the whole panel
of 39 developing countries over the period 1989–2008 generated from the modelling and the energy intensity
(EI—the ratio between energy consumption and gross domestic product).

Furthermore, as expected, the estimated values of ‘true’ energy efficiency scores are
negatively correlated with energy intensity and the correlation coefficients vary from −0.01
to −0.46. It is argued by [10,15] that the technique used here tends to provide useful
information and can be an important tool for policy makers as long as the estimated
efficiencies are not perfect or near perfectly correlated with energy intensity since then, all
the necessary information would be gathered from the energy intensity. Nevertheless, this
is not the case in this study. This result suggests that energy intensity is a poor proxy of
energy efficiency for the developing countries and unless the kind of analysis employed
here is undertaken it is possible that policy makers would have a misleading picture of the
‘true’ energy efficiency potential — a result that is also consistent with [10,15].
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Figure 1. Estimated persistent and transient efficiency in developing countries.
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Figure 2. Energy efficiency in developing countries.
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Table 8 provides the estimated average ‘true’ energy efficiency scores obtained from
the TGTREM for each country and compares these values with the average energy in-
tensity. Table 8 also provides the relative ranking of the countries in the panel with both
measurements and shows that Brazil, Pakistan, Croatia, Egypt, and Indonesia are the most
efficient countries using the TGTREM, while Bolivia, Azerbaijan, Kyrgyzstan, Albania,
and Kazakhstan are the least efficient. On the other hand, energy intensity suggests that
Oman, Congo, Algeria, Uruguay, and Morocco are the most efficient counties, and China,
Nepal, Kazakhstan, Belarus, and Russia are the least efficient ones. Table 8 also illustrates
that estimated energy efficiency is negatively correlated with energy intensity, as expected,
since when energy efficiency increases energy intensity would generally be expected to
decrease. However, this is not always the case. Some countries (i.e., Brazil, Croatia, Egypt,
Nepal, and Tunisia) appear to have a positive relationship between the estimated energy
efficiency and energy intensity. In addition, among the panel there are countries that have
a strong negative correlation (>90%) between the estimated energy efficiency and energy
intensity (i.e., Bolivia, Botswana, Congo, India, Kyrgyzstan, Malaysia, Oman, Saudi Arabia,
and Thailand) while for some other countries (i.e., Armenia, Azerbaijan, Belarus, Croatia,
Egypt, El Salvador, Indonesia, and Jordan) this correlation is significantly lower.

Additionally, for the period 1989–2008 according to the estimated TGTREM, Pakistan,
Nepal, Costa Rica, Congo, and Oman are ranked 2nd, 8th, 21st, 30th, and 32nd, respectively,
whereas they are ranked 23rd, 36th, 6th, 2nd, and 1st according to energy intensity measure-
ment. Although there is a general negative relationship between estimated energy efficiency
and energy intensity this is not one to one regarding the relative rankings. In addition,
the Spearman rank correlation coefficient is equal ρ(37) = 0.35 with p-value = 0.03. This
relationship between two measurements is further illustrated in Figure 3.

Figure 3. Estimated average energy efficiency Vs. average energy intensity 1989–2008.
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Table 8. Each country’s average energy efficiency and energy intensity for the period 1989–2008, their
rankings, and the correlation coefficients between them.

Country

Average ‘True’ Energy
Efficiency (TGTREM)

Average Energy Intensity (Toe per
Thousand 2005 USD PPP) Cor. Coef.

Value Rank Value Rank

Albania 0.850 38 0.095 15 −0.424

Algeria 0.905 15 0.055 3 −0.639

Argentina 0.902 20 0.120 22 −0.421

Armenia 0.893 29 0.130 24 −0.010

Azerbaijan 0.860 36 0.223 33 −0.336

Belarus 0.894 26 0.288 38 −0.391

Bolivia 0.882 35 0.105 18 −0.985

Botswana 0.904 19 0.086 9 −0.913

Brazil 0.912 1 0.088 10 0.555

Bulgaria 0.891 31 0.178 31 −0.879

China 0.886 34 0.245 35 −0.862

Congo 0.892 30 0.050 2 −0.907

Costa Rica 0.901 21 0.071 6 −0.809

Croatia 0.911 3 0.106 19 0.302

Egypt 0.910 4 0.073 7 0.090

El Salvador 0.905 13 0.089 13 −0.244

North Macedonia 0.904 18 0.110 21 −0.846

Georgia 0.893 28 0.184 32 −0.484

Honduras 0.908 9 0.145 27 −0.462

India 0.899 23 0.140 25 −0.917

Indonesia 0.909 5 0.108 20 −0.399

Iran 0.897 25 0.145 26 −0.640

Jordan 0.908 7 0.102 17 −0.383

Kazakhstan 0.838 39 0.250 37 −0.0698

Kyrgyzstan 0.851 37 0.241 34 −0.936

Malaysia 0.906 11 0.088 11 −0.942

Morocco 0.906 12 0.071 5 −0.656

Nepal 0.908 8 0.250 36 0.444

Oman 0.890 32 0.043 1 −0.987

Pakistan 0.911 2 0.122 23 −0.808

Romania 0.898 24 0.160 29 −0.613

Russia 0.894 27 0.317 39 −0.855

Saudi Arabia 0.901 22 0.089 12 −0.961

South Africa 0.904 16 0.153 28 −0.875

Sri Lanka 0.905 14 0.089 14 −0.481

Syria 0.904 17 0.178 15 −0.858

Thailand 0.890 33 0.099 16 −0.967

Tunisia 0.909 6 0.084 8 0.498

Uruguay 0.908 10 0.068 4 −0.687

Figure 4 shows the comparison between the estimated transient energy efficiency and
energy intensity of each country over the period 1989–2008. It should be noted that this
study is based on an unbalanced panel dataset for the estimation of efficiency scores and
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for that reason some counties in Figure 4, such as Brazil and Honduras, are over a shorter
period. Additionally, only the estimated transient energy efficiency is used for comparison
with energy intensity since the correlation between these two measurements is −0.35 while
the correlation between the persistent energy efficiency and the energy intensity is only−0.1.
Another reason is that the estimated transient energy efficiency appears notable variation
among the countries and over the estimated period while persistent efficiency is constant
and there are no significant differences among the countries. Figure 4 also indicates that
there is no clear, common trend regarding energy-efficiency improvements. In particular,
some countries (i.e., Azerbaijan, Botswana, China, India, Kazakhstan, Kyrgyzstan, and
Russia) clearly have improved their energy efficiency over the estimated period while
some other countries (i.e., Albania, Algeria, Bolivia, Iran, Malaysia, Morocco, Saudi Arabia,
Thailand, and Tunisia) display a downward sloping trend in energy efficiency. Finally,
there is a group of countries where ‘true’ energy efficiency shows some level of fluctuation
or is quite steady over the estimation period.

Given the discussion above, estimated energy efficiency tend to give more accurate
information regarding energy efficiency of a country than energy intensity does and hence
this study uses the term ‘true’ energy efficiency to describe the estimated energy efficiency
scores and distinguish them from the energy intensity. It is worth noting that SFA is a
benchmarking technique and, hence, each county’s estimated energy efficiency might not
illustrate the precise country’s position. However, estimated energy efficiency measure-
ments provide useful information regarding each country’s change in energy efficiency
over the estimated period and allows for comparisons among the countries in the panel.
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Figure 4. Comparison of estimated ‘true energy efficiency with energy intensity by country.

6. Conclusions

This paper uses an energy demand frontier model in order to estimate the ‘true’
energy efficiency for a sample of 39 developing countries over the period 1989–2008. The
aggregate energy demand specification controls for income, price, population, area size,
the share of the agricultural sector and the services sector in GDP, HDD, CDD and a UEDT,
expressed by a quadratic time trend, and it is estimated using three alternative econometric
techniques, namely the MREM, the TREM, and the GTREM. These alternative models
represent different sources of information regarding the energy efficiency of a country and,
thus, there is no absolute preferred model among them but a combination of these three
could lead to useful conclusions. Overall, REM tend to estimate the level of persistent
energy efficiency while the TREM estimates provide information regarding the transient
energy efficiency. Finally, the GTREM allows for estimation of both persistent and transient
energy efficiency simultaneously.
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The estimated results indicate, as expected, that the transient and persistent counter-
parts are quite different in values and not highly correlated. This is because the sources
of inefficiency are quite different. Therefore, policy makers should be informed about the
levels of both transient and persistent energy efficiency to be able to design effective energy
policies. The TGTREM estimates are very highly correlated with estimates produced by the
TREM and, thus, both models could explain trends in transient energy efficiency. On the
contrary, the correlation between the PGTREM estimates and the MREM is relatively lower.
This is in line with previous literature which argues that in the REM all the time invariant
variables are captured by the individual effects and, hence, the REM produces higher level
of inefficiencies. The Mundlak adjustment seems to control part of this time invariant
heterogeneity. (The correlation between the REM and the PGTREM is significantly lower
than that between the MREM and the PGTREM suggesting that Mundlak modification
controls, at least partially, the unobserved time invariant heterogeneity). The estimated
results also suggest that there is a significant potential for energy saving in developing
countries. In particular, persistent inefficiency, on average, is higher than the transient
reflecting the potential lack of structural reforms of economies and the implementation of
the necessary regulatory framework that would attract investments on the energy efficiency.

Additionally, the information from this study is of use to policy makers in developing
countries and international organisations showing where energy intensity alone is likely
not to be a good indicator of energy efficiency, thus possibly avoiding policy mistakes
based purely on intensity. Furthermore, the results indicate to policy makers where there
is significant potential for CO2 emission savings if countries utilise energy efficiently.
Generally, most efficient countries tend to use less energy but this is not always the case.
Three countries, namely China, India, and Russia, which are among the world’s top-5
emitters appear to be quite inefficient in their use of energy. Although these countries have
increased their respective level of energy efficiency during the examined period, there is
still ample scope for improvements in energy efficiency. In the light of the Paris agreement,
that consider both developed and developing countries equally responsible to design and
implement national energy strategies in the direction of reducing their energy consumption
and the associated CO2 emissions by 2020, this result is particularly important from a
policy-making perspective.

At the country level, estimated results are in line with previous studies suggesting
great heterogeneity across countries’ efficiency scores. The majority of the countries have
improved their energy efficiency over the estimated period. However, a group of countries,
especially Latin America countries, appear to have a downward trend in their energy-
efficiency scores or great volatility with no dominant trend. This arguably reflects the fact
that developing countries have not been bound to implement environmentally sensitive
energy strategies, until more recently. Finally, estimated energy efficiency is negatively
correlated with energy intensity for most of the countries, as expected, but this negative
correlation appears to have significant heterogeneity across countries varying from −0.01
to−0.99. In addition, for some countries the results indicate a positive relationship between
the estimated ‘true’ energy efficiency and energy intensity, unveiling the weakness of using
energy intensity or the energy consumption to GDP ratio as a proxy of energy efficiency—a
result that is in line with previous literature. This study is based on the economic theory
of production and after controlling for a range of economic and other factors, provides
effective energy efficiency measurements that could offer an ancillary instrument to policy
makers in order to avoid any potential misguided conclusions.
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Figure A1. Kernel density of the OLS residuals and skewness.
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Table A1. Econometric specification of SEDF: effects, error term and inefficiency.

REM MREM TREM MTREM GTREM MGTREM

Country’s effects αi α
αi =

γ X̄it + δi
N(α, σ2

w)
αi =

γ X̄it + wi
N(α, σ2

w)
αi =

γ X̄it + wi
X̄it =

1
T

T

∑
t=1

Xit

X̄it =

1
T

T

∑
t=1

Xit

X̄it =

1
T

T

∑
t=1

Xit

Full random error εit ε = ui + vit
εit =

δi + vit

εit = wi +
uit + vit

εit = wi +
uit + vit

εit = wi + hi + uit + vit εit = wi + hi + uit + vit

ui ∼
N+(0, σ2

u)
δi ∼

N+(0, σ2
δ )

uit ∼
N+(0, σ2

u)
uit ∼

N+(0, σ2
u)

uit ∼
N+(0, σ2

u)
uit ∼

N+(0, σ2
u)

vit ∼
N(0, σ2

v )
vit ∼

N(0, σ2
v )

vit ∼
N(0, σ2

v )
vit ∼

N(0, σ2
v )

vit ∼
N(0, σ2

v )
vit ∼

N(0, σ2
v )

wi ∼
N(0, σ2

w)
wi ∼

N(0, σ2
w)

wi ∼
N(0, σ2

w)
wi ∼

N(0, σ2
w)

hi ∼
N(0, σ2

h )
hi ∼

N(0, σ2
h )

Persistent inefficiency estimator E(ui |εit)
E(δi |δi +

vit)
∅ E(hi |εit) E(hi |εit)

Transient inefficiency estimator ∅ E(uit|εit) E(uit|εit) E(uit|εit) E(hi |εit)

REM proposed by [39] considers the individual random effects as inefficiency rather than unobserved hetero-
geneity as in the traditional random effects model. Hence, estimation results of the REM provide information on
the persistent part of the inefficiency in the use of energy. One drawback of this model is that any time-invariant
individual-specific unobserved heterogeneity is considered inefficiency. Therefore, this REM tends to overestimate
the level of ’persistent’ inefficiency in the use of energy. In MREM, as proposed by [41], the unobserved hetero-
geneity bias problem is solved (at least partially) since the time-invariant unobserved heterogeneity is captured by
the coefficients of the group mean of the time-varying explanatory variables of the Mundlak adjustment and not
by the inefficiency component. Therefore, it is expected that the level of estimated energy efficiency obtained with
MREM to be higher than the one obtained with REM. Estimation results confirm this point, as illustrated in Table 7.
In TREM, the constant term, α in Equation (2), is substituted with a series of individual-specific random effects that
take into account all unobserved socioeconomic and environmental characteristics that are time-invariant. Thus,
TREM distinguishes the time-invariant unobserved heterogeneity wi from the time varying level of efficiency
component uit. However, any time-invariant or persistent component of inefficiency is completely absorbed in the
individual-specific constant terms. Therefore, generally TREM provide information only for the transient energy
efficiency. Finally, for the REM and TREM, energy efficiency is estimated as shown in [55]. The GTREM gives the
possibility to estimate simultaneously the persistent and transient part of inefficiency and is obtained by adding
to the TREM a time persistent inefficiency component hi . Therefore, this model considers a four-part disturbance
with two-time varying components and two time-invariant components. Additionally, hi , captures the persistent
inefficiency in the use of energy while uit captures the transient inefficiency. Finally, Filippini and Greene [19]
develop a straightforward empirical estimation method which is followed in this thesis. The model is essentially a
TREM consists of two part disturbance, one time varying (vit + uit) and one time invariant (wi + hi), in which
each of the two parts has its own skew normal distribution rather than normal distribution. The computation of
energy efficiency requires a one time, post estimation application of GHK simulation and NLOGIT5 econometric
software is used for the estimations of all models.
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Table A2. Summary of SFA studies on energy efficiency

REM
MREM

TREM
MTREM GTREM

Main Equation Mundlak Main Equation Mundlak

Constant 6.804 ∗∗∗ 9.754 ∗∗∗ 6.074 ∗∗∗ 6.985 ∗∗∗ 4.158 ∗∗∗

(1.605) (3.692) (0.094) (0.159) (0.119)
αy 0.585 ∗∗∗ 0.586 ∗∗∗ 0.383 ∗ 0.515 ∗∗∗ 0.502 ∗∗∗ 0.453 ∗∗∗ 0.578 ∗∗∗

(0.021) (0.034) (0.215) (0.011) (0.023) (0.027) (0.013)
αp −0.187 ∗∗∗ −0.172 ∗∗∗ 0.104 −0.213 ∗∗∗ −0.197 ∗∗∗ −0.155 ∗∗∗ −0.221 ∗∗∗

(0.014) (0.017) (0.525) (0.008) (0.010) (0.051) (0.010)
αpop 0.581 ∗∗∗ 0.920 −0.652 ∗∗ 0.495 ∗∗∗ 0.808 ∗∗∗ 1.610 ∗∗∗ 0.333 ∗∗∗

(0.059) (0.060) (0.286) (0.010) (0.050) (0.0051) (0.011)
αa 0.111 −0.108 0.030 ∗∗∗ −0.025 ∗∗∗ 0.115 ∗∗∗

(0.109) (0.136) (0.005) (0.005) (0.005)
αhdd 6.804 0.027 −0.078 0.017 ∗∗∗ 0.020 −0.007 0.050 ∗∗∗

(0.039) (0.047) (0.103) (0.003) (0.039) (0.039) (0.003)
αcdd 0.062 −0.029 −0.409 ∗∗ −0.046 ∗∗∗ −0.032 −0.251 ∗∗∗ 0.004

(0.047) (0.075) (0.171) (0.007) (0.035) (0.036) (0.008)
αish 0.002 ∗∗∗ 0.000 −0.003 0.002 ∗∗∗ 0.001 −0.002 ∗∗ 0.004 ∗∗∗

(0.001) (0.001) (0.009) (0.000) (0.001) (0.001) (0.000)
αash 0.006 ∗∗∗ 0.005 ∗∗∗ −0.011 0.004 ∗∗∗ 0.004 ∗∗∗ .001 0.008 ∗∗∗

(0.001) (0.002) (0.020) (0.001) (0.001) (0.001) (0.001)
αt −0.002 −0.012 ∗∗∗ 0.011 ∗∗∗ 0.002 0.010 ∗∗∗

(0.003) (0.004 (0.002) (0.002) (0.075) (0.002)
αt2

0.000 0.001 ∗∗ −0.001 ∗∗ 0.000 −0.001
(0.000) (0.000) (0.000) (0.000) (0.075) (0.000)

λ 7.071 ∗ 4.381 ∗ 2.901 ∗∗∗ 2.061 ∗∗∗ −0.001
(4.191) (2.531) (0.248) (0.243) (0.075) (0.000)

Note: *** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level. Standard errors are in
parentheses. The sample includes 640 observations. NLOGIT5 econometric software is used for the estimations.
GTREM with Mundlak modification does not converge.
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