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Abstract: Most existing methods aiming to solve the fault identification problem of metal oxide ar-
resters (MOAs) are limited by strong subjectivity in judgment, the significant impact of environmental
temperature and humidity on the online monitoring of the resistance current, and poor generalization
ability. Therefore, in this article, we propose an MOA fault identification method that combines
suppressing environmental temperature and humidity interference with a stacked autoencoder (SAE).
Firstly, a functional relationship model between resistance current and environmental temperature
and humidity is established. Then, a temperature and humidity interference suppression method
based on weighted nonlinear surface modeling is proposed to normalize the resistance current to the
same reference temperature and humidity conditions. Finally, an MOA fault identification method
combining the suppression of environmental temperature and humidity interference with an SAE is
proposed. Furthermore, a comprehensive comparison is conducted on the recall, accuracy, F1-score,
and average accuracy of support vector machine, random forest, logistic regression, and SAE clas-
sification algorithms in three different scenarios to demonstrate the effectiveness of the proposed
method. The results indicate that environmental temperature and humidity interference suppression
for resistive current prior to MOA fault classification significantly reduce the number of false alarms.
Compared with other methods, the MOA fault identification method, which combines environmental
temperature and humidity interference suppression with an SAE, has the highest average accuracy
of 99.7%.

Keywords: metal oxide arrester (MOA); fault identification; environmental temperature and humidity;
interference suppression; stacked autoencoder (SAE)

1. Introduction

The metal oxide arrester (MOA) is a significant component of the surge protection
device in a power supply system. However, in the long-term operation process, the
insulation performance of the MOA will reduce due to varistor aging, moisture, current
surge, and other factors that threaten the safe operation of the power supply system. As a
result, it is necessary to monitor the operating status of the MOA in a timely fashion and
send fault alarms to improve the reliability of the power system [1–3].

At present, the online monitoring methods for MOAs mainly include full current,
resistive current, harmonic current, and infrared thermal imaging methods. In [4], an
inverse-distance-weighted improved K-nearest neighbor algorithm was adopted to deter-
mine the resistive current for defect diagnosis of an MOA. In [5], a three-phase segmented
arrester resistive network circuit model was established to filter out the capacitive com-
ponent of the full current. In [6], the harmonic analysis method was used for the online
monitoring of an MOA. In [7–9], the infrared thermal imaging method was adopted to
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monitor the heating status of an MOA. Both the full-current method and the infrared
thermal imaging method are susceptible to the on-site weather environment, which can
cause many false alarms. Due to its simplicity, convenience, and sensitivity to reflecting
the state of the MOA, the resistive current method has been widely used in monitoring the
operational status of MOAs [10].

To solve the MOA fault identification problem, various methods have been studied,
mainly including expert knowledge [11–16], artificial intelligence algorithms [17,18], ar-
tificial neural networks (ANNs) [19,20], and deep learning [21–23]. In [15,16], a fuzzy
evaluation method for the MOA operation state based on information fusion was proposed.
In [18], an MOA degradation monitoring method was proposed based on the genetic
algorithm (GA). In [19,20], an ANN was utilized to identify the features of MOA faults.
However, the ANN still possesses certain limitations, including prolonged training time,
susceptibility to overfitting, and unsatisfactory generalization ability [24,25]. Compared
to ANNs, deep learning performs layer-by-layer feature transformations to shift the fea-
ture representation of samples from the original space to a new feature space, making
classification or prediction easier and being better suited to fault detection in electrical
systems [26–28]. In [21–23], a support vector machine (SVM) was employed to enhance the
detection accuracy of MOA faults.

In addition, the online monitoring feature quantity of an MOA is easily affected by
the environment [29–33]. In [29], a method for eliminating interference due to the resistive
current of an MOA based on adaptive variational mode decomposition and adaptive
singular value decomposition was proposed. Mathematical morphological filters were used
in [34] to denoise the on-site monitoring signal of an MOA leakage current with a strong
interference background. In [35], on-line monitoring of the full current and temperature
and humidity variations of surge arresters was carried out, and it was concluded that
these variations have some correlation in field tests. In [36,37], the trend of the leakage
current of an MOA changing with temperature and humidity was analyzed. In [38], the
influence of temperature on the characteristic parameters of an MOA was studied and a
correction method was proposed, but the influence of environmental humidity was not
considered. In [39], the impact of environmental temperature and humidity was considered
during online monitoring of an MOA, and BP neural networks were used to correct MOA
parameters by establishing the relationship between these parameters and temperature
and humidity. However, the Levenberg–Marquardt training algorithm used in [39] was
prone to falling into local optima. In [40], Bayesian neural network models were used to
reduce the effect of meteorological factors on the full current, but MOA fault classification
was not implemented.

In existing studies, some correction methods for the MOA resistive current considering
the effects of environmental temperature or humidity have been proposed, but a universal
correction method considering the effects of both environmental temperature and humidity
is lacking. Furthermore, some MOA fault identification models based on deep learning
have been established to overcome the shortcomings of a long training time, easy overfitting,
and poor generalization ability. However, in these deep learning models, the suppression
of environmental temperature and humidity has rarely been carried out.

To overcome the above shortcomings of the existing methods, we propose an MOA
fault identification method that combines the suppression of environmental temperature
and humidity interference with a stacked autoencoder (SAE). The main contributions of
this paper are as follows:

(1) A functional relationship model between resistive current and environmental tempera-
ture and humidity is established to mitigate the impact of environmental temperature
and humidity on the resistive current of an MOA. A method for suppressing envi-
ronmental temperature and humidity interference using weighted nonlinear surface
modeling is proposed. This method normalizes the resistive current to the reference
temperature and humidity, resulting in a reduction in environmental interference
with the resistive current.
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(2) An MOA fault identification method combining the suppression of environmental
temperature and humidity interference with a stacking automatic encoder is proposed.
Firstly, the MOA resistive current is suppressed by environmental temperature and
humidity interference, and then the SAE classification algorithm is used to classify
the suppressed resistive current, thereby achieving MOA fault identification.

(3) The effectiveness of the MOA fault recognition method combining suppression of
environmental temperature and humidity interference with a stacking automatic en-
coder is verified by comparison with several commonly used classification algorithms
under three conditions: not considering environmental temperature and humidity,
feature fusion of environmental temperature and humidity with resistive current, and
suppression of environmental temperature and humidity interference.

The remainder of the article is organized as follows. Section 2 describes the MOA fault
identification method, which combines suppression of environmental temperature and
humidity interference with an SAE. In Section 3, the MOA fault identification results are
provided. Finally, the conclusions are given in Section 4.

2. Methods

To mitigate the effects of humidity and temperature on the MOA resistive current, it
is essential to construct a precise functional model that details the relationship between
environmental temperature, humidity, and resistive current. In this section, we put forward
a method for normalizing the resistive current to the base temperature and humidity,
thereby reducing the impact of environmental temperature and humidity on the resistive
current. Then, the resistive current after the suppression of environmental temperature
and humidity interference is classified by the SAE classification algorithm to achieve MOA
fault classification.

2.1. General Framework

The resistive current of an MOA is susceptible to the influence of ambient temper-
ature and humidity, and it is crucial to effectively suppress the interference of ambient
temperature and humidity on the MOA resistive current. Figure 1 shows the original data
in respect of the MOA resistive current, ambient temperature, and humidity during 3000
continuous hours. Figure 2 shows the general framework of the MOA fault identification
method combining ambient temperature and humidity interference suppression and an
SAE that is proposed in this paper.
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Figure 1. Original data in respect of MOA resistive current, environmental temperature, and humidity.
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Figure 2. Framework diagram of the MOA fault identification method combining temperature and
humidity interference suppression with SAE.

2.2. A Method of Environmental Temperature and Humidity Interference Suppression

Considering that the resistive current of an MOA has linear and non-linear rela-
tionships with environmental temperature and humidity at low and high environmental
temperature and humidity, a combination of linear and nonlinear models is adopted in
this paper to fit the resistive current and environmental temperature and humidity. The
flowchart of the proposed method is shown in Algorithm 1.

Figure 3 shows the structure of the SAE classification algorithm. Its operating princi-
ples are as follows. After the autoencoder’s data training, the output xi network encoder
is used as an input for the subsequent autoencoder. Eventually, the coding components
of several autoencoders are cascaded. This layer-by-layer training method can reduce the
computational force requirements, prevent gradient dissipation, and achieve rapid conver-
gence of results in subsequent training, which is a method of achieving data dimensionality
reduction through unsupervised training. The network can be used as an algorithm for
transfer learning, sharing weights in different application scenarios, eliminating the process
of pre-training, and reducing the amount of calculation.
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Figure 3. Stacked self-encoding structure.

In this process, the input of each layer of the network is batch-normalized, which
speeds up the rate of convergence of the model. A dropout layer, having a parameter of
0.3, is suitably incorporated into every layer. Some neurons are randomly discarded in the
iterative process, which can improve network robustness, network generalization ability,
and prevent overfitting.
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Algorithm 1 Temperature and humidity interference suppression algorithm.

Model: Ir(b, t, h) = b0 + b1t + b2h + b3th + b4eb5t + b6eb7h

Require: Input N MOA original data (Ir, t, h) and initial value b(0)= [b0
(0), b1

(0), . . ., b7
(0)]T

for i←0 to K do
for j←1 to N do
Calculate the error between the fitted value and the truth value of Ir

∆I(i)rj = b0
(i) + b1

(i)tj + b2
(i)hj + b3

(i)tjhj + b4
(i)eb5

(i)tj + b6eb7
(i)hj − Ir0j

if max
{

∆I(i)r1 , ∆I(i)r2 , · · · , ∆I(i)rN

}
≥ ε then

u(i)
j = 0.6745

∆I(i)rj

Median
∣∣∣∆I(i)rj −Median(∆I(i)r1 ,··· ,∆I(i)rN)

∣∣∣
q(i)j =

 1,
∣∣∣u(i)

j

∣∣∣ ≤ 1.345

1.345/
∣∣∣u(i)

j

∣∣∣, ∣∣∣u(i)
j

∣∣∣ > 1.345

q(i) = diag(q(i)1 , q(i)2 , · · · , q(i)N ) =


q(i)1 0 · · · 0

0 q(i)2 · · · 0
· · · · · · · · · · · ·
0 0 · · · q(i)N



G(i) =


G(i)

1 (b(i)0 , b(i)1 , . . . , b(i)7 )

G(i)
2 (b(i)0 , b(i)1 , . . . , b(i)7 )

. . .

G(i)
N (b(i)0 , b(i)1 , . . . , b(i)7 )



∆J(i) =


∂G(i)

1
∂b0

∂G(i)
1

∂b1
· · · ∂G(i)

1
∂b7

∂G(i)
2

∂b0

∂G(i)
2

∂b1
· · · ∂G(i)

2
∂b7

· · · · · · · · · · · ·
∂G(i)

N
∂b0

∂G(i)
N

∂b1
· · · ∂G(i)

N
∂b7


∆b(i+1) = −((∆J(i))

T
q(i)∆J(i))

−1
(∆J(i))

T
q(i)G(i)

Updated b(i)

b(i+1) = b(i) + ∆b(i)

else
i = k
Obtain b(k)= [b0

(k), b1
(k), . . ., b7

(k)]

Solve G(k) =


G(k)

1 (b(k)0 , b(k)1 , . . . , b(k)7 )

G(k)
2 (b(k)0 , b(k)1 , . . . , b(k)7 )

. . .

G(k)
N (b(k)0 , b(k)1 , . . . , b(k)7 )

 = 0

i.e., Solve Gj(tj, hj, I′rj) = 0
Obtain I′rj

return I′rj.

2.3. SAE

The SAE algorithm is presented in Algorithm 2.

Algorithm 2 SAE.

Require: Input the data x1 to be classified
x2 = fe(W1x1+a1)
obtain x2 with a vector length of 30

x3 = fe(W1x2+a1)
obtain x3 with a vector length of 3

y1 = fd(W2x3+a2)
obtain y2 with a vector length of 30

x1 = fd(W2y1+a2)
Output: Numbers representing categories.
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2.4. Comparison Algorithm: Feature Fusion

To verify the effectiveness of the algorithm proposed in this paper, we use the feature
fusion algorithm as a comparison algorithm, considering the effect of ambient tempera-
ture and humidity on the MOA resistive current. Firstly, the ambient temperature and
humidity and the resistive current are dimensionally reduced, and then the reduced data
are fused into a column; finally, the fused data are classified. The whole network utilizes
an “Adam” optimizer in the output layer with a “Softmax” activation function and a
“Categorical_crossentropy” loss function, which generates outputs in three dimensions.
The activation function of the other layers is “Relu”, and the loss function is “MSE”. The
network framework is shown in Figure 4.
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3. Results

In this section, taking 110 kV MOA resistive current data from a certain province in
China as an example, the effectiveness of the MOA fault identification method combining
temperature and humidity interference suppression with an SAE is verified. Firstly, the
MOA data samples used in this article are introduced and analyzed statistically. Then, the
effectiveness of the method for suppressing temperature and humidity based on weighted
nonlinear surface modeling is discussed. Finally, the proposed MOA fault identification
method is compared with other classification algorithms by means of several model evalu-
ation indicators.

3.1. Data Samples

In this paper, a total of 15,800, 4500, and 3400 original MOA data points relating
to the normal state, an MOA fault, and monitoring device failure are used, respectively.
Figures 5–7 show the original data in respect of MOA resistive current and environmental
temperature and humidity during a continuous 500 h period under normal conditions,
MOA fault, and monitoring device failure, respectively. Also, the frequency distribution
histograms of all of the data used in respect of resistive current, environmental temperature,
and humidity of the MOA under different conditions are illustrated in Figures 5–7.

It can be seen from Figures 5–7 that the resistive current ranges from 20 mA to 80 mA
during normal MOA states, which are lower compared to those for MOA faults and mon-
itoring device failure. Furthermore, the resistive current under the condition of MOA
monitoring device failure fluctuates more significantly than the other two conditions.
Whether under normal operating conditions, the MOA fault, or the monitoring device
failure, the environmental temperature and humidity span wide ranges, which are approxi-
mately 0–40 ◦C and 10–98%, respectively. In addition, the MOA resistive current changes
with the fluctuations in environmental temperature and humidity. Therefore, the results
are replicable and can be generalized to different scenarios and conditions.
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Figure 5. Original data and histograms of the frequency distribution under a normal MOA state.
(a) Original data in respect of resistive current and environmental temperature and humidity; (b) his-
togram of the frequency distribution of the MOA resistive current; (c) histogram of the frequency
distribution of environmental temperature; (d) histogram of the frequency distribution of environ-
mental humidity under normal conditions.

3.2. Model Evaluation Indicators

Reasonable model evaluation indicators can quantify the performance of classification
models, mainly including recall, precision (also known as precision rate), accuracy, and
F1-score.

(1) Recall

Recall =
TP

TP + FN
(1)

(2) Precision

Precision =
TP

TP + FP
(2)

(3) Accuracy

Accuracy =
TN + TP

TP + FN + FP + TN
(3)
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(4) F1-score

F1 − score =
2Recall · Precision
Recall + Precision

(4)

where TP, FP, FN, and TN can be obtained from the confusion matrix of the classification
results given in Table 1.

(5) Kruskal–Wallis test
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Figure 6. Original data and histograms of the frequency distribution under MOA fault condition.
(a) Original data in respect of resistive current and environmental temperature and humidity; (b) his-
togram of the frequency distribution of the MOA resistive current; (c) histogram of the frequency
distribution of environmental temperature; (d) histogram of the frequency distribution of environ-
mental humidity under normal conditions.
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Recall
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=
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Figure 7. Original data and histograms in respect of the frequency distribution under MOA mon-
itoring device failure conditions. (a) Original data regarding resistive current and environmental
temperature and humidity; (b) histogram of the frequency distribution of the MOA resistive cur-
rent; (c) histogram of the frequency distribution of environmental temperature; (d) histogram of the
frequency distribution of environmental humidity under normal conditions.

Table 1. Confusion matrix for the evaluation of performance.

Reality Prediction

Positive Class Negative Class

Positive class TP FN
Negative class FP TN

The Kruskal–Wallis test was developed based on the Wilcox rank-sum test to test
whether the medians are all the same between different subgroups. The original hypothesis
is H0: M1 = M2 = . . . = Mk, where k is the number of subgroups and Mi is the overall median
of the sample in group i. If the original hypothesis is rejected, this means that the medians
of the k groups are not all the same, and the samples of the k groups do not all come from a
single population. The Kruskal–Wallis test is a non-parametric test based on rank and does
not require the original distribution of the samples.
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The Kruskal–Wallis-constructed statistic is as follows:

H =
12

C(C− 1)

M

∑
i=0

R2
i

ni
− 3(C + 1) (5)

3.3. Comparison of Results before and after Suppression of Environmental Temperature and
Humidity Interference

To mitigate the effects of environmental temperature and humidity on the MOA
resistive current, we employ a technique for suppressing temperature and humidity distur-
bances using weighted nonlinear function modeling, which converts the resistive current
under different environmental temperatures and humidities into the resistive current under
the same reference temperature and humidity, thereby reducing the false alarm state of the
MOA.

We introduce the Pearson correlation coefficient, a widely utilized measure in the field
of natural sciences, to gauge the level of correlation between variable A and variable B, with
a value ranging between −1 and 1. The calculation of the Pearson correlation coefficient is
achieved as follows:

ρA,B =
E(AB)− E(A)E(B)√

E(A2)− (E(A))2
√

E(B2)− (E(B))2
(6)

Table 2 shows the corresponding values of the Pearson correlation.

Table 2. Strengths of correlation for different Pearson coefficients.

Correlation No
Correlation

Weak
Correlation

Moderate
Correlation

Strong
Correlation

Extremely
Strong

Correlation

Numerical
value 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

Figure 8 shows the fluctuation in the MOA resistance current and environmental
temperature and humidity monitoring data before and after suppression of the temperature
and humidity interference. Table 3 shows the Pearson correlation coefficient between
temperature and humidity interference before and after suppression and the environmental
temperature and humidity.
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Table 3. Pearson correlation coefficient between MOA resistive current and environmental tempera-
ture and humidity before and after suppression of the temperature and humidity interference.

Ambient Temperature Ambient Humidity

Resistive current 0.796960 0.434868
Resistive current after

temperature and humidity
interference suppression

0.026346 0.001883

Figure 8 demonstrates that, prior to temperature and humidity interference suppres-
sion, the MOA resistive current shows a strong correlation with the temperature range
and a moderate correlation with environmental humidity. The online monitoring of MOA
resistive current is significantly impacted by changes in ambient temperature and humidity
levels. The resistive current of the MOA over a longer period shows some correlation with
environmental temperature and humidity after mitigating the effects of environmental
temperature and humidity interference. Moreover, the fluctuation in resistive current has
been significantly reduced in comparison to the pre-interference condition. The findings
demonstrate that the technique for mitigating environmental temperature and humidity
interference using weighted non-linear function modeling significantly diminishes the
association between the resistive current and environmental factors. This ultimately de-
creases the impact of environmental temperature and humidity on MOA resistive current,
effectively reducing erroneous warning signals due to environmental temperature and
humidity influences on MOAs.

3.4. MOA Classification Algorithm Combining Suppressing Environmental Temperature and
Humidity Interference with SAE

In this section, the states of the MOA are classified using an MOA classification
algorithm that combines the suppression of environmental temperature and humidity
interference with an SAE. In order to obtain an MOA dataset under different conditions,
80% of the data was used for training and 20% was used for testing. There are a total of
117 sets of data in the test set, including 79 sets of normal MOA data, 22 sets of primary
MOA equipment fault data, and 16 sets of MOA monitoring device faults. To objectively
estimate the classification ability of the algorithm, we took the average accuracy obtained
from 50 runs as the measurement indicator of accuracy. We drew the confusion matrix,
accuracy, and loss values of the verification set of the MOA fault identification method
combining suppression of environmental temperature and humidity interference and an
SAE as shown in Figure 9. Among these values, 0 indicates the normal operation state;
1 represents the MOA fault; and 2 indicates the MOA monitoring device failure.
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3.5. Algorithm Comparison

In this section, the classification results, recall, accuracy, F1-score, and average accuracy
in respect of the SAE, random forest (RF), SVM, and logistic regression (LR) classification
algorithms are compared under different conditions. Figure 10 shows the confusion matrix
of four fault classification algorithms under different scenarios. Among them, 1⃝ repre-
sents using traditional classification algorithms; 2⃝ represents the use of feature fusion
algorithms based on traditional classification algorithms; and 3⃝ represents the use of a
fault classification algorithm based on temperature and humidity suppression. Table 4
describes the independent samples Kruskal–Wallis test parameters for the accuracy of
different classification algorithms under 50 trials. Figure 11 depicts the accuracy distribu-
tion of different MOA fault classification algorithms under 50 trials. Table 5 shows the
comparison of recall, accuracy, F1-score, average accuracy, and computation time of four fault
classification algorithms under different conditions. The computer used in this study was
a LAPTOP-1A84DTOQ, the system type was a x64-based PC, and the processor was an
Intel64 Family 6 Model 142 Stepping 10 GenuineIntel~1792 MHz.Energies 2023, 16, x FOR PEER REVIEW 13 of 18 
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Figure 10. (a) Confusion matrix for SVM-based MOA fault classification algorithm; (b) confusion
matrix for RF-based MOA fault classification algorithm; (c) confusion matrix for LR-based MOA
fault classification algorithm; (d) confusion matrix for SAE-based MOA fault classification algorithm;
(e) confusion matrix for MOA fault classification algorithm based on combination of SVM and
feature fusion;
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(f) confusion matrix for MOA fault classification algorithm based on combination of RF and feature
fusion; (g) confusion matrix for MOA fault classification algorithm based on combination of LR and
feature fusion; (h) confusion matrix for MOA fault classification algorithm based on combination
of SAE and feature fusion; (i) confusion matrix for MOA fault classification algorithm based on
combination of environmental temperature and humidity suppression and SVM; (j) confusion matrix
for MOA fault classification algorithm based on combination of environmental temperature and
humidity suppression and RF; (k) confusion matrix for MOA fault classification algorithm based on
combination of environmental temperature and humidity suppression and LR; (l) confusion matrix
for MOA fault classification algorithm based on combination of environmental temperature and
humidity suppression and SAE.

Table 4. Independent samples Kruskal–Wallis test.

Sample 1 − Sample 2 Inspection Statistics Standard Test
Statistics Significance

SAE + 3⃝ − SVM + 1⃝ 444.98 12.83 0.00
SAE + 3⃝ − SVM + 2⃝ 302.62 8.72 0.00
SAE + 3⃝ − SVM + 3⃝ 155.04 4.47 8.00 × 10−6

SA E+ 3⃝ − LR + 1⃝ −441.02 −12.72 0.00
SAE + 3⃝ − LR + 2⃝ −217.62 −6.27 3.45 × 10−10

SAE + 3⃝ − LR + 3⃝ −141.34 −4.07 4.68 × 10−6

SAE + 3⃝ − RF + 1⃝ −349.38 −10.07 0.00
SAE + 3⃝ − RF + 2⃝ −299.44 −8.63 0.00
SAE + 3⃝ − RF + 3⃝ −264.08 −7.61 2.59 × 10−14

SAE + 3⃝ − SAE + 1⃝ −472.74 −13.63 0.00
SAE + 3⃝ − SAE + 2⃝ −48.30 −1.39 0.04
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Figure 11. Accuracy distribution under 50 trials for different classification algorithms. 
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Table 5. Comparison of algorithm performance.

Algorithm Method Recall
Rate Precision F1-Score Accuracy Computation

Time (s)

SVM
1⃝ 0.95783 0.95627 0.95705 0.95641 0.28492
2⃝ 0.96832 0.96511 0.96671 0.96902 3.65214
3⃝ 0.98101 0.98284 0.98192 0.98182 0.65291

RF
1⃝ 0.96526 0.96731 0.96629 0.96533 0.30492
2⃝ 0.96101 0.96563 0.96331 0.96926 2.98562
3⃝ 0.97181 0.97166 0.97173 0.97215 0.59254

LR
1⃝ 0.95818 0.95861 0.95991 0.95588 0.21456
2⃝ 0.97209 0.97558 0.97383 0.97629 3.98756
3⃝ 0.98187 0.98421 0.98304 0.98295 0.62135

SAE
1⃝ 0.94048 0.93103 0.93573 0.95181 0.31892
2⃝ 0.98532 0.99101 0.98815 0.99209 5.53882
3⃝ 0.99856 0.98621 0.99234 0.99709 0.52849

As can be seen from Figure 10, the four MOA fault classification algorithms are prone
to generating false alarms in situation 1⃝, and the normal running MOA is judged as a fault
state. Compared to situation 1⃝, the false alarm phenomenon in situation 2⃝ is reduced, but
it still occurs occasionally. Compared to situation 1⃝ and situation 2⃝, the number of false
alarms in situation 3⃝ is greatly reduced, and the SAE classification algorithm based on
temperature and humidity suppression has the highest accuracy in MOA state classification.

As can be seen from Table 4, the Kruskal–Wallis test on the accuracy of different classifi-
cation algorithms under 50 trials shows that the significance of the MOA fault classification
algorithm combining ambient temperature and humidity interference suppression and an
SAE with other classification algorithms is less than 0.05, which indicates that the accuracies
of the different MOA fault classification algorithms are independent samples, and that
there is a significant difference in the results for the various classification algorithms.

Figure 11 depicts the accuracy distribution of different MOA fault classification algo-
rithms under 50 trials, and it can be seen that the fault classification algorithm combining
ambient temperature and humidity interference suppression with an SAE has a high
accuracy rate and a small fluctuation range compared to other MOA fault classification al-
gorithms.

Table 5 shows that the average accuracy of the traditional fault recognition algorithms,
multi-feature fusion algorithms, and environmental temperature and humidity interference
suppression algorithms based on SVM is 96.9%. The average accuracy of the traditional fault
recognition algorithms, multi-feature fusion algorithms, and environmental temperature
and humidity interference suppression algorithms based on RF is 97.5%. The average
accuracy of the traditional fault recognition algorithms, multi-feature fusion algorithms,
and environmental temperature and humidity interference suppression algorithms based
on LR is 97.2%. The average accuracy of the traditional fault recognition algorithms,
multi-feature fusion algorithms, and environmental temperature and humidity interference
suppression algorithms based on SAE is 98.1%. Comparing the training effects of the four
networks, the SAE has the best fault recognition performance and reduces false alarms.

The F1-score and average accuracy of the traditional MOA fault recognition algorithms
SVM, random forest, LR, and SAE are 95.4% and 95.7%, respectively. The F1-score and
average accuracy of the MOA multi-feature fusion classification algorithm based on tradi-
tional classification algorithms are 96.7% and 97.7%, respectively. The F1-score and average
accuracy of the MOA fault recognition algorithm combining temperature and humidity
interference suppression with traditional classification algorithms are 98.2% and 98.4%,
respectively. This indicates that considering environmental temperature and humidity can
effectively improve the accuracy and F1-score of the MOA classification when using the
same data. The combination of environmental temperature and humidity suppression with
classification algorithms can significantly reduce computation time compared to algorithms
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combined with feature fusion. Compared to algorithms that fuse features, suppressing
interference from environmental temperature and humidity on MOA resistive current
can effectively mitigate the impact of environmental temperature and humidity on MOA
resistive current. This can reduce false alarms and improve the identification of MOA
faults.

4. Conclusions

To solve false alarm problems caused by the effect of external environmental condi-
tions on the MOA resistive current, a method of suppressing environmental temperature
and humidity interference was proposed, and a fault identification method for a metal
oxide arrester combining the suppression of environmental temperature and humidity
interference with an autoencoder was proposed. The conclusions are as follows:

(1) The accuracies of the different classification algorithms follow independent distribu-
tions with large variations, and the proposed MOA fault identification method, which
combines environmental temperature and humidity interference suppression with an
SAE, has an average accuracy of 99.7%.

(2) The average accuracy of the fault recognition algorithm based on an SAE increased
by 1.2%, 0.6%, and 0.9% compared to the values for the fault recognition algorithms
based on SVM, RF, and LR, respectively.

(3) Compared to traditional MOA fault recognition algorithms only considering the
resistive current, the average accuracy of the MOA fault recognition algorithm with
multi-feature fusion of the resistive current, environmental temperature, and humidity
increased by 2%, and the proposed MOA fault recognition algorithm suppressing
the interference of environmental temperature and humidity on resistive current
increased by 3.7%.

Due to the lack of data samples in respect of internal moisture, aging, and superficial
pollution of the MOA, the MOA failure classification algorithm that combines ambient
temperature and humidity interference suppression with an SAE can only identify MOA
faults and monitoring device failures from the normal state so far. In the future, we will
collect more data samples of MOA faults to verify the effectiveness of the proposed method
to identify the internal moisture, aging, and superficial pollution faults of the MOA.
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Nomenclature

Ir Resistive current
Ir0 Truth value of resistive current
Ir’ Corrected value of resistive current
∆Ir Difference between truth value and corrected value of resistive current
b Fitting coefficient
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t Temperature
h Relative humidity
N Number of data samples
K Maximum number of iterations
k Number of iterations at termination
ε Threshold of iterative convergence
u Standardized residual indicator
q Weight value
G Fitting surface
W1 Encoder weight
W2 Decoder weight
a1 Encoder offset
a2 Decoder offset
x1 Input vector of SAE
x2 Feature parameter obtained from the first encoder
x3 Feature parameter obtained from the second encoder
y1 Feature parameter obtained from the first decoder
fe Activate function of encoder
fd Activate function of decoder
ρ Pearson correlation coefficient
E Mathematical expectation
A Variable to be analyzed
B Variable to be analyzed
H Kruskal–Wallis test coefficient
n Value of samples
M Number of samples
R Sum of the rank of all the samples
C Sum of the value of samples
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