
Citation: Stecuła, K.; Wolniak, R.;

Grebski, W.W. AI-Driven Urban

Energy Solutions—From Individuals

to Society: A Review. Energies 2023,

16, 7988. https://doi.org/10.3390/

en16247988

Academic Editors: David Borge-Diez

and Joao Ferreira

Received: 9 November 2023

Revised: 28 November 2023

Accepted: 7 December 2023

Published: 9 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

AI-Driven Urban Energy Solutions—From Individuals to
Society: A Review
Kinga Stecuła 1,* , Radosław Wolniak 1 and Wieslaw Wes Grebski 2

1 Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland;
radoslaw.wolniak@polsl.pl

2 Penn State Hazleton, Pennsylvania State University, 76 University Drive, Hazleton, PA 18202-8025, USA;
wxg3@psu.edu

* Correspondence: kinga.stecula@polsl.pl

Abstract: This paper provides a comprehensive review of solutions based on artificial intelligence
(AI) in the urban energy sector, with a focus on their applications and impacts. The study employed
a literature review methodology to analyze recent research on AI’s role in energy-related solutions,
covering the years 2019 to 2023. The authors classified publications according to their main focus,
resulting in two key areas of AI implementation: residential and individual user applications, and
urban infrastructure integration for society. The objectives of this review of the literature are the
following: O1: to identify trends, emerging technologies, and applications using AI in the energy
field; O2: to provide up-to-date insights into the use of AI in energy-related applications; O3: to
gain a comprehensive understanding of the current state of AI-driven urban energy solutions; O4: to
explore future directions, emerging trends, and challenges in the field of AI-driven energy solutions.
This paper contributes to a deeper understanding of the transformative potential of AI in urban
energy management, providing valuable insights and directions for researchers and practitioners
in the field. Based on the results, it can be claimed that AI connected to energy at homes is used in
the following areas: heating and cooling, lighting, windows and blinds, home devices, and energy
management systems. AI is integrating into urban infrastructure through the following solutions:
enhancement of electric vehicle charging infrastructure, reduction in vehicle emissions, development
of smart grids, and efficient energy storage. What is more, the latest challenges associated with the
implementation of AI-driven energy solutions include the need to balance resident comfort with
energy efficiency in smart homes, ensuring compatibility and cooperation among various devices,
preventing unintended energy consumption increases due to constant connectivity, the management
of renewable energy sources, and the coordination of energy consumption.

Keywords: energy; artificial intelligence; AI; smart city; smart home; smart grid; electric vehicle

1. Introduction

In a rapidly evolving urban landscape, the challenges of energy consumption, sus-
tainability, and efficiency remain critical concerns. The need for energy in cities is still
growing and is related to the growing activities of residents, the need for advanced services,
and the use of technical means in the city infrastructure. The last ones are connected
with the Internet of Things and innovative solutions connected with energy in cities [1–3].
The Internet of Things (IoT) has ushered in a new era of urban connectivity and intelli-
gence. In cities around the world, IoT technologies are revolutionizing the way urban
infrastructure operates, providing an interconnected web of smart devices and sensors
that collect and share data in real time [4]. These IoT systems allow city planners and
administrators to gain unprecedented insight into various aspects of urban life, from traffic
patterns [5], the use of different sources of energy [6–8] and energy consumption [9–11]
to waste management [12] and air quality [13]. The pursuit of a ubiquitous Internet and
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the development of urban infrastructure means that the achievements of Industry 4.0 are
being used on an increasingly larger scale, leading to more and more solutions based on
smart elements [14,15] and neural networks [16]. One of the rapidly developing elements
of the fourth industrial revolution is artificial intelligence (AI). Artificial intelligence is a
transformative force fundamentally reshaping the way we live, work, and interact with
our environment. It is important in the context of Industry 4.0 and the broader use of a
ubiquitous Internet not only for entertainment [17] but also for regular everyday life. AI
uses advanced algorithms, machine learning, and data analysis to mimic human cognitive
functions, enabling machines to perceive, reason, and make decisions [18]. In cities, AI
can be used to optimize energy infrastructure and create a more sustainable and resilient
urban future. Artificial intelligence offers many solutions in various areas of human activity,
including those used in the energy sector [19,20]. Some solutions are aimed at an individual
resident, and others at the whole society. Nevertheless, AI-based solutions are the driving
force towards a new intelligent society living in cities called smart cities.

As urban areas continue to expand and evolve, AI has become a critical tool for im-
proving energy management, reducing carbon emissions, and improving the overall quality
of life of urban residents. This paper presents a review of the literature of solutions driven
by artificial intelligence that are or are planned or are in the study stage to be applied in the
urban energy sector. Therefore, this article reviews and discusses the dynamic intersection
of AI-driven solutions and the urban energy sector, providing a comprehensive review
of the profound impact that AI technologies are having on cities around the world. The
paper consists of six sections. Section 2 describes materials and methods. Sections 3 and 4
include AI-driven energy solutions, respectively, among residents/individual users and in
urban infrastructure. Section 5 presents a discussion, and Section 6 summarizes the review.

2. Materials and Methods

The method used in this paper is literature review. The authors analyzed publications
that describe research on AI-driven solutions connected with energy. In the first stage of
the research, the authors used search engines including Web of Science and Scopus. The
authors searched and reviewed published publications over the last five years, that is, from
2019 to 2023, to obtain the latest results of recent research on artificial intelligence and
its application in energy-related solutions. The databases were used to search using two
main keywords, which were ‘artificial intelligence’/‘AI’ and ‘energy’. It is worth noting
that the authors entered the full name of artificial intelligence and its abbreviation into the
search engine as separate searches. Additionally, the third keyword was added to each
search—it was ‘smart city’, ‘smart home’, ‘smart grid’, and ‘electric vehicle’. There were
eight searches in total. The results of the search results in terms of the number of articles
in each of the two databases—Scopus and Web of Science—are presented in Table 1. The
largest number of articles were found in the Scopus database for the keywords ‘artificial
intelligence’, ‘energy’, and ‘smart grid’ keywords.

Table 1. Search results for papers in Scopus and Web of Science depending on keywords.

Keywords Number of
Papers–Scopus

Number of Papers–Web
of Science

Artificial intelligence, energy, smart city 127 22

Artificial intelligence, energy, smart home 58 15

Artificial intelligence, energy, smart grid 264 79

Artificial intelligence, energy, electric vehicle 132 30

AI, energy, smart city 26 9
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Table 1. Cont.

Keywords Number of
Papers–Scopus

Number of Papers–Web
of Science

AI, energy, smart home 10 4

AI, energy, smart grid 39 12

AI, energy, electric vehicle 18 4
Source: authors’ own work.

For all of the papers found, the authors read abstracts and then chose all the papers
that really fit the scope of the undertaken review on the set topic. Finally, the authors chose
153 papers that cover the topic of AI-driven urban energy solutions.

These publications were classified into these divisions based on their main focus or
application areas within AI-driven urban energy solutions. Each category represents a
specific aspect of how AI-driven energy solutions are implemented and utilized, including
the following:

• Residential and individual user applications;
• Urban infrastructure integration for individual users and community oriented.

This categorization allows for a more structured analysis and understanding of the var-
ious applications and impacts of AI for urban energy. On the basis of the search results and
analysis, the authors divided the mentioned parts into subsections. The first part includes
five subsections, which include the following: heating and cooling, lighting, windows and
blinds, home devices—refrigerators, and energy management systems. The second part
was divided into four subsections including electric vehicle charging infrastructure, vehicle
emission reduction, smart grid, and energy storages.

The main objectives of the literature review are the following:

• O1: To identify trends, emerging technologies, and applications using artificial intelli-
gence in the energy field;

• O2: To provide up-to-date insights into the use of artificial intelligence in energy-
related applications;

• O3: To gain a comprehensive understanding of the current state of AI-driven urban
energy solutions;

• O4: To explore future directions, emerging trends, and challenges in the field of
AI-driven energy solutions.

The research questions set in the study include:

• R1: What are the key emerging technologies in AI-driven energy solutions for residen-
tial users and society?

• R2: How is artificial intelligence integrated into urban infrastructure to enhance
energy-related solutions?

• R3: What challenges are associated with the implementation of AI-driven solutions in
urban energy management?

3. Residential and Individual User Applications for AI-Driven Urban
Energy Solutions
3.1. Heating and Cooling

The first area that very often appears in research related to energy in residential
buildings is heating and cooling devices, in other words, HVAC (heating ventilation and air
conditioning) systems. These systems play a central role in regulating the indoor climate of
homes, directly impacting both the comfort of inhabitants and energy consumption. Using
artificial intelligence, innovative solutions are emerging to optimize heating and cooling
processes, ensuring that homes remain comfortable while minimizing energy usage and
environmental impact [21].
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Heating in smart homes refers to the application of advanced technologies, including
AI, to control and optimize the heating systems within residential buildings. In smart
homes, heating systems are designed to be more energy efficient, convenient, and adaptable
to individual preferences. AI-driven heating solutions can analyze data from various
sources, such as weather forecasts and occupancy patterns, to make real-time adjustments
to heating systems. For example, if a smart home detects that no one is at home during the
day, it can lower the temperature to save energy and then start warming the house before
the occupants return. These systems can be controlled remotely via smartphones or voice
commands, allowing users to fine-tune their heating preferences. In general, AI-enhanced
heating in smart homes aims to improve comfort while reducing energy consumption and
costs. In the literature, there is different research on the topic of heating in smart homes.
The authors of [21] develop a smart heater system characterized by high performance and
low cost. It functions due to an open-source controller specially programmed with software
that cooperates with the temperature and humidity sensor. The solution function via the
cloud server that presents values measured using special application for smartphones.
Due to this, users are able to remotely control the temperature (and the whole heating
system) and schedule tasks via an application. One of the biggest advantages is that the
solution reduces the risk of fire outburst. According to the authors, this solution provides
safety, positively influences costs, and increases efficiency, performance, and useability. The
authors of the paper [22] propose a different strategy of heating control, emphasizing the
integration of user presence as an additional factor in managing heating within the living
space. They present a flexible heating control system that adapts to diverse occupants
within the heating network. Their method involves predicting heating dynamics using a
multilayer perceptron neural network based on time series data. To manage the heating
controller effectively, they employ a fuzzy inference system utilizing the Takagi–Sugeno
model. In another paper [23], the authors present the IoT prototype that introduces a
smart control approach named the smart token-based scheduling algorithm. It aims at
optimizing energy in buildings’ heating systems. The solution includes, among others,
special hardware, software, networking. Other authors [24] present a novel residential
energy management approach that reduces electricity consumption for space heating and
battery connected to the grid. It achieves this without relying on pricing signals. The
method employs a unique algorithm, integrating seasonal calculations and considering
various factors such as temperature and photovoltaic (PV) generation.

In homes, smart thermostats with the function of real-time sensing are often used.
They help minimize energy consumption and at the same time they maintain user comfort.
There are different types of thermostats, for example, in residential buildings there are
usually managed by reactive and heuristic-driven ones or by more advanced controls [25].
Advanced control systems in residential buildings have typically relied on either model-
based approaches like model predictive control (MPC) [26] or model-free methods such as
reinforcement learning (RL) [27,28] for their development. Today, more and more research
is related to the development and scope of thermostat operation. Marantos et al. [29] in
their research apply a smart thermostat concept which focuses mainly on cost reduction and
deployment flexibility so they can be adopted on a big scale in many buildings and regions.
Its idea integrates supervised and reinforcement learning to address the challenge of
meeting occupants’ thermal comfort requirements while minimizing energy usage. Goman
and Koroloev [30] present the newest achievements on smart thermostats in and smart
buildings. These devices can contribute to energy savings and control. The authors also
describe prospects for the future which are self-learning algorithms for smart thermostats.
According to them, it seems possible to develop a self-learning smart thermostat that is
able to support a big building. Thermostats should follow and analyze user behavior
and effect control at the level of a building and single rooms. Huang et al. [31] describe
the work and function of a self-learning algorithm to predict indoor temperature and
cooling demand from a smart Wi-Fi thermostat in a residential building. The dynamic
model provided for any residence can be applied to guide residents when it comes to
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energy savings coming from set point schedule switches. Broader practical research is
presented by Duman et al. [32] as the study combines a smart thermostat with a home
energy management system (HEMS) for cost-effective load scheduling, demand response
(DR), and photovoltaic self-consumption. The thermostat uses fuzzy logic to adjust set
points based on electricity prices, solar radiation, and occupancy.

On the other hand, smart homes have cooling systems. Smart cooling systems use
sensors to monitor temperature and humidity levels in various parts of the home and can
automatically adjust the cooling settings to maintain the desired comfort level. These sys-
tems can also be controlled remotely via smartphones or voice-activated devices, allowing
homeowners to customize their cooling preferences even when they are away from home.
Additionally, AI-driven cooling systems can learn user preferences and adapt to daily
routines, making them more energy-efficient by cooling or ventilating specific areas only
when needed. It is worth noting, after [33], the significance of passive adaptive systems
in the context of mode-switching for cooling and heating. Passive adaptive systems stand
out for their ability to respond to environmental cues, such as changes in temperature or
humidity, and autonomously shift between cooling and heating modes. Their capacity
to adapt naturally, without requiring manual intervention, is a notable advantage. This
not only streamlines their operation but also enhances their efficiency by ensuring that
they can adjust to varying conditions, making them a promising choice for energy-efficient
and user-friendly cooling and heating solutions. As we read in the paper of Daneshvar
et al. [34], one of the innovative solutions within this topic is to provide a new cooling
control approach as an element of the smart energy system that can achieve a balance
between thermal comfort and building energy usage through the utilization of sensing
and machine programming technology. To achieve this purpose, an overall form of a
building must be coupled with this smart system, while the energy use with the thermal
comfort cooling of people must be provided based on the special dedicated software. On
the other hand, Nezhad et al. [35] present a new model for home energy management,
considering inverter-based air conditioning and solar panels. The model aims to minimize
daily electricity costs using time-of-use tariffs. It includes fixed and flexible loads and is
formulated as a mixed-integer linear programming problem. The system uses a PV system
and electrical energy storage to handle unpredictable solar power generation and optimize
load management during peak hours. The air conditioning settings are adjusted based on
an indoor-outdoor temperature model to reduce energy consumption and lower bills.

In the area of home heating and cooling, there is a very large potential for the use of
artificial intelligence. For this reason, the authors have developed key directions for the
future usage of AI in this area. Table 2 shows these key directions.

Table 2. Key directions for future usage of AI for heating and cooling in homes.

Direction Description

Human-Centric AI A focus on developing AI systems that prioritize user comfort and preferences, learning and
adapting to individual user habits, creating personalized and user-centric experiences.

Advanced Control Algorithms
Research into advanced control algorithms, including reinforcement learning and predictive
models, to optimize energy consumption and enhance user comfort, adapting to changing user
behavior and environmental conditions.

Integration
The development of standardized protocols and interfaces for seamless integration of various
AI-driven systems within smart homes, enabling better synergy and coordination
between systems.

IoT and Sensor Technologies
Investment in the development of more sophisticated IoT devices and sensors for enhanced data
collection and improved AI system performance, including better occupancy detection,
environmental monitoring, and energy usage tracking.
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Table 2. Cont.

Direction Description

Energy Storage Integration
Exploring methods to integrate energy storage solutions, such as batteries, with heating and
cooling systems to maximize the utilization of renewable energy sources (RES) and reduce
grid dependence.

Accessibility Providing AI-driven solutions accessible to a wide range of households, regardless of their size,
location, or economic status, promoting inclusivity and adoption.

Sustainability
Investment in long-term research into the integration of renewable energy sources, such as solar
and wind, with residential heating and cooling systems to promote sustainability and reduce the
reliance on fossil fuels.

Source: Authors’ own work based on: [21,23,24,33–39].

3.2. Lighting

Intelligent lighting control in a smart home context involves the use of advanced
technologies and automation to manage and optimize lighting systems. Smart homes
incorporate sensors, IoT devices, and AI to enhance the lighting experience for residents.
These systems can automatically adjust lighting levels based on factors such as occupancy,
natural light availability, and time of day. Like in the case of smart heating, users can
remotely control their lighting via smartphone apps or voice commands. Moreover, in-
telligent lighting control in smart homes contributes to energy efficiency, making homes
more sustainable, and improves the overall living experience by offering convenience
and personalization. Smart lighting refers to lighting technology with an increased level
of functionality such as dimming or remotely control the on/off button to enhance user
comfort and save energy [40].

The authors of the paper [41] propose an intelligent lighting system designed for office
environments, emphasizing cost-efficiency and environmental sustainability. The system is
built around an Arduino microcontroller, infrared inductive sensors, and light sensors, with
communication facilitated through a Wi-Fi network. The system’s key functions include
automatic control of delay, turn-off, and dimming of office lighting fixtures based on sensor
readings, thereby enabling real-time detection and adjustment of the office lighting envi-
ronment. By integrating these components, the system offers low-cost and environmentally
friendly features tailored for office settings. Multiple sensors are strategically placed in
the room and work in conjunction with the Arduino controller to detect various indoor
parameters. The Arduino microcontroller acts as a data hub, receiving, processing, and
transmitting the collected data through the communication network. It further displays
this information on an LCD screen and uploads it to a client data center. One of the notable
features of this intelligent lighting system is its automatic brightness adjustment, allowing
users to achieve optimal lighting conditions at any given time. Moreover, users can re-
motely control lighting switches, adjust brightness, and activate predefined lighting scenes
using a mobile application. This instantaneous feedback mechanism not only conserves
energy when people leave the room but also enhances efficiency and provides users with
real-time, comfortable illumination. In another paper [42], a comprehensive and functional
prototype of an IoT-based lighting control system is introduced, with a primary focus on
balancing natural and artificial lighting while incorporating a dynamic shading system.
It provides a scalable approach to smart system integration within buildings, relying on
sensing and actuating nodes (Arduino-driven) and a central unit (Raspberry Pi-driven). A
dedicated control application is developed, allowing users to interact with the system by
configuring automatic seasonal modes or manual settings. The system is designed to adjust
the required illuminance threshold, with the shading system aligning itself with seasonal
profiles based on bioclimatic design principles. Notably, the control system incorporates
a fuzzy logic solution to ensure fast and responsive control without high computational
demands. The overarching goals of this work encompass the development of a shading
system for internal daylight intensity control, the design and construction of a versatile LED
lighting system, the integration of shading and lighting into a unified prototype, the explo-
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ration of Arduino and single-board computers like Raspberry Pi for IoT control, and the
creation of a user-friendly mobile application for configuring seasonal lighting and shading
modes, illuminance thresholds, and manual settings. In another paper [43], the authors
present a system designed to control lighting and electrical loads that takes advantage of
embedded systems equipped with cost-effective wireless communication modules, which
makes it suitable for a distributed and intelligent home automation architecture. The sys-
tem integrates a range of sensors that facilitate the efficient use of electricity by automating
tasks such as turning off lights and electrical devices while maintaining lighting regulation.
Multiple modules communicate wirelessly with a central node, and user interaction is facili-
tated through a mobile application. The development and validation of the system involved
using UML and Petri nets for design and modeling, while the implementation was carried
out in C/C++ for 32-bit microcontrollers. Testing of the prototype demonstrated stable
performance, fast communication, and sufficient coverage for a typical single-family house.
Remarkably, the system’s performance surpasses that of similar solutions found in the sci-
entific community. The paper of Cho et al. [44] introduces a novel concept of lifelog-based
smart lighting control, aiming to personalize lighting environments to match individual
characteristics. While the potential for lifelogs to enable personalized lighting has long been
recognized, the lack of data collection and synthesis methods has been a barrier. In this
study, the authors propose lifelog data collection methods and an analytical approach to
recommend custom lighting environments. They deploy sensors, lighting controllers, and
control interfaces in a mock-up space and connect these to a machine learning server in the
cloud. The platform they establish utilizes emotional, activity, and environmental lifelog
data to create a truly personalized lighting experience. This innovative approach opens
new possibilities for enhancing user comfort and well-being through lighting controls. It is
worth mentioning also the results of the research of Ayan and Turkey [40] on smart LED
bulbs as parts of smart lighting systems. This research presents the influence of using these
bulbs on energy efficiency. The subject of the study was power consumption depending on
different colors emitted by these bulbs. According to the results, the different colors have
different power usage. In addition, case studies including detailed comparison between
(1) halogen, (2) CFL, (3) LED, and smart LED were considered in the context of energy
savings. It was proven that a smart LED consumes the least energy among other bulbs but
solely when dimmed and under remote control.

Different scenario for lights, but also at the same time for alarms, is presented by
Ozeer et al. [45]. The authors describe two key user stories that have been implemented as
part of their study. The first scenario, termed the “Bedtime Scenario,” involves a button
press in the bedroom, signaling the house tenant’s intention to go to bed. Subsequently,
all lights are turned off and the alarm is set. If any motion is detected in the living room
or the kitchen or if the door is opened, an alarm is triggered on a speaker, and the house’s
lamps are illuminated in red to indicate potential intruders or disturbances. The second
scenario, referred to as the “Welcome Home Scenario,” is initiated when the home tenant
arrives at the front door. The Wemo motion sensor reports motion, and, in response, the
lamp at the entrance is turned on, letting the person to unlock the door. When entering
the house, the living room lamp is also turned on and a welcoming sound is played on
the speaker to create a welcoming atmosphere. The paper suggests that these scenarios
are only the beginning and that more complex scenarios can be orchestrated by their
system based on patterns of events sensed and actuated, offering enhanced automation and
convenience for users. Another paper [46] also presents the solution that combines smart
lighting with other functions of a smart home. The framework proposed by the authors
has versatile applications, including automated burglar alarm systems, guest attendance
monitoring, and light switches. With the use of IoT solutions, these systems enable real-
time monitoring and connectivity to central systems for automated burglar alarms. The
monitoring framework is designed as a web application, providing real-time display,
storage, and alerting functions for both local and remote monitoring control. Importantly,
the monitoring system is described as stable and reliable when utilizing the SHA-256
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authentication method. The system comprises three core components: hardware nodes, a
secure server, and a web application. The IoT node hardware is designed for real-world
testing and receiving IoT data from diverse devices. A dedicated server is established to
monitor the IoT nodes within the system. Lastly, a user-friendly application is developed,
accessible via smartphones or web browsers over Wi-Fi, enabling real-time control of the
IoT smart system. Figure 1 shows the block diagram of the proposed smart lighting system.
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Summing up, when it comes to empirical findings related to specific implementations
of AI models for lighting control within residential settings, the literature [40–42,44–47]
presents the following: sensor-based adaptive lighting, natural light integration, personal-
ized lighting scenes, dynamic lighting control, voice-controlled lighting systems, predictive
lighting adjustments, and context-aware lighting. These examples showcase how AI mod-
els can be practically implemented in lighting controls within residential environments,
offering diverse functionalities to enhance energy efficiency, user comfort, and the overall
living experience.

It is also worth explaining in detail one of the mentioned examples. The “Bedtime
Scenario” [45] in the smart home application for light automation and intrusion detection
involves several software entities and devices working together to facilitate actions based
on specific triggers:

• Button press: when a button in the bedroom is pressed, the “NodeHueSense” software
entity reports this event from the Hue buttons and publishes it on the MQTT bus.

• Event subscription: the “Orchestrator” software subscribes to all events published in the
MQTT Broker. In this scenario, it identifies the button press event from the bedroom.

• Scenario definition: the Orchestrator defines a specific scenario based on this event,
triggering a sequence of actions in response. It sends messages to other software
entities according to the predefined scenario.

• Light control: the “NodeHueActuate” entity receives messages from the Orchestrator
to control the Hue lamps. In the bedtime scenario, it turns off all the lights in the house.

• Alarm setting: the scenario triggers an alarm setup, which might involve sending a
signal to the “SoundPlayer” entity, instructing it to activate the speaker and set an
alarm sound.

• Intrusion detection: if any motion is detected in certain areas or if the door is opened,
the “FibaroAdapter” and “WemotionSense” report these events on the MQTT bus.
The Orchestrator, based on this information, can trigger an alarm on the speaker and
illuminate the house’s lamps in red as a signal of potential intruders or disturbances.

This scenario showcases the coordination among various software entities and devices,
orchestrated by the “Orchestrator” based on specific events, such as the button press,
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to automate actions like turning off lights, setting alarms, and responding to potential
intrusions or disturbances.

For the topic of lighting and AI, the authors have developed the key directions. They
are presented in Table 3.

Table 3. Key directions for future usage of AI for lighting in homes.

Direction Description

Human-Centric AI
Development of lighting solutions aligned with rhythms and individual user
preferences (including for example different lighting for bedtime and welcome
home routines).

User-Friendly Control Interfaces Designing intuitive mobile applications and voice-activated controls to enable users to
customize their lighting environments with ease.

Web Applications and Remote Control Development of user-friendly web applications and remote-control options to provide
users with convenient access to their smart lighting systems from various devices.

Integration Further development aimed at integration of AI-driven smart lighting systems with
other smart home devices.

Personalized Lighting Experiences Advancements in AI algorithms that adapt lighting conditions based on user
preferences, promoting enhanced user comfort and well-being.

Sensing and IoT Advancements
Continued investment in sensor and IoT technologies to enhance occupancy detection,
light level adjustments, and environmental monitoring, resulting in more responsive
and energy-efficient lighting control.

Source: Authors’ own work based on: [40–42,44–47].

3.3. Windows and Blinds

Another element of smart homes are smart windows. Smart windows for homes are
an innovative technological solution designed to improve energy efficiency, comfort, and
convenience [48]. These windows are equipped with various features and technologies that
allow them to adapt to changing environmental conditions and user preferences. Special
systems for smart windows offer a way to improve energy efficiency in the construction
sector, in residential or commercial buildings. These systems can dynamically adjust the
spectral properties of window glazing, controlling how it interacts with visible and infrared
light [49]. This adaptability allows better management of solar radiation, resulting in signif-
icant energy savings, especially in regions where cooling is a primary concern. Additionally,
smart windows optimize the use of natural daylight within buildings, improving visual
comfort. In the literature, there is not so much research on smart windows; however, there
are some studies on electrochromic materials used in smart windows. Electrochromic glass
operates as an electric battery with thin films of specific materials [49]. The level of optical
transparency in this glass is similar to the charge level in a battery. An essential element in
electrochromic devices is the electrolyte, which conducts ions while insulating electrons.
Electrolytes in these systems can be in liquid, gel, or solid form. Liquid electrolytes can
be prone to leakage or evaporation if they contain solvents. Common ions transported
through the electrolyte when an external voltage is applied are typically hydrogen and
lithium, with occasional use of sodium. The electrochromic materials in these devices are
predominantly transition-metal oxides and organic compounds. This material and function
of smart windows is studied, for example by Ke et al. [50], Wang et al. [51], and Zhang
et al. [52]. Some papers discuss smart hydrogel windows, such as [53–56]. In the literature,
there are also review papers on the topic of smart windows, such as Aburas et al. [57],
Nundy [58], and Tällberg et al. [59].

In terms of smart windows, it is justified to mention smart blinds. Smart blinds are
window coverings that can be remotely controlled, typically through a smartphone app or
voice commands. They offer convenience by allowing users to adjust the blinds’ position,
either opening or closing them, without needing to be physically present. Smart blinds can
integrate with smart home systems, enabling automated schedules based on time of day or
sunlight conditions. Some models are also capable of blocking out light to enhance privacy,
regulate room temperature, and save energy. They provide a modern and efficient solution
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for light control in homes. In practice, however, when it comes to recent years, there are
even fewer articles in the literature about intelligent blinds than articles about intelligent
windows. In an example, in the paper of Jung et al. [60], smart windows combined with
photovoltaics blinds and a ventilation system was proposed. Similar research on PV blinds
are discussed in [61,62].

The key directions developed by the authors for usage of AI for blinds and windows
are presented in Table 4.

Table 4. Key directions for future usage of AI for blinds and windows in homes.

Direction Description

Energy Efficiency
Advancements in AI-based technologies to improve the energy efficiency of smart
windows and blinds, enabling better management of solar radiation and enhancing
insulation, especially in regions with varying climate conditions.

User-Friendly Control Interfaces
Development of intuitive user interfaces, such as smartphone applications and
voice-activated commands, to improve user convenience and control over smart
blinds and windows.

Web Applications and Remote Control
Enhancing remote control features for smart blinds, ensuring that users can adjust
them even when they are away from home, contributing to energy savings
and security.

Integration Research on integration of smart windows and blinds with broader smart home
systems to allow synchronized automation

Advancements in Materials
Ongoing research on electrochromic materials for smart windows, exploring their
properties, durability, and environmental impact, with the aim of making them more
accessible and effective.

PV Research into the integration of photovoltaic blinds with smart window systems to
harness solar energy and improve energy sustainability in buildings.

Source: Authors’ own work based on: [48,49,57–62].

3.4. Home Devices–Refrigerators

According to Wang et al. [63], daily, a significant amount of food is needlessly dis-
carded due to prolonged storage in refrigerators, resulting in environmental strain. Re-
frigerators themselves are energy-intensive appliances, and minimizing refrigerator door
openings could substantially contribute to environmental preservation. Hence, the authors
in their research use the (r,n)-threshold SIS scheme to develop picture-sharing technology
and introduce a series of smart refrigerator designs. This incorporates food identifica-
tion technology, enabling users to promptly identify available ingredients on the smart
fridge’s display. This innovative approach minimizes food waste and conserves energy
consumption. Other authors [64] in their research proposed a hardware upgrade for smart
home refrigerators. They designed a Wi-Fi-enabled main control board that maintains
compatibility with existing components. They implemented a simple learning algorithm on
the microcontroller to optimize system efficiency while ensuring food safety temperatures
or user preferences. Additionally, they introduced a wireless sensor node to provide accu-
rate food temperature data for precise monitoring and control. The results demonstrate
a significant efficiency improvement, with an enhancement in the refrigeration cycle and
an improvement in the defrost cycle. Another paper [65] analyzed the energy efficiency
of IoT-controlled refrigerators. The authors explored the impact of different temperature
hysteresis bands and the presence of internal products on the energy consumption of house-
hold refrigerators using an IoT-controlled system. It reveals that larger hysteresis bands
lead to increased energy use when the fridge is empty, but the opposite is true when there
is an internal product (more thermal mass). By choosing the right hysteresis band based on
the product’s characteristics, potential energy savings of up to 20% are achievable. Achiev-
ing this efficiency requires a real-time adaptation scheme that identifies the refrigerator’s
underlying dynamics and control, as described in the paper. For larger-scale refrigeration
systems, such as those in superstores, employing IoT as demonstrated in the paper enables
candidate algorithms for demand-side management (DSM) and real-time hysteresis band
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adjustments to accommodate product mass changes. Some other authors from the study
from this year (2023) conducted a SmartFridge project as a study toward environmental
sustainability and the economy. In their paper [66], they evaluated a refrigerator model
in terms of its energy consumption, considering factors such as indoor temperature and
moisture. The results of their study show that as the indoor temperature increases, energy
consumption increases. Moisture has a minor impact on the energy use of the refrigerator,
according to simulation data. The choice of interior temperature also significantly affects
energy consumption. Table 5 shows the key directions for AI-driven refrigerators.

Table 5. Key directions for future usage of AI for refrigerators.

Direction Description

Energy Efficiency

Developing energy-efficient algorithms and control boards to optimize refrigerator
performance, reduce energy consumption, and lower environmental impact.
AI can optimize the cooling cycles of the refrigerator based on factors such as the
outside temperature, usage patterns, and the contents of the refrigerator. This
dynamic adjustment ensures that the refrigerator does not work harder than necessary,
reducing energy consumption.

IoT-Enabled Temperature Control Exploring IoT-controlled refrigerators to optimize energy use based on the presence of
internal products.

Predictive Maintenance

Smart refrigerators use AI to monitor their own performance and detect early signs of
malfunctions or maintenance issues. By identifying problems in advance, they can
schedule repairs or maintenance during low-demand periods, preventing sudden
breakdowns that might lead to energy waste

Integration
Smart refrigerators can be integrated into larger home energy management systems,
allowing homeowners to coordinate the operation of various smart appliances, heating
and cooling systems, and lighting to maximize energy efficiency throughout the home.

PV Research on the development of solar PV-powered refrigerators.

Source: Authors’ own work based on [63–69].

3.5. Energy Management Systems

In residential buildings, AI-driven systems are becoming increasingly important for
managing energy consumption. As homes consume more electricity and incorporate
distributed energy sources, there is a growing focus on optimizing the expenses related to
purchasing electricity for household users. There are different systems and approaches to
energy management in homes described in the literature. Some authors name these systems
a smart energy management system (SEMS), some call it a home energy management
system (HEMS), and others just call it an energy management system (EMS), as it is
described below. Figure 2 shows an example of a home energy management system [70].
The aim of the system with various household appliances is to optimize their energy usage.
This system is connected to a service provider through a bidirectional communication
network, enabling the exchange of pricing and appliance energy consumption data. The
EMS receives hourly pricing information from the service provider and adjusts the energy
consumption of each appliance in response to these prices. Typically, household electric
appliances are categorized into three main types based on their characteristics and priorities:
non-shiftable, shiftable, and controllable loads.

The previously mentioned paper of Duman et al. [32] also present the study of a
home energy management system (HEMS). The HEMS schedules time-shiftable loads,
including battery storage and electric vehicles, while considering bi-directional power
flow and battery degradation. It is worth noting that electric cars become more and more
popular when it comes to research [71–73], and, therefore, homes also have started to
have charging stations for them. Simulation results indicate a cost reduction under time-
of-use and a reduction in air conditioning (AC) costs. Homeowners input occupancy,
AC settings, appliance usage windows, hot water schedule, and electrical vehicle (EV)
charging preferences. The utility sends energy prices, demand response, and weather
forecasts. A smart thermostat adjusts AC settings based on solar radiation, electricity
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prices, and occupancy. The home energy management system optimizes load scheduling,
considering bidirectional power flow and battery health to minimize costs and enhance
self-consumption.
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Ma et al. [74] describe a HEMS model designed to optimize the energy usage in homes.
It takes into account various factors including household devices, distributed energy
sources, energy storage, and electric vehicle charging. HEMS is a self-regulating system
that can adapt to changes in electricity prices and consumption. It controls the energy for
different devices such as air conditioners, water heaters, washing machines, electric vehicle
chargers, and others. Chauhan et al. [75] present research on the cost reduction using a
smart energy management system. SEMS reduces energy waste, cost, and electricity bills
without compromising user comfort. To test SEMS, a residential microgrid system with
smart appliances, photovoltaic panels, and energy storage is evaluated under flat and
real-time pricing. The results indicate energy savings and a reduction in electricity costs.
The SEMS’s innovative scheduling and cost-driven appliance management demonstrate its
novelty and effectiveness. It must be noted that PV installations are increasingly popular
among individuals [76,77]. The authors of [78] present the study on a smart energy system
that uses machine learning algorithms. These techniques can autonomously regulate
heating and hot water systems, which are major energy consumers in households. This not
only helps reduce energy usage, but also enhances comfort for residents. With the growing
adoption of renewable energy sources in homes, coordinating energy consumption with
production becomes crucial for additional savings and reducing peak loads. The authors
propose the development of a deep reinforcement learning (DRL) algorithm for controlling
indoor and hot water temperatures to optimize energy consumption by leveraging solar
energy production. Additionally, they also introduce a method for dynamically setting
indoor temperature preferences, offering greater flexibility and energy savings. Other
authors [79] introduce a novel approach that combines three distinct artificial intelligence
techniques to address energy demand planning in smart homes. Designed as a multi-
objective scheduling problem, this method seeks a balance between energy cost and user
comfort. By utilizing an elitist non-dominated sorting genetic algorithm II, it incorporates
demand-side management that considers factors like electricity price variations, equipment
priority, operational cycles, and energy storage. Additionally, it includes a distributed
generation forecast using support vector regression for the next day. It is worth mentioning
that there are also many review articles from 2023 (the newest) on the topic of energy
management systems in homes, for example [80–83]. Table 6 shows the key directions for
AI-driven refrigerators.
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Table 6. Key directions of usage of AI for home energy management systems.

Direction Description

Energy Efficiency
Development of advanced AI algorithms that can optimize energy usage in homes.
This includes predicting energy demand, dynamically adjusting energy sources,
and prioritizing energy consumption based on user preferences and real-time data.

Real-Time Energy Monitoring

Development of AI-driven systems for real-time monitoring of energy
consumption and production within homes. This can involve the use of sensors
and IoT devices to gather data and AI algorithms to provide insights
and recommendations.

Predictive Maintenance The use of AI to predict maintenance needs for home energy systems, such as
heating, cooling, and renewable energy installations.

Demand Response and Grid Integration

The development of ways in which AI can facilitate demand response
mechanisms, enabling homes to interact with the broader energy grid more
intelligently. AI can help homes respond to grid signals and optimize energy
consumption during peak and off-peak hours.

Energy Source Integration
The development of ways in which AI can facilitate the integration of diverse
energy sources, such as solar panels, wind turbines, and battery storage, into home
energy systems.

Human-Behavior Integration
Research on how AI can effectively integrate with human behavior in homes. This
involves understanding how occupants interact with energy systems and
developing AI solutions that adapt to users’ energy-related habits and preferences.

Source: Authors’ own work based on [32,70,74,75,78–80,84–86].

4. Urban Infrastructure Integration of AI-Driven Energy Solutions
4.1. Electric Vehicle Charging Infrastructure

Artificial intelligence plays an increasingly important role in electric vehicle charging
infrastructure to enhance its efficiency, reliability, and user experience [87]. AI algorithms
can analyze various factors such as the grid load, energy prices, and individual user
preferences to create optimal charging schedules for EVs [88]. This ensures that charging
occurs during periods of lower energy demand or when renewable energy sources are
abundant, reducing costs and the environmental impact [89]. Also, AI can facilitate demand
response programs, allowing EV owners to participate in load-shifting initiatives. During
peak demand periods, AI can coordinate with users to temporarily reduce their charging
rates, alleviating stress on the grid and helping to prevent blackouts [90].

El Husseini et al. [91] discuss the integration of blockchain and AI technologies as a
solution to address these challenges. It suggests that combining these technologies can lead
to a more secure, efficient, and decentralized charging ecosystem. They discuss a couple
of use cases where AI and blockchain technologies complement each other to enhance
the charging infrastructure for EVs [88,92]. These use cases likely illustrate scenarios
where technologies work together to improve security and optimize charging schedules.
According to this research, it is intended to help stakeholders identify potential directions
and implementations for better charging systems for EVs. This implies that the paper aims
to inform decision-makers about the possibilities and advantages of integrating AI and
blockchain in the EV charging infrastructure [93].

Chaihoie et al. [94] points out that to prepare an appropriate predictive model for
charger planning, AI usage is very useful. They described the “predict-then-optimize”
approach, where AI is used to predict the EV charging demand. This prediction is made
using a multi-relation graph convolutional network (GCN)-based encoder–decoder deep
architecture. This predictive model allows for more data-driven planning and allocation of
resources. In the describe approach, AI is also utilized to optimize the competitive resource
allocation strategy for charger planning. This likely involves determining where to place
charging stations and how to distribute them effectively to meet anticipated demand. AI
can be used to address the optimal size of EV chargers, determining the number of chargers
that each service provider should deploy in various areas of the city.
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Another complex analysis on AI usage in context of electric vehicle charging infras-
tructure was described by Qin and Folly [95]. They pointed out that AI, particularly deep
learning methods like LSTM and GRUs, can be useful for forecasting EV charging and
discharging patterns. The paper highlights the importance of accuracy in forecasting mod-
els, considering the stochastic and unpredictable nature of EV charging patterns. It also
mentions the use of hybrid and ensemble techniques to improve forecast accuracy.

Dynamic pricing strategies are crucial to influence EV owners’ charging and discharg-
ing behaviors. The paper discusses the challenges of existing dynamic pricing models,
such as undervaluing or overvaluing stored battery power. It suggests the need for pricing
models that reflect real-time power system conditions and balance the interests of system
operators and EV owners. The AI can be used to achieve this dynamic pricing approach.

Also, the AI can be useful in the development phase of vehicle-to-grid (V2G). The
development of V2G can be categorized into three phases [96]. In the first phase, the EV
charging load is a small proportion of the power grids, mainly using uncontrolled and
controlled charging strategies. The second phase sees an increased EV charging load with
the high penetration of EVs, necessitating smart charging/discharging control strategies
and aggregator coordination. The third phase envisions a mature state in which many EVs
provide ancillary services to power grids [97].

Another possible application of AI in vehicles charging infrastructure was described
by Mosayebi et al. [98]. The authors describe the need for improved charging infrastructure
for electric vehicles as a result of their increasing numbers worldwide. It introduces the
concept of a smart extreme fast portable charger (SEFPC) for EVs with multiple input
sources, including the power grid and renewable energy sources such as an energy storage
system (ESS). The SEFPC is designed to optimize the charging process by considering
available power sources and the condition of the EV battery to save energy and time. A
machine learning algorithm, based on IT, specifically a model-free sliding mode controller,
is applied to determine the optimal charging operation mode based on the state of the
battery and power source conditions. This approach aims to enhance battery life and
overall system efficiency. The text concludes by mentioning real-time results obtained
using the OPAL-RT platform to validate the effectiveness and feasibility of the SEFPC and
the model-free sliding mode controller.

The very important problem in the case of charging infrastructure is connected with
the importance of effectively placing charging stations to support the growth of EVs and en-
hance the traffic network’s efficiency. Existing research often focuses on EV users’ mileage
anxiety but overlooks their strategic and competitive charging behaviors. According to
Lazari and Chassiakos et al. [99], to address this issue, the concept of charging cost for an EV
user can be introduced, considering factors such as the cost of traveling to access charging
stations and the cost of queuing at charging stations. The problem can be formulated as
the charging station placement problem (CSPP), initially as a bilevel optimization problem.
It then leverages the equilibrium of the EV charging game to convert the problem into a
single-level optimization task, proposing the “Optimizing eleCtric vEhicle chArging sta-
tioN” (OCEAN) algorithm for optimal charging station allocation. Recognizing OCEAN’s
scalability limitations, a heuristic algorithm based on AI called OCEAN can be used with
continuous variables to handle large-scale real-world scenarios. The results of extensive
experiments demonstrate that their approach significantly outperforms baseline methods
in addressing the competitive and strategic charging behaviors of EV users.

Artificial intelligence profoundly impacts EV charging infrastructure, optimizing
charging schedules based on grid load, energy prices, and user preferences. Studies
propose integrating AI with the blockchain to enhance the security, efficiency, and decen-
tralization of EV charging ecosystems. Predictive AI models aid in anticipating EV charging
demand, facilitating data-driven planning, resource allocation, and optimal sizing of charg-
ing stations. AI-driven deep learning methods like LSTM and GRUs enhance accuracy
in forecasting EV charging patterns, which is crucial for dynamic pricing strategies and
vehicle-to-grid development. Additionally, the concept of a smart extremely fast portable
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charger utilizes AI to optimize charging considering various input sources and EV battery
conditions. In Table 7, there is a comparison of the advantages and disadvantages of AI
usage in electric vehicle charging infrastructure.

Table 7. Advantages and disadvantages of AI usage in electric vehicle charging infrastructure.

Advantages Disadvantages

Efficient charging scheduling to reduce grid
strain during peak hours. Initial setup and integration costs can be high.

Accurate range prediction for improved
trip planning.

Dependence on AI technology, which may
have downtime or errors.

Reduced grid congestion and load balancing. Privacy concerns related to data collection and
monitoring of user behavior.

Smart charging infrastructure for a better
user experience.

Potential job displacement in traditional
charging station maintenance.

Energy cost optimization for cost savings. Concerns about cybersecurity and
data protection.

Battery management to extend battery life. Need for continuous updates and maintenance
of AI systems.

Predictive maintenance to reduce the
downtime of charging stations.

Possible resistance or skepticism from users
unfamiliar with AI technology.

Adaptive charging rates for efficient charging. Environmental impact and sustainability
concerns related to energy sources.

Improved user experience with real-time
information and remote management.

Challenges of integration in existing
infrastructure and grid systems.

Grid integration for V2G services and
grid stability.

Complexity in regulating and standardizing AI
usage in the industry.

Source: Authors’ own work on basis: [87–89,91,95,98,100–108].

The most important direction for the future usage of artificial intelligence in electric
vehicle charging infrastructure are summarized in Table 8.

Table 8. Key directions for future usage of AI in electric vehicle charging infrastructure.

Direction Description

Smart Grid Integration Integrate AI with the smart grid to balance energy supply and demand, optimize
charging schedules, and support bidirectional charging for grid stability.

Dynamic Charging Station Placement Use AI to identify optimal locations for new charging stations based on traffic patterns,
EV adoption rates, and local energy infrastructure.

Predictive Maintenance
Using artificial intelligence for predictive maintenance of charging stations to reduce
downtime and ensure reliable service, including monitoring components such as
connectors and power electronics.

User-Centric Charging Services Develop AI-driven apps and services that offer personalized charging
recommendations, payment solutions, and real-time station availability information.

Energy Management and
Cost Optimization

Implement AI to manage energy costs, ensuring that charging stations use electricity
at the most cost-effective times while considering renewable energy sources.

Vehicle-to-Grid (V2G) Integration Enable V2G capabilities with AI to allow EVs to feed surplus energy back to the grid,
reducing peak demand and earning rewards for vehicle owners.

Fleet Charging Solutions Create AI-powered solutions for fleet managers to optimize charging schedules,
monitor vehicle health, and reduce operational costs of electric vehicle fleets.

Interoperability and Standardization Establish AI-driven standards that ensure interoperability between different charging
networks, vehicle models, and manufacturers, promoting EV adoption.

AI-Enhanced DC Fast Charging Improve DC fast charging technology with AI to manage high-power charging,
battery safety, and thermal management for shorter charging times.

Energy Storage Integration Incorporate energy storage systems at charging stations and use AI to manage energy
flow, enhancing the resilience of the charging station and grid support.
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Table 8. Cont.

Direction Description

Adaptive Load Management Implement AI algorithms for adaptive load management that balance energy
distribution among multiple charging stations, minimizing grid strain.

User Behavior Analytics Analyze user behavior with AI to understand charging patterns, preferences, and peak
usage times to optimize station planning and energy management.

Real-time Grid Health Monitoring Use AI for real-time monitoring of the electric grid’s health, identifying vulnerabilities
and proactively addressing issues to ensure charging station reliability.

Environmental Impact Assessment Develop AI models to assess the environmental impact of EV charging infrastructure
and inform decisions regarding its expansion and sustainability.

Security and Fraud Detection Enhance cybersecurity with AI to protect charging stations from hacking and fraud,
protecting user data and financial transactions.

Education and Awareness Initiatives Utilize AI for educational campaigns and awareness initiatives to inform the public
about the benefits of EVs and the accessibility of the charging infrastructure.

Source: Authors’ own work based on: [87–89,91,95,96,98,100–109].

4.2. Vehicle Emission Reduction

One of the promising technological advances in this effort is the application of artificial
intelligence to mitigate vehicle emissions. AI is revolutionizing the automotive industry
by enhancing the efficiency of conventional vehicles, accelerating the adoption of electric
and hybrid vehicles, and optimizing traffic management. This two-page essay explores the
multifaceted role of AI in vehicle emissions reduction [110].

One of the primary ways that AI contributes to vehicle emission reduction is by opti-
mizing the performance of traditional internal combustion engines. AI algorithms are inte-
grated into the engine control systems, enabling real-time monitoring and the adjustment
of parameters to minimize emissions while maintaining efficiency [111]. These AI-driven
systems take into account factors such as engine temperature, load, and fuel–air mixture
to ensure that combustion is as clean and efficient as possible. By constantly adapting to
changing driving conditions, these AI systems can significantly reduce harmful emissions.

According to Zhao et al. [112], the research of electric vehicles equipped with artificial
intelligence has the capacity to significantly mitigate air pollution and carbon emissions. AI
assistance enables these vehicles to operate more efficiently and make real-time decisions,
contributing to a cleaner environment. By optimizing energy consumption and reducing
the carbon footprint, AI-assisted electric vehicles offer a promising solution to combat the
environmental challenges associated with conventional vehicles.

The rapid growth of electric and hybrid vehicles is a key strategy for reducing emis-
sions [113]. AI plays an important role in the development and operation of these cleaner
alternatives. For instance, AI is used to manage the power distribution in hybrid vehicles,
deciding when to use electric or gasoline power based on driving conditions. It optimizes
battery performance, expanding the range of electric vehicles [114].

Abduljabbar et al. [115] state that artificial intelligence is seen as a well-suited solution
to address the complex challenges faced by transportation systems, including growing
travel demands, rising CO2 emissions, safety issues, and environmental degradation. These
challenges are a direct result of the continuous expansion of traffic, both in rural and
urban areas, driven by population growth, especially in developing countries. For instance,
in Australia, the cost of congestion is projected to rise to 53.3 billion as the population
increases to 30 million by 2031. In Melbourne, Australia, alone, over 640 km of arterial
roads experience congestion during peak hours, leading to an annual CO2 emission of
2.9 tons.

AI-driven eco-driving assistants provide real-time feedback to drivers on how to
optimize their driving habits for better fuel efficiency and lower emissions [116]. These
systems analyze data from various vehicle sensors, including engine performance, speed,
and fuel consumption, to advise drivers on the most fuel-efficient speeds, optimal gear
shifting points, and efficient acceleration and braking patterns [117]. By following these
recommendations, drivers can significantly reduce their carbon footprint, and over time,
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this has a collective impact on emissions reduction and ensures a seamless transition
between electric and internal combustion modes [118]. These assistants also incorporate
route optimization, suggesting the most efficient routes to reach a destination. By avoiding
traffic congestion and stop-and-go driving, vehicles can operate more efficiently, resulting
in reduced emissions [119].

Delnevo et al. [120] explored the integration of big data and machine learning to
forecast when the friction brake will be activated. The objective is to enhance energy
efficiency in electric vehicles, raise driver awareness, and alleviate concerns related to
‘range anxiety.’ Subsequently, the in-vehicle human–machine interface can take advantage
of these real-time predictions to provide drivers with more precise and comprehensive
insights into their braking habits, ultimately promoting eco-friendly driving practices.

Also, an AI-based solution can be useful in optimizing traffic flow and reducing
congestion, which, in turn, can lead to emissions reduction. AI-powered traffic management
systems use real-time data from various sources, including traffic cameras, sensors, and
smartphones, to analyze traffic patterns [121]. These systems can adjust traffic signals,
suggest alternate routes, and even implement dynamic toll pricing to reduce congestion
during peak hours [122].

In the 21st century, numerous researchers [110,113,122–124] are striving to establish a
more reliable transportation system that minimizes its impact on people and the environ-
ment, while remaining cost-effective and efficient through the application of AI techniques.
AI holds significant promise for enhancing various aspects of transportation, including
road infrastructure, driver assistance, road user experience, and vehicle operation.

Summing up, artificial intelligence demonstrates a pivotal role in curbing vehicle
emissions by optimizing traditional combustion engines in real time. These AI-integrated
systems meticulously adjust parameters, like engine temperature and fuel–air mixtures, to
substantially minimize harmful emissions while ensuring efficiency, thereby showcasing
promising results in emission reduction. Additionally, AI plays a vital role in enhancing
electric and hybrid vehicles’ efficiency by managing power distribution, extending battery
range, and offering real-time decision-making capabilities, thereby significantly reducing
the environmental impact. AI-enabled eco-driving assistants provide personalized feedback
to drivers, optimizing driving habits for fuel efficiency and lower emissions by advising
on optimal speed, gear shifting points, and efficient acceleration patterns. Furthermore,
AI-based traffic management systems leverage real-time data to optimize traffic flow,
reduce congestion, and subsequently cut down on emissions during peak hours. These
implementations underscore AI’s effectiveness in mitigating emissions and optimizing
transportation systems.

Some key directions for the future usage of artificial intelligence in vehicle emission
reduction are presented in Table 9.

Table 9. Key directions for future usage of AI in vehicle emission reduction.

Direction Description

Real-Time Emission Monitoring
Develop AI systems that provide real-time monitoring and reporting of vehicle
emissions. These systems can enable immediate corrective actions and help regulatory
agencies enforce emission standards effectively.

Predictive Emission Control
Implement AI algorithms that predict emissions based on driving conditions, enabling
proactive emission reduction strategies. This can include adaptive engine control and
route optimization.

Enhanced Fleet Management
Expand AI-powered fleet management solutions to optimize the operation of large
vehicle fleets, including route planning, load balancing, and eco-driving coaching for
commercial vehicles.
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Table 9. Cont.

Direction Description

Autonomous Vehicles and
Emission Reduction

Advance the use of AI in autonomous vehicles to optimize driving patterns, minimize
idle, and enhance communication between vehicles and traffic management systems
for emission reduction.

Electric Vehicle Range Optimization
Develop AI systems that improve electric vehicle range predictions, taking into
account factors such as weather, terrain, and driving habits. This can reduce “range
anxiety” and promote electric vehicle adoption.

Integrated Transportation Ecosystem
Create AI-driven platforms that integrate various modes of transportation (e.g., public
transit, ridesharing, electric scooters) to provide seamless, efficient, and eco-friendly
travel options.

Emission Reduction Incentives Utilize AI to design incentive programs for eco-friendly driving, such as discounted
tolls or insurance rates for low-emission vehicles and eco-driving practices.

Air Quality Monitoring and Alerts Enhance AI-powered air quality monitoring systems in urban areas and provide
real-time alerts and recommendations to residents and policymakers.

Green Infrastructure Planning
Utilize AI for urban planning and infrastructure development, considering the impact
on vehicle emissions. This can include optimizing traffic flow, promoting public
transportation, and expanding electric vehicle charging networks.

Emission Reduction
Regulation Compliance

Continue developing AI tools for robust emission testing and compliance verification,
ensuring that vehicles meet stringent environmental standards and regulations.

Energy-Efficient Manufacturing
Apply AI in the manufacturing process to reduce the carbon footprint of vehicle
production. AI can optimize supply chains, minimize waste, and improve
energy efficiency.

Lifecycle Carbon Footprint Analysis
Develop comprehensive AI models that consider the environmental impact of a
vehicle’s entire lifecycle, from manufacturing and operation to disposal, helping
consumers make informed decisions.

Public Awareness and Education Utilize AI for personalized public awareness campaigns and eco-driving education,
helping individuals understand their role in reducing emissions.

Global Collaboration and Standards Foster international collaboration to establish global AI standards and best practices
for vehicle emissions reduction, allowing consistency in technology implementation.

Source: Authors’ own work based on: [110,113,114,116–119,121,124–127].

4.3. Smart Grid

Artificial intelligence is a very useful solution in enhancing the efficiency, reliability,
and sustainability of smart grids, which are modernized electrical grids that use digital
technology to monitor and manage electricity generation, distribution, and consumption.
AI is applied in various ways within smart grids to optimize operations, improve energy
management, and enhance overall grid performance [128].

The utilization of AI in the smart grid offers a digital framework that harnesses
advanced technological capabilities. AI strategies within the smart grid encompass various
aspects such as power management, automation of the power system, analysis of energy
usage trends, and the detection of faults [129]. The ultimate objective of an intelligent grid is
to substitute manual procedures with AI-driven solutions, resulting in enhanced efficiency,
stability, and cost savings [130]. This covers every facet of an electrical network [128]
including power generation [131], energy transmission [132], power conversion [133],
electricity distribution [134], and energy consumption [135].

AI can analyze data from sensors and other sources to predict when grid equipment,
such as transformers or circuit breakers, might fail. This proactive approach to maintenance
reduces downtime and prevents costly outages [136]. AI can forecast electricity demand
and adapt the grid’s operation accordingly. It can communicate with smart appliances,
thermostats, and electric vehicles to optimize energy consumption during periods of high
demand or low supply [137], reducing peak load and managing grid stress [138].

Omitaomu and Niu [139] have described main artificial intelligence techniques which
can be used in smart grids. The first important method is load forecasting. The increasing
complexity of load forecasting is due to the integration of renewable energy sources in
smart grids. Load forecasting is categorized into three levels: short-term load forecasting
(STLF), mid-term load forecasting (MTLF), and long-term load forecasting (LTLF). Various
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AI techniques, including deep learning, are explored to enhance forecasting accuracy.
Another area where AI techniques can be useful is power grid stability assessment. Power
grid stability, comprising transient stability, frequency stability, small-signal stability, and
voltage stability are crucial to ensure the reliability and security of the power system.
Traditional stability assessment models are complex and computationally intensive. Data-
driven AI methods are useful for stability analysis, leveraging technologies such as phasor
measurement units (PMUs) and wide area measurement systems (WAMSs).

Another potential of AI in smart grids is the usage of AI methods for fault detection in
power systems. Various techniques, such as extreme learning machines (ELMs), support
vector machines (SVMs), and ensemble models, are employed to detect and locate faults in
power grids, including high-impedance faults in micro grids and line trip faults [140].

The AI can also be useful in the case of smart grid security. AI technologies, such as
artificial neural networks (ANNs), support vector machines (SVMs), and reinforcement
learning (RL), are employed to enhance smart grid security by detecting and preventing
cyberattacks [128,141].

AI systems continuously monitor the grid for abnormal conditions or disturbances [142].
They can quickly identify and respond to issues such as power outages [142], equipment
failures [143], or cybersecurity threats [128]. Its use can help in integrating variable energy
sources like solar and wind into the grid by predicting their output based on weather con-
ditions and adjusting grid operations to accommodate fluctuations in generation [144,145].

There are many key directions for the future usage of artificial intelligence in smart
grids. The authors present them in Table 10.

Table 10. Key directions for future usage of AI in smart grids.

Direction Description

Integration with Cloud Computing

To realize the vision of a fully self-learning smart grid, integrating AI with cloud
computing is pivotal. This integration brings several benefits including increased
security and robustness, and a reduction in downtime due to outages. The cloud acts
as a reservoir of data and computational power, allowing smart grids to process
information efficiently, adapt quickly to changing conditions, and make
well-informed decisions.

Fog Computing

Fog computing introduces a paradigm shift by processing raw data locally, rather than
transmitting it to distant cloud servers. This approach offers several advantages such
as energy efficiency, scalability, and flexibility. Using on-demand computing resources,
fog computing aligns perfectly with the demands of a modern smart grid. Preliminary
research indicates its potential role in enhancing the reliability and performance of
smart grids, particularly as the volume of data generated in these systems continues
to escalate.

Transfer Learning

Smart grid analysis faces a persistent challenge: the scarcity of labeled data. To
overcome this obstacle, researchers are turning to transfer learning, a technique that
reduces the reliance on large volumes of training data. Recent years have witnessed a
surge in interest in deep transfer learning tasks. These approaches hold great promise
and could have widespread applications within smart grid systems, enabling them to
adapt and learn even with limited data.

Consumer Behavior Prediction

In the era of fog computing and the evolution of 5G networks, predicting consumer
behavior has become a critical task in managing power systems. Understanding and
learning the patterns of consumer power consumption can significantly contribute to
demand-side management. With the assistance of AI, smart grids can anticipate and
respond to changes in energy consumption patterns, promoting efficient demand
response initiatives.

Source: The authors’ own work on the basis of: [99,128–130,132,134,135,137–139,141–157].

According to Seyd and Bong [128], AI techniques have revolutionized the energy
market by providing efficient solutions for real-time demand response and decision-making.
This enables grid operators to optimize all aspects of the power grid, from relay switching
to large generator controls, and mitigate unwanted harmonics through sensor networks.



Energies 2023, 16, 7988 20 of 34

Those techniques play a crucial role in coordinating distributed energy resources, enhancing
the acceptability of renewable energy sources, and increasing grid reliability. It allows
for the efficient management of distributed generation and storage capacity, automatic
regulation and optimization, bidirectional energy flow, and the integration of plug-in
hybrid electric vehicles.

Distributed grid management requires real-time optimization for large-scale systems
with renewable generators and controllable loads. AI techniques, such as consensus-
based distributed computational intelligence, offer solutions to address the challenges of
rapidly changing conditions, computation, and communication bottlenecks [148]. AI has
driven the development of decentralized and intelligent controllers, improving processing
speed, reliability, and efficacy. These controllers distribute operations among distributed
units, reducing the burden on centralized controllers and improving the resilience of the
system [158].

The traditional approach of using supervisory control and data acquisition (SCADA)
systems has become impractical due to the complexity of modern grids. AI-driven dis-
tributed load balancing algorithms have emerged as effective solutions to optimize loads
in distributed systems. AI and blockchain technologies have played a significant role in
enhancing security and data management in smart grids, particularly in the context of
distributed data storage and local energy trading [146].

According Sulaiman et al. [138], the integration of artificial intelligence into the smart
grid presents significant opportunities and challenges. AI can enhance grid security by
continuously monitoring, analyzing, and predicting potential threats and vulnerabilities.
It enables proactive responses to security incidents, automates decision-making, and pro-
motes collaboration among various infrastructure components in a smart city. However,
there are several challenges that need to be addressed.

According to Zambrano and Giraldo [154], predictive models based on AI for renew-
able energy hold the promise of revealing valuable glimpses into the expected energy
enhancements in the near future. Ruhnau et al. [155] believe that combining various ap-
proaches can refine these forecasts by making the most of the disparities in individual
prediction models. These approaches encompass both standalone and integrated tech-
nologies that generate predictions based on distinct time series data derived from specific
sources such as weather stations, wind turbines, or solar panels [109]. To enhance forecast
precision, the incorporation of information from nearby areas to the location of interest has
become increasingly popular, particularly in recent years [116].

In Table 11, there is a comparison of the advantages and disadvantages of AI usage in
smart grids.

Table 11. Advantages and disadvantages of AI usage in smart grids.

Advantages Disadvantages

Improved Grid Efficiency
AI can optimize energy distribution and reduce energy waste,
leading to improved grid efficiency.

Data Security Concerns
AI systems may be susceptible to cyberattacks, potentially
compromising the security and privacy of grid data
and operations.

Enhanced Reliability
AI enables predictive maintenance and self-healing capabilities,
reducing downtime and improving grid reliability.

Initial Implementation Costs
Integrating AI into smart grids can require substantial
investments in infrastructure, technology, and expertise.

Real-time Monitoring
AI allows for real-time monitoring and analysis of grid
performance, enabling quick responses to fluctuations
and outages.

Complexity and Maintenance
AI systems can be complex to implement and maintain,
requiring skilled personnel and ongoing updates.

Demand Response
AI can predict and respond to changes in energy demand,
facilitating efficient demand-side management.

Resource Intensive:
AI systems may demand significant computational resources,
potentially increasing operational costs.
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Table 11. Cont.

Advantages Disadvantages

Renewable Integration
AI aids in the integration of renewable energy sources by
optimizing their output and storage.

Data Privacy Concerns
The collection and analysis of large amounts of data can raise
concerns about consumer data privacy.

Grid Resilience
AI can adapt to unexpected events and disasters, contributing to
grid resilience and disaster recovery.

Algorithm Bias
AI algorithms can exhibit bias based on the training data,
potentially leading to unfair or inequitable outcomes.

Reduced Environmental Impact
AI can minimize environmental impact by optimizing energy
usage and promoting sustainable practices.

Lack of Human Oversight
Excessive reliance on AI may reduce human oversight and
decision-making, potentially introducing risks.

Source: The authors’ own work based on: [88,92,99,104,128–130,132,134,135,137,139,142–145,148–160].

AI has enabled the emergence of “prosumers”, allowing domestic energy users to
both produce and consume electricity and share it with others. This shift from centralized,
fossil-fueled generation to a decentralized, intelligent system enhances economic benefits
for consumers, fostering energy sharing and trade [160].

Sami [153] described how to use AI in prosumers management. He pointed out that
machine learning within the realm of artificial intelligence has the capability to assess and
anticipate energy demand patterns and categorize irregular energy usage. By leveraging
data collected through smart meters and subjecting it to AI analysis and data mining, it
becomes feasible to discern various customer segments’ electricity consumption behaviors.
Subsequently, this data can be employed to enhance statistical precision, facilitating the
targeted delivery of advertisements and services. Fluctuations in the environment, such as
variations in weather conditions, alterations in electrical appliance usage, and changes in
consumer behavior, can impact the accuracy of anomaly detection results. Consequently,
it is imperative to emphasize potential adverse aspects within the power grid that could
influence the equitable distribution of power among consumers. The analysis of energy
consumption is intrinsically linked to human characteristics, which can be addressed by
extracting or taxonomy features. In this context, the development of deep learning models,
particularly multilayered hidden neural networks, augments the predictive performance of
energy demand and consumption.

Rodgers et al. [147], in his study, underscores the significance of AI in smart grids,
aligning goals with global sustainability objectives, emphasizing the role of ICT, and
outlining practical requirements for smart grids. The study delves into the decision-making
processes of experts and their knowledge transfer apparatus. It highlights the importance of
information and communication technology (ICT) and AI usage in facilitating knowledge
transfer for a greener environment. The authors have identified three key goals for smart
grids: universal access to electricity, environmental protection, and efficiency. These
goals align with global sustainability objectives, such as those set by the United Nations
Conference on Sustainable Development (Rio + 20). The AI-based solutions can be useful
to realize them.

The AI can be also used to enable smart grid stability prediction. This possible us-
age was described by Ucar [161]. He proposes an enhanced model using explainable AI
and feature engineering for predicting the stability of the smart grid (SG). This model ap-
proaches the problem with both classification and regression, offering a holistic perspective
on existing studies and proposing a novel structure to address their limitations. The GBM
(gradient boosting machine) and deep learning models are introduced as effective tools for
prediction, despite their drawbacks. The flexibility and practicality of GBMs make them
valuable tools for model design and customization. The text concludes by emphasizing the
importance of combining data analytics with smart grid research for future studies.

Summing up, artificial intelligence plays a pivotal role in optimizing the performance
of smart grids by efficiently managing various grid operations and energy consumption.
These AI-driven systems utilize load-forecasting techniques and predictive analysis to
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enhance stability, minimize downtime, and proactively maintain grid equipment, prevent-
ing costly outages. Moreover, AI facilitates real-time adjustments in energy consumption
by communicating with smart appliances and electric vehicles, ensuring optimization
during peak demand periods, and consequently reducing stress on the grid. AI’s inte-
gration within the energy market enables grid operators to coordinate distributed energy
resources efficiently, enhancing grid reliability and managing distributed generation and
storage capacity effectively. Furthermore, AI-driven decentralized controllers enhance
system resilience and processing speed, optimizing operations among distributed units,
and reducing the dependency on centralized controllers. Moreover, AI’s role extends to
improving grid security by continuously monitoring and predicting potential threats, au-
tomating decision-making, and fostering collaboration among infrastructure components
in smart cities.

4.4. Energy Storages

With the global shift toward renewable energy sources like solar and wind, the need
for efficient and reliable energy storage solutions has become increasingly critical. AI plays
an important role in addressing the challenges associated with energy storage, making it
smarter, more cost-effective, and environmentally friendly [162].

Energy storage technology has a role to play in enhancing the capabilities for utilizing
new energy sources, ensuring the reliable and cost-effective power systems operation,
and advancing the extensive adoption of renewable energy technologies [163]. Various
fresh innovations, concepts, methodologies, and technologies have been introduced in this
domain, stemming from disciplines such as materials science, knowledge management,
electrical engineering, control systems, and artificial intelligence [164].

AI algorithms are being used to enhance the performance of energy storage systems,
particularly lithium-ion batteries. By continuously monitoring and analyzing data from
these batteries, AI can optimize their charging and discharging cycles, extending their
lifespan and improving their efficiency [133]. This not only reduces maintenance costs,
but also reduces the environmental impact of battery disposal. This solution is employed
to predict potential issues in energy storage systems before they lead to costly break-
downs [165]. Through real-time data analysis and machine learning models, AI can detect
anomalies in system behavior, enabling operators to perform timely maintenance and
prevent unexpected downtime [166].

Energy storage systems equipped with AI can respond rapidly to fluctuations in the
grid. When the supply of renewable energy is inconsistent, AI can instantly adjust the flow
of stored energy, stabilizing the grid and ensuring a consistent power supply [167].

In the literature, many techniques of AI usage in energy storage can be found. Ahmed
and Abdallia [168] proposed hybrid differential evolution optimization of AI. The efficiency
of the proposed controller is confirmed in an electrical grid that includes a synchronous gen-
erator, a photovoltaic power source, and a battery energy storage system. The controller’s
parameters are adaptively tuned in real-time by training the artificial neural network (ANN)
with datasets generated during the optimization phase of both controllers using the hybrid
differential evolution optimization method under varying levels of disturbance, ranging
from low to high. Athari and Ardehali [169] used the fuzzy logic controller-based approach.
The membership features of the fuzzy logic controller (FLC) are tailored to reduce opera-
tional costs in green energy hybrid systems. This reduction is achieved by utilizing weekly
and periodic data predictions for factors such as water availability, electricity demand, and
environmental conditions like wind speed, sunlight, and air temperature. This optimiza-
tion process employs algorithms inspired by frog-spring shuffling. It is worth noting that
accurate accounting of power grid costs plays a significant role in enhancing the efficiency
of energy storage components for the hybrid renewable energy systems (HRESs) when
connected to the grid. This efficiency improvement is achieved because the configured
weekly and periodic FLCs help minimize the operating hours of fuel cells and gas-based
generators while reducing state-of-charge (SOC) variability in the battery stack [168].
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Zahedi and Ardehali [170] described the situation when a novel energy storage system
(ESS) control system employing a multi-agent setup was implemented for a 100-megawatt
system. The system’s control performance was verified through simulation analysis and
practical testing. The AI-driven solution based on hierarchical control was described
by Yunhao et al. [171]. By employing balance regulation, the simulated impedance is
dynamically adjusted to eliminate the impact of inaccurate line impedance on the precision
of the current distribution. Subsequently, each power storage unit can fine-tune its current
based on state-of-charge (SoC) balance control, taking into account its capacity and charging
status. This helps reduce SoC discrepancies and facilitates a gradual state of charge (SoC)
balance during both charging and discharging operations.

Summing up, artificial intelligence is revolutionizing energy storage solutions by opti-
mizing the performance and longevity of storage systems. In energy storage, AI algorithms
continuously analyze and fine-tune the charging and discharging cycles, notably enhancing
the efficiency of lithium-ion batteries. By leveraging real-time data and predictive analytics,
AI predicts potential system issues, enabling proactive maintenance, reducing downtime,
and mitigating the environmental impact associated with battery disposal. These AI-driven
solutions in energy storage effectively stabilize the grid by swiftly responding to fluc-
tuations in renewable energy supply, ensuring consistent power flow and minimizing
interruptions. Additionally, diverse AI-based approaches, such as hybrid optimization
and fuzzy logic controllers, significantly improve system efficiency and reduce operational
costs in hybrid renewable energy systems. These advancements underscore AI’s role in
enhancing the reliability, efficiency, and sustainability of energy storage systems, offering
promising avenues for smarter and more eco-friendly energy management.

In Table 12, there is a comparison of the advantages and disadvantages of AI usage in
energy storage management.

Table 12. Key directions for future usage of AI in energy storages.

Direction Description

Optimized Energy Management Implement AI to optimize the management of energy storage systems, maximizing
their efficiency and overall performance.

Grid Integration Develop AI solutions that facilitate seamless integration of energy storage with power
grids, enhancing grid stability and ensuring reliable power supply.

Advanced Battery Technologies Utilize AI to advance the development of new battery technologies, making them
more efficient, longer lasting, and cost-effective.

Predictive Maintenance Employ AI for predictive maintenance of energy storage systems to reduce downtime
and extend the lifespan of storage devices.

Renewable Energy Synergy
Enhance AI algorithms to seamlessly integrate energy storage with renewable energy
sources such as solar and wind, enabling more efficient and stable renewable
energy utilization.

Decentralized Storage Develop AI-driven solutions for managing decentralized energy storage resources,
including microgrids and distributed storage systems, improving grid resilience.

Cybersecurity and Data Privacy Strengthen cybersecurity measures to protect energy storage systems and ensure data
privacy when handling sensitive grid information through AI technologies.

Energy Consumption Optimization Use AI to optimize energy consumption patterns in homes, businesses, and industries,
ensuring efficient use of stored energy and reducing energy waste.

Environmental Sustainability Develop AI-powered solutions that promote environmental sustainability by
minimizing the environmental impact of energy storage systems.

Regulatory Compliance
Collaborate with policymakers to ensure that AI-based energy storage systems comply
with regulations and standards while promoting responsible and ethical AI use in the
energy sector.

Source: Authors’ own work on basis: [133,157,163,164,167,168,171–173].

5. Discussion–Challenges

Based on a review of the literature and an analysis of solutions based on artificial
intelligence and connected to energy both at home and in cities, the authors identified and
described the challenges in the given areas. This section is divided into two subsections
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corresponding to fields from Sections 3 and 4, and in each of these fields the authors have
identified the most important challenges that resulted from a review of the latest research
on the topic.

5.1. Field of Residential and Individual Users

In the first field, the following challenges were identified:

• Providing the desired level of resident comfort while minimizing energy consumption
in smart homes;

• Providing cooperation of different devices in smart homes as they are often produced
by different manufacturers and use various communication protocols;

• Ensuring that energy management systems in homes effectively reduce energy con-
sumption and not inadvertently increase it through constant connectivity and de-
vice usage;

• Using machine learning and deep reinforcement learning to manage appliances, dis-
tributed energy sources, and electric vehicle charging in smart homes;

• Providing the stability and availability of energy sources for smart homes as smart
homes become more dependent on renewable energy sources;

• Coordinating energy consumption in smart homes with the growing adoption of
renewable energy sources;

• Optimizing AI-driven HVAC systems by making real-time adjustments based on data
from sources such as weather forecasts and occupancy patterns;

• Developing AI-driven home energy management systems that adapt to changes in
electricity prices and consumption;

• Providing the compatibility of smart lighting with various smart home platforms;
• Developing cost-effective and environmentally sustainable lighting systems;
• Developing and implementing new materials in smart windows to control natural

light and use it to obtain the optimal temperature inside building;
• Creating intelligent control systems for smart blinds that adapt to changing sunlight

and temperature to ensure optimal light management and energy efficiency in homes;
• Designing hardware upgrades for refrigerators to improve efficiency while ensuring

food safety;
• Developing self-learning smart thermostats for more extensive applications;
• Getting users to adopt energy-efficient behaviors and make the most of smart home

features is vital—educating and motivating users is vital.

5.2. Field of Urban Infrastructure

In the other field, the following challenges were identified:

• Implementing of AI in the charging infrastructure can come with high upfront costs
for hardware, software, and integration;

• Dependency of the charging infrastructure on AI systems, which can occasionally
experience downtime or errors, potentially inconveniencing EV owners;

• Collecting of user data and behavior monitoring for optimal charging can raise privacy
concerns, necessitating robust data protection measures;

• Shifting to AI-powered charging infrastructure may lead to traditional charging station
maintenance jobs being displaced;

• Protecting the charging infrastructure from hacking and fraud is a significant concern,
requiring strong cybersecurity measures;

• Requirements of AI systems ongoing updates and maintenance to ensure their effec-
tiveness and security;

• Resistance of some users to adopt AI technology to charge their EVs;
• Integrating AI into existing infrastructure and grid systems can be complex and

require standardization;
• Implementing AI solutions for vehicle emission reduction may involve integration

costs and technology adoption challenges;
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• Ensuring that vehicles meet stringent emission standards and regulations requires the
development of robust AI tools;

• Convincing drivers to adopt eco-friendly driving practices may be a challenge;
• Fostering international collaboration and standards for AI in vehicle emission reduc-

tion can be complex;
• Using of AI in smart grids and energy storage systems introduces cybersecurity risks,

potentially compromising the security and privacy of grid data and operations;
• Integrating AI into smart grids and energy storage systems can require substantial

investments in infrastructure, technology, and expertise;
• Implementation complexity and maintenance of AI-driven systems, requiring skilled

personnel and ongoing updates to keep them operational;
• Requiring substantial computational resources, AI systems could potentially escalate

operational expenses;
• AI algorithms have the potential to display bias linked to the training data, potentially

resulting in outcomes that are unfair or inequitable;
• Depending excessively on AI could potentially diminish human oversight and decision-

making, introducing possible risks;
• The gathering and analyzing of extensive data could potentially cause concerns about

the privacy of consumer data.

5.3. Scenarios

Overcoming these challenges will be essential for the successful integration of smart
homes and smart cities and efficient usage of energy in the future. It will require a collabo-
rative effort from manufacturers, policymakers, and consumers.

Summing up the challenges, the following scenarios for future usage of AI within
energy can be considered:

• AI-driven smart home adaptability: creating adaptive AI systems that learn user
behaviors and preferences to optimize energy usage in smart homes. These systems
should harmonize various devices, predict consumption patterns, and adjust settings
in response to changing conditions, ensuring energy efficiency without compromising
user comfort.

• Secure and privacy-enhanced charging infrastructure: development of AI-powered
charging stations equipped with robust cybersecurity measures and privacy protocols.
These systems ensure seamless operation, user data protection, and effective energy
management, overcoming privacy concerns and fostering greater EV adoption.

• Standardized integration of AI in urban grids: establishing standardized protocols for
integrating AI into urban grids and infrastructure. This involves collaborative efforts to
ensure the compatibility, cybersecurity, and seamless integration of AI solutions across
various urban energy systems, ensuring reliable and efficient energy distribution.

• Emission reduction through AI-optimized driving: implementing AI-based systems
that actively encourage eco-friendly driving behaviors. These systems utilize real-time
data analysis, offering personalized feedback and incentives to drivers, promoting
fuel-efficient driving habits and reducing vehicle emissions.

• Fairness and bias mitigation in AI algorithms: addressing biases in AI algorithms used
for energy management by implementing fairness-aware and transparent AI models.
Efforts should focus on developing tools that detect and mitigate biases, ensuring
equitable outcomes and fair decision-making in energy-related AI applications.

• Collaborative international AI standards: facilitating international collaboration to
establish unified AI standards for energy solutions. This involves harmonizing regula-
tions, sharing best practices, and fostering a global framework that promotes ethical
use of AI in managing energy systems.

These scenarios represent potential directions for the use of AI in energy-related do-
mains, offering solutions to overcome existing challenges while emphasizing collaboration
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among stakeholders, policymakers, manufacturers, and consumers to ensure sustainable
and efficient energy usage in the future.

6. Conclusions

The paper presents a comprehensive review of AI-driven solutions in the urban energy
sector, shedding light on the significant impacts and promising applications of artificial
intelligence. Through a literature review including papers from 2019 to 2023, the study
categorizes these solutions into two main areas: residential and individual user applications,
and urban infrastructure integration for both individual users and communities. The review
has achieved its objectives, as follows:

• O1: to identify trends, emerging technologies, and applications using artificial intelli-
gence in the energy field:

- The examination has shown key emerging technologies in AI-driven energy
solutions for residential users and society at large. They include solutions for
individual users in homes, such as AI-driven heating and cooling, lighting, win-
dows and blinds, home devices—refrigerators, and energy management systems.
When it comes to society, the following are most popular: electric vehicle charging
infrastructure, vehicle emission reduction, smart grid, and energy storages.

• O2: to provide up-to-date insights into the use of artificial intelligence in energy-
related applications:

- Focusing on recent research, the paper has provided valuable insights into the
current state of AI-driven urban energy solutions. It highlights the rapid evolution
of technology and its growing role in shaping urban energy systems.

• O3: to gain a comprehensive understanding of the current state of AI-driven urban
energy solutions:

- The review has deepened our understanding of the dynamic field of AI-driven ur-
ban energy solutions. It elucidates how AI is being integrated into various aspects
of urban living, from individual homes to a broader community infrastructure.

• O4: to explore future directions, emerging trends, and challenges in the field of AI-
driven energy solutions:

- The paper acknowledges the transformative potential of AI in urban energy
management while recognizing the challenges ahead. It shows the way for future
research activities by offering a view of AI-driven solutions in homes and cities.

The research questions have been addressed with meaningful insights:

• R1: What are the key emerging technologies in AI-driven energy solutions for residen-
tial users and society?

- The paper identifies emerging technologies that are set to transform the energy
landscape, including smart home devices, electric vehicle infrastructure, smart
grids, and more. These technologies promise to improve energy efficiency, reduce
carbon emissions, and enhance the quality of life of urban residents.

• R2: How is artificial intelligence integrated into urban infrastructure to enhance
energy-related solutions?

- Artificial intelligence is integrating into urban infrastructure to optimize energy-
related solutions. This includes the enhancement of electric vehicle charging
infrastructure, reduction in vehicle emissions, development of smart grids, and
efficient energy storage.

• R3: What challenges are associated with the implementation of AI-driven solutions in
urban energy management?

- The challenges include the need to balance resident comfort with energy effi-
ciency in smart homes, ensuring compatibility and cooperation among various
devices, and preventing unintended energy consumption increases due to con-
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stant connectivity. The challenges also extend to managing renewable energy
sources, coordinating energy consumption, and optimizing HVAC systems in
smart homes. In the field of urban infrastructure, challenges involve high upfront
costs, privacy concerns about user data, potential job displacement, cybersecurity
risks, technology adoption, and others.

In conclusion, this paper serves as a valuable resource for researchers, policymakers,
and practitioners in the field of urban energy management. Researchers should focus
on interdisciplinary collaborations, exploring AI’s depth in urban energy management.
Policymakers could help by incentivizing AI integration and establishing standards, while
practitioners should focus on real-world trials and user-centric AI implementations. This
paper not only highlights the transformative potential of AI but also underscores the need
for a collaborative effort to overcome challenges and harness the full benefits of artificial
intelligence in creating smarter, more sustainable, and energy-efficient urban environments.

The biggest limitation of this study is the lack of a detailed analysis of individual
solutions based on artificial intelligence, although this is due to the huge number of
these solutions. While the article reviews these solutions broadly, it refrains from delving
into specific details and intricacies due to the overwhelming volume and scope of the
discussed solutions.
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