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Abstract: Residential chargers are going to become the standard in the near future. Their operational
cycles are closely tied to users’ daily routines, and the power consumption fluctuates between zero and
peak levels. These types of installations are particularly challenging for the grid, especially concerning
the balance of electricity production and consumption. Using battery storage in conjunction with
renewable sources (e.g., photovoltaic power plants) represents a flexible solution for grid stabilization,
but it is also associated with additional costs. Nowadays, grid authorities penalize a destabilization
of the grid resulting from an increased imbalance between electricity generation and consumption
and reward contributions to the system balance. Hence, there is a motivation for larger prosumers to
make use of this mechanism to reduce their operational costs by better aligning their energy needs
with the grid. This study explores the possibility of utilizing battery storage when it is not needed
to fulfil its primary function of supporting charging electric vehicles, to generate some additional
profit from providing a counter-imbalance. To test this idea, we develop an optimization model
that maximizes the economic profit, considering system imbalance penalties/rewards, photovoltaic
production, electric vehicle charging demand, and battery storage utilization. By means of computer
simulation, we assess the overall operational costs while varying key installation parameters such as
battery capacity and power, the installed power of photovoltaic panels and the prediction model’s
accuracy. We identify conditions when counter-imbalance has proven to be a viable way to reduce
installation costs. These conditions include temporal distribution of charging demand, electricity
prices and photovoltaic production. For the morning time window, with a suitable setting of the
installation parameters, the cost reduction reaches up to 14% compared to the situation without
counter-imbalance.

Keywords: electric vehicles; residential charging; battery storage system; photovoltaic power plant;
system imbalance; counter-imbalance; speculations

1. Introduction

Currently, in Europe, but also in other parts of the world, significant efforts are taken
to decarbonize transport and energy systems [1]. This goal is often approached through
the introduction of electromobility in passenger or freight transport. Despite the great
efforts of authorities, the development of electromobility is not progressing as defined
by plans at the European or national levels [2]. Although the number of electric cars and
charging stations is growing [2], their number is behind expectations. There are several
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reasons. Some are shared across all European countries (e.g., high and growing prices of
electric cars), and some are specific only to individual countries or regions (e.g., insufficient
network of charging stations). The lack of charging infrastructure exists mainly because it
is not profitable to operate it. Hence, addressing the problems related to the profitability of
infrastructure operations is important.

Another challenge is constituted by possible negative impacts of electric vehicle (EV)
charging on the power system’s operation, e.g., by making it more challenging to balance
the demand and energy production in the electricity system. When this is addressed
properly, the charging infrastructure has the potential to be integrated into the electricity
system in a network-friendly way (i.e., it can be used to deliver energy in times of electricity
deficit and store the energy in times of electricity excess). Another big issue that needs
to be solved is maintaining sufficient power for charging electric vehicles. The rise in EV
numbers will result in an increase in the electricity demand needed in charging stations.

Altogether, it is already becoming clear that it will not be easy to fulfil the defined goals,
e.g., only zero-emission cars in the EU from 2035 and a sufficient charging infrastructure or
a sufficient capacity of power transmission lines, etc. [2,3]. Transmission and distribution
networks will have to deal with the demand for a quick supply of large amounts of energy
for fast charging of EVs, which will be required at transport hubs and along the European
highway network [4]. Since the highway network is purposefully built out of the cities
with good access to electrical networks, currently, the necessary amount of electricity is
ensured; however, it remains a big challenge for the future. The solution for newly built
charging stations appears to be the construction of local renewable energy sources (RESs) in
combination with suitably sized battery energy storage systems (BESSs). This could reduce
the demand for building new electrical networks with sufficient ampacity, limit the critical
load (peak or total), or even support the power system operation. The combination of RESs
and BESSs can also be beneficial for slow residential or public charging.

1.1. Literature Review

The building of microgrids equipped with local RESs is of as high importance for
the development of electromobility as it is essential for the environmental benefits [5].
Since the construction of microgrids entails significant investment costs, various ways
are being investigated to optimize their economic operation and thereby optimize the
return on investments. One approach is to maximize the profit for the microgrid’s owner
through energy management while controlling the power profile of the microgrid and thus
enabling the selling of energy to EVs [6]. A model for forecasting power based on real
data can be used to increase the profit and maximize the usage of the power generated
by the local renewable source, e.g., a photovoltaic (PV) power plant [7]. The data-driven
characteristics of EV drivers can be used to evaluate their suitability to participate as a
flexible demand resource [8]. The other strategy for maximizing the microgrid’s profit
is the management of electricity purchases and sales from and to the grid with respect
to the microgrid’s demand needs (e.g., EV charging demand) [9,10]. The optimization of
EV battery usage and minimization of fuel consumption based on a prediction of future
driving behaviour brings opportunities for energy savings [11]. Another approach is
oriented toward the minimization of operational and electricity costs. This is done either
through the optimization of EV charging power and actual demand in the microgrid [12–15]
or the scheduling and shifting of EV charging to avoid peak prices of electricity [16–18],
or the utilization of dynamic day-ahead prices in the optimization [19,20]. Coordinating
the charging of electric vehicles with the day-ahead market and utilization of battery
storage can reduce the overall charging cost by more than 30% [21]. Some of the proposed
strategies were designed for community microgrids, e.g., [19], as community microgrids
provide residential charging (charging the EVs by interconnected slow AC chargers placed
directly at homes or parking places shared by the community) that can be key elements in
expanding electromobility. In addition, with proper dimensioning of local energy sources
and of a battery energy storage system, microgrids can contribute to the increasingly
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required flexibility of the power system and, thus, through the provision of services other
than just charging electric vehicles, reduce the costs of their operation, reduce the return on
the initial investment or even ensure profit.

Another approach that could be exploited to optimize the operational costs is to
provide support for mitigating the power system imbalance (SI) caused by the difference
between generation, consumption and commercial transactions in the power system. This
difference leads to the activation of regulation electricity that has to be paid for by all elec-
tricity market participants responsible for the system imbalance. Participants responsible
for their own imbalance are financially penalized (rewarded) by a grid authority if they
increase (decrease) the system imbalance. The behaviour of a subject leading to the decrease
of system imbalance is referred to as a provision of counter-imbalance. It is worth noting
that system imbalance is a different type of issue than the imbalance arising in distribution
networks due to unequal loading of phases that can be, to some extent, mitigated by EV
charging scheduling approaches [22]. The imbalance billing and evaluation procedures are
different for each country. To gain more in rewards than to lose in penalties requires the
ability to predict the system imbalance. Studies investigating the predictability of system
imbalance started to appear two decades ago [23]. However, in recent years, with the rise of
renewable energy generation, the characteristics of system imbalance are changing, as these
energy sources are more difficult to predict, and, hence, new models are required. Accord-
ing to [24], system imbalance is a result of a random process caused by the combination of
various factors, such as the quality of weather forecasts, output changes of power plants,
and failures occurring in power systems, which indicates the complexity of predicting this
quantity. Usually, the literature predicts system imbalance (SI) volume; however, it is hard
to compare the absolute error of such predictions, as each country has different conditions
for evaluating SI and, mainly, different SI volumes. As the imbalance settlement payment
is based on the direction, i.e., the sign, of the SI, we look at the accuracies, i.e., percentages
of correct guesses, of SI direction predictions. Most prediction studies estimate SI using
ARIMA and machine learning models with an SI direction prediction accuracy of around
70%. Contreras [25] predicted SI in the Spanish market with a direction accuracy of around
67%. Another study [23] predicted the UK market imbalance with a 73% accuracy and
Kratochvil [26] with a 70% accuracy for the Czech market. A recent study [27] improved
these results using machine learning algorithms such as XGBoost and logistic regression,
reaching an accuracy of around 74% for the Czech market. The highest accuracy in predict-
ing SI directions was in [28], which reached around 90% for the Norwegian NO3 market.
We see that the accuracy of SI forecast can vary, as it depends on many factors, such as the
number of forecasted periods, the granularity of SI evaluations, the share of renewables in
the energy mix, and possible market regulations limiting SI speculations. This supports the
suggestion of [23] to measure improvements in SI forecasts with monetary savings that the
predictions make possible instead of some abstract error measures.

A simple counter-imbalance strategy, which brought profit by utilizing the SI predic-
tions, was proposed in [25]. The strategy was derived by parameterizing a cost function
and by using a genetic algorithm to find parameter values that optimize costs. A similar
strategy was also designed by [26], where the author showed that a profit can be achieved
with binary predictions of SI. A higher profit was reached in combination with interval pre-
dictions. We identified only one study [29] performing speculations with counter-imbalance
in the context of the Slovak energy market, i.e., the target market considered in this study.
The authors used, as the estimate of the SI value, the SI value in the same period, but seven
days ago. The battery utilization model applied SI predictions to generate some earnings
on SI speculations, but the expected battery cost return was estimated at 4600 years.

As broadly illustrated by the literature review, a plethora of approaches are avail-
able to optimize the costs of residential EV charging. To the best of our knowledge, a
counter-imbalance is a mechanism that has not been investigated in this context. In this
paper, we identify from historical charging data candidate time windows when charging
infrastructure is underutilized, and we analyse under what conditions using charging
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infrastructure for speculations with counter-imbalance could be profitable. Lowering the
costs of residential charging is highly relevant for several reasons. Firstly, it can help to
increase the availability of charging infrastructure, make charging more convenient, and
contribute to the widespread adoption of electric vehicles. Secondly, it can help reduce the
need for ancillary services and investments in grid expansion. In these ways, the paper
may contribute to the transition to clean energy.

1.2. Main Contribution and Structure of the Paper

We deliver these scientific contributions:

• We provide a data-driven feasibility study of profiting from system imbalance on
residential electric vehicle charging infrastructure equipped with a battery energy
storage and photovoltaic power plant.

• We present an optimization model that maximizes the profit, considering a daily EV
charging plan, battery state, SI rewards, photovoltaic production, and EV charging
demand while utilizing a BESS.

• We evaluate SI speculations for three different time windows, and we identify the
most suitable time window and the minimal SI prediction accuracy, which can gen-
erate some economic profit and, hence, decrease the energy costs of the charging
infrastructure.

The structure of the paper is as follows: Section 2 presents the data and data sources
and describes the methods used in the analysis and evaluation of results. The concept of
system imbalance and the imbalance market are described in brief. Section 2 also discusses
the prediction models, optimization models, and the model of the considered installation on
which the economic profit is evaluated. Section 3 presents the results of data analysis and
computational experiments. Conclusions, limitations, and future outlooks are summarized
in Section 4.

2. Materials and Methods
2.1. Datasets
2.1.1. Residential Charging Dataset

The residential charging dataset contains synthetic charging power (estimations based
on average charging power, session time, and actual charged energy) with hourly resolution
derived from a real-world EV charging dataset containing 9757 charging sessions [30]
spanning from 21 December 2018 until 31 January 2020 performed at private slow-charging
infrastructure sites. The EVs charge at a maximum power of 7.2 kW. Here, we consider the
data from the year 2019 as if the charging was performed in 2022.

2.1.2. PV and Weather Dataset

To obtain the weather and photovoltaic (PV) data, we used the Solcast application pro-
gramming interface (API) [31]. The Solcast API provides irradiation and weather forecasts,
and historical data primarily customized for photovoltaics. The API provides estimates of
global horizontal irradiance and temperature for selected geospatial coordinates with up to
5 min granularity.

2.1.3. OKTE Dataset

We obtained the data about system imbalance and electricity prices from OKTE, which
is the Slovak Short-term Electricity Market Operator. OKTE provides a public API to access
data about the electricity market and system imbalance. We extracted hourly electricity
prices and system imbalance data with 15 min frequency.

2.2. Concept of Counter-Imbalance

We consider two types of imbalance: the system imbalance and the electricity market
participant’s imbalance. The system imbalance is related to the mismatch between produced
and consumed electricity within a certain time and area. The SI is defined as the total
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amount of supplied regulation electricity to compensate for this mismatch within an
imbalance settlement period, which is a 15 min time interval [32]. The SI has a positive
sign if there is an excess of electricity and a negative sign otherwise. The electricity market
participant’s imbalance (EMPI) represents a difference between the contractually pre-agreed
amount of electricity to be supplied or consumed by the participant within a certain time
interval and the delivered or withdrawn amount of electricity from the grid in reality [33].
The EMPI of a subject of settlement without an off-take point is the difference between
contractual electricity consumption and contractual supply according to a registered daily
diagram by OKTE [34]. The EMPI has a positive sign if the subject of settlement causes an
excess of electricity in the system by its behaviour (e.g., by consuming less electricity than
planned) and a negative sign if the subject of settlement causes a shortage of electricity in
the system by its behaviour (e.g., by supplying to the grid less electricity than planned).
The difference between the SI and the EMPI is worth noting, wherein the EMPI is attributed
to the electricity market participant, and the SI applies to the predefined SI settlement zone.
A counter-imbalance is an EMPI of a subject that has the opposite sign compared to the SI.

OKTE penalizes or rewards market participants responsible for the imbalance. Penal-
ties are imposed for creating an imbalance in the direction destabilizing the system, whereas
rewards are given for creating an imbalance that helps the system to stabilize its frequency.
Therefore, subjects responsible for imbalance are motivated to be flexible with their devices,
whether they involve energy consumption or production. The process of determining
SI values requires the procurement of regulation electricity, support services validation
and matching trade contracts; hence, the values of the SI are determined with some delay.
Hence, subjects can also be motivated to perform some SI speculations to gain rewards for
counter-imbalance.

The penalty or reward in the j-th period for causing the imbalance is calculated as the
amount of imbalance multiplied by the imbalance settlement price (ISP):

POj = ISPj × Ij (1)

where ISPj stands for the imbalance settlement price in j-th period and Ij is the imbalance
of a subject at the j-th period. If POj is negative, the subject’s imbalance was in the direction
of SI, and therefore, the subject pays OKTE the given amount. In the OKTE operation
directives, the right side of Equation (1) is additionally multiplied by a coefficient. In
practice, this coefficient is, in most cases, close or equal to one; therefore, we omitted it.
According to [32], in Slovakia, ISPj is determined based on the sign of the SI. If the SI ≤ 0,
then the ISP is determined as the maximum of:

• A value of−1 times the positive regulation energy procurement price in the given period;
• A value of −1.5 times the price on the daily energy market in Slovakia in the given pe-

riod. If the SI > 0, then the ISP is determined as the minimum of the following values:
• The lowest price of negative regulating electricity delivered in the given settlement period;
• A value of 1.5 times the price on the daily electricity market in Slovakia for the given

period, if the price is negative;
• The price of the day-ahead electricity market in Slovakia for the given period.

Finally, if no energy was provided in the given settlement period, the ISP is equal to
100 EUR/MWh.

2.3. Modelled Installation

The following installation was chosen to investigate and analyse the possibility of
using battery energy storage systems to provide counter-imbalance when they are not
used to support electric vehicle charging. It involves a residential type of charging station,
where the individual stands are placed in the garage of a residential complex. Registered
electric vehicles are charged at regular intervals according to the daily routines of their
users. Stands with a power of 7.2 kW connected to the AC grid are considered (AC slow
charging), with a total of 70 units. Thus, the theoretical maximum charging power is 504 kW.
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To support charging and relieve the power grid during peak consumption, the initial BESS
size was set to 500 kWh [35], with a power of 200 kW. The battery capacity and nominal
power are varied in computational experiments. The battery is managed by an energy
management system (EMS) to cover the increased consumption during electric vehicle
charging. We are not considering the BESS’s support of ordinary household consumption.
Thus, it is removed from the evaluation. The role of a photovoltaic power plant (PVPP)
installation is to charge the battery and limit the consumption from the main grid. The
installed power of the PVPP is a subject of experiments. The initial values are based on
optimal results in [35]. The internal structure of the controlling EMS and the physical
arrangement of the installation are beyond the scope of this article, and interested readers
can find some examples in [35,36]. Table 1 provides a list of installation parameters for the
electric vehicle charging station (EVCS), and Figure 1 depicts the principal layout diagram
of the installation.

Table 1. Considered parameters of modelled installation of EVCS.

Charging station

Number of charging stands 70
Power of a charging stand 7.2 kW

Connection type AC

BESS

Technology Vanadium Redox Flow
Nominal capacity 500/750/1000 kWh
Nominal power 200/300/400 kW

Max discharge power 200/300/400 kW
Max charge power 200/300/400 kW

Photovoltaic power plant

Installed power 70/100/130 kWp
Mounting Fixed tilt and azimuth

Tilt 39.8◦

Azimuth 180◦

Location 48.093586; 17.246775
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2.4. Optimization Module of the EMS

Utilizing a BESS in cooperation with an EMS is one of the most commonly used
flexibility solutions. BESSs can store energy, for instance, during overproduction from a
PVPP, and then enable the use of this accumulated energy during peak consumption. Such
energy shifting is the primary reason for installing a BESS. However, in collaboration with
a suitable EMS, a BESS can also participate in providing counter-imbalance. Opportunity
for profit from counter-imbalance is expected in times when the battery is not fulfilling its
primary function, such as supporting EV charging. By participating in counter-imbalance,
an additional benefit is generated beyond the primary purpose of the BESS.

The EMS plans the operation of individual components of the modelled installation.
The optimization module implements the chosen strategy separately in two levels, which
differ in the length of the planning horizon. The layout of the planning system is depicted
in Figure 2. At the D + 1 level (i.e., a day ahead of the operation), daily nominations of
energy to be extracted from or supplied to the power grid are estimated together with the
corresponding utilization of the BESS while considering the expected local energy con-
sumption and expected local production from photovoltaic panels. These nominations are
submitted to the organization responsible for the settlement of deviations in the operation
of the electricity system. In Slovakia, this role is played by OKTE, a.s. At the H + 3 level
(i.e., 3 h ahead of the operation), optimization updates the operation plan while taking
into account deviation from nominations, prediction of the imbalance settlement price and
updated predictions of the consumption and energy produced from PV panels. Later on,
when the real consumption is known, the difference between the nominations and real
consumption and the imbalance settlement price is used to determine rewards (or penalties)
for counter-imbalance.
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The optimization model at the D + 1 level considers the following inputs:

M(big M)—a sufficiently large constant value (e.g., M = 1010);
Nper—number of periods (it is assumed the considered optimization time window is
discretized into this number of periods of equal duration);
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Ei
SOLAR—an estimate of the maximum energy produced by PV panels in the period i;

cSOLAR—costs of producing one unit of energy from PVPP (the levelized cost of energy);
EBESS

KAP —the capacity of the BESS (i.e., maximum energy that can be stored);
NBESS—number of points constituting the P vs. state of charge (SOC) diagram of the BESS
(we assume that maximum power to be used to charge or discharge BESS is given by the P
vs. SOC diagram. The diagram is defined by the pairs of points that share the x-coordinates,
i.e., the SOC values. The y-coordinate of the first point (positive value) determines the
maximum charging power for a given SOC, and the y-coordinate of the second point
(negative value) determines the maximum discharging power);
SOCBESS—an array of length NBESS, describing the x-coordinates of the points defining
SOC values in the P vs. SOC diagram;
P+

BESS—an array of length NBESS, describing the y-coordinates of points (positive values)
defining the maximum charging power for a given SOC;
P−BESS—an array of length NBESS, describing the y-coordinates of points (negative values)
defining the maximum discharging power for a given SOC;
ηBESS—roundtrip efficiency of the BESS in storage and extraction of the energy (it is
assumed that the BESS efficiency is given in the units of percent, the efficiency is the same
for storage and for extraction of the energy and the roundtrip efficiency is defined as the
product of these two efficiencies);
cBESS—costs of storing/extracting one unit of energy to/from BESS (the levelized costs
of storage);
SOCINIT

BESS—an initial SOC value of BESS at the beginning of the first optimization period;
SOCFINAL

BESS —a final SOC value of BESS at the end of the last optimization period;
SOCMIN , SOCMAX—the minimum and maximum SOC values;
Ei

CONS—an estimate of the energy consumed in the period i;
ci

DEMD—costs per one unit of energy demanded from the power grid in the period i;
RK—reserved capacity (enumerated as the maximum energy that can be demanded from
or supplied to the power grid within one period);
cSUPPL—income received per one unit of energy supplied to the power grid.

Outputs are then characterized by the following optimization variables:

Ei
SOLAREXTRACT—energy extracted from PV panels in the period i;

Ei
BESSSTORE—energy stored to BESS within the period i;

Ei
BESSEXTRACT—energy extracted from BESS within the period i;

SOCi—SOC of the battery at the beginning of the period i;
Yi

BESS—binary variable taking a value of 1 if the energy is stored to the BESS within the
period i, and a value of 0 otherwise;
Ei

DEMAND—energy demanded from the power grid in the period i;
Ei

SUPPLY—energy supplied to the power grid in the period i;
Yi

D/S—binary variable taking a value of 1 if the energy is demanded from the power grid
in the period i and a value of 0 otherwise.

The optimization model for the D + 1 level takes the following form:
Maximize

−
Tper

∑
i=1

cBESS
(
Ei

BESSSTORE + Ei
BESSEXTRACT

)
−

Tper

∑
i=1

cSOLAREi
SOLAREXTRACT

−
Tper

∑
i=1

ci
DEMDEi

DEMAND −
Tper

∑
i=1

cSUPPLEi
SUPPLY

(2)

Subject to

0 = Ei
DEMAND + Ei

SUPPLY − Ei
CONS + Ei

SOLAREXTRACT + Ei
BESSEXTRACT−

Ei
BESSSTORE f or i = 1, . . . , Tper

(3)
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Ei
SOLAREXTRACT ≤ Ei

SOLAR f or i = 1, . . . , Tper (4)

SOC1 = SOCINIT
BESS (5)

SOCTper+1 = SOCFINAL
BESS (6)

SOCi+1 = SOCi + 100
√

ηBESS/100
Ei

BESSSTORE

EBESS
KAP

− 100
√

ηBESS/100
Ei

BESSEXTRACT

EBESS
KAP

f or i = 2, . . . , Tper

(7)

Ei
BESSEXTRACT ≤ M ∗Yi

BESS f or i = 1, . . . , Tper (8)

Ei
BESSSTORE ≤ −M

(
1−Yi

BESS

)
f or i = 1, . . . , Tper (9)

P−BESS(j + 1)− P−BESS(j)
SOCBESS(j + 1)− SOCBESS(j)

(SOCi − SOCBESS(j)) + P−BESS(j) ≤
Ei

BESSEXTRACT − Ei
BESSSTORE

0.25

f or i = 1, . . . , Tper, j = 1, . . . , NBESS − 1

(10)

Ei
BESSEXTRACT − Ei

BESSSTORE
0.25

≤
P+

BESS(j + 1)− P+
BESS(j)

SOCBESS(j + 1)− SOCBESS(j)
(SOCi − SOCBESS(j + 1)) + P+

BESS(j)

f or i = 1, . . . , Tper, j = 1, . . . , NBESS − 1

(11)

SOCMIN ≤ SOCi ≤ SOCMAX f or i = 2, . . . , Tper (12)

Ei
DEMAND − Ei

SUPLY ≤ RK+ f or i = 1, . . . , Tper (13)

Ei
DEMAND ≤ MYi

D/S f or i = 1, . . . , Tper (14)

Ei
D+1 ≥ −M

(
1−Yi

D/S

)
f or i = 1, . . . , Tper (15)

Ei
SOLAREXTRACT ≥ 0, Ei

BESSSTORE ≥ 0, Ei
BESSEXTRACT ≥ 0, Yi

BESS ∈ {0, 1}, Ei
DEMAND ≥ 0,

Ei
SUPPLY ≤ 0, Yi

D/S ∈ {0, 1} for i = 1, . . . , Tper

SOCi ≥ 0 for i = 1, . . . , Tper + 1

(16)

The objective function (2) expresses the overall revenues to be maximized, while
the negative value corresponds to the situation when expenses exceed incomes. It is
worth noting that the income from the provision of the charging service is not included.
Constraints (3) ensure the conservation of energy. A set of constraints (4) limits the amount
of energy extracted from the PV panels to the energy produced by the PV panels. Initial
and terminal SOCs of BESS are set by constraints (5) and (6), respectively. The continuity of
the SOC, while accounting for the BESS efficiency when storing and extracting the energy,
is taken care of by constraints (7). As it is typically done, we consider the SOC to be defined
as a percentage of the battery capacity. For this reason, stored and extracted energies are
both divided by the battery storage capacity and multiplied by 100. We assume that battery
roundtrip efficiency has the units of percent. Moreover, we assume that the efficiency is the
same for the storage and extraction of energy and that the roundtrip efficiency is defined as
the product of these two efficiencies. Therefore, the second and third terms are multiplied
by the square root of the roundtrip efficiency divided by 100. A combination of constraints
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(8) and (9) makes sure that energy is either stored or extracted from the BESS. Similarly, a
combination of constraints (14) and (15) guarantees that energy is either demanded from or
supplied to the power grid. An approximation of limitations in the rate of extraction and
storage of the energy from and to the BESS (modelled by the P vs. SOC diagram) is provided
by constraints (10) and (11). The SOC of the BESS is limited to the operational range by
constraints (12). The demand and supply of energy from and to the power grid are limited
by the reserved capacity in constraints (13). Finally, constraints (16) define the domain of all
optimization variables. It is worth noting that the problem (2)–(16) belongs to mixed integer
linear programming. After solving it, the nomination is given by the resulting energy
demand (Ei

DEMAND SOL) and supply (Ei
SUPPLY SOL). Considering nominations and updated

predictions of PV production (Ei
SOLAR UPDT) and energy consumption (Ei

CONS UPDT) as
additional inputs, the optimization model at the H + 3 level is formulated with the following
further inputs and optimization variables:

Additional inputs:

ci
ISP—an estimate of the imbalance settlement price for the period i;

MAXSPECUL—the maximum amount of energy limiting the deviation from nominations
(as the minimum amount is considered the value−MAXSPECUL).

Additional optimization variables:

Ei
DEV—energy representing the intentional deviation from nominations in the period i.

The optimization model for the H + 3 level takes the following form:
Maximize

−
Tper

∑
i=1

cBESS
(
Ei

BESSSTORE + Ei
BESSEXTRACT

)
−

Tper

∑
i=1

cSOLAREi
SOLAREXTRACT

−
Tper

∑
i=1

ci
DEMDEi

DEMAND −
Tper

∑
i=1

cSUPPLEi
SUPPLY +

Tper

∑
i=1

ci
ISPEi

DEV

(17)

Subject to Constraints (2)–(15)

Ei
DEV = Ei

DEMAND SOL + Ei
SUPPLY SOL − Ei

DEMAND − Ei
SUPPLY f or i = 1, . . . , Tper (18)

−MAXSPECUL ≤ Ei
DEV ≤ MAXSPECUL f or i = 1, . . . , Tper (19)

Ei
DEV ∈ R (20)

Objective (17) adds to (2) the last term that accounts for the revenue (or penalty)
received by the subject responsible for the settlement of deviations from nominations.
Constraints (3)–(16) are identical to the D + 1 optimization model. For every period i,
constraints (19) define the deviation from nominations and constraints (19) limit the size of
this deviation.

2.5. System Imbalance Prediction

We emulate SI predictions by noising the historical values of SI by adding values
drawn from the normal distribution. We vary the variance of the distribution to account
for different levels of prediction accuracy. This way, we explore the impact of SI prediction
accuracy on the profit gained from the counter-imbalance.

2.6. Prediction of Photovoltaic Generation

The forecast of photovoltaic generation is an input into the optimization module.
These predictions are essential for estimating the potential production capacity that will be
available for charging the BESS either during the next three hours or the next day. Thus, the
prediction horizon is aligned with the planning periods of optimization models presented
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in Section 2.4. The prediction of achievable photovoltaic power is based on external weather
forecasts. The data include air temperature, wind speed, various types of solar irradiation
estimated for specific global positioning system coordinates, tilt and azimuth [31].

The standard performance calculations of a photovoltaic system are based on the
solar radiation map and the potential power of the photovoltaic system per 1 kWp of
installed capacity. For the regions of Slovakia, this is, on average, 1.2 kWh produced per
year per 1 kWp of installed photovoltaic panels, with optimal placement of the panels
with respect to angle and azimuth [37]. The power output of photovoltaic systems can
be described as a relationship between weather conditions and the rated power based
on standard test conditions [38]:

PPV(t) = η PVPVre f ∗
G(t)
Gre f

(
1 + γ

(
TC(t)− Tre f

))
, (21)

where PPV(t) is the power output of the photovoltaic system during time intervals (referred
to as time granularity, e.g., 1 min, 5 min, 15 min. . .), η is photovoltaic system efficiency,
G(t) is the solar irradiance (W/m2) that falls onto a panel surface, γ is the temperature
coefficient (obtainable from datasheet) accounting for the change in the power when the
panel temperature Tc(t) deviates from the reference temperature. Subscript ref refers to
panel standard testing conditions where Gref = 1000 W/m2 and Tref = 25 ◦C. PVPVref is the
maximum panel power output at reference conditions.

The Koehl model [39] for calculating the heating of the panels as a function of ambient
temperature, wind speed and incident radiation was selected. It utilizes meteorological data
and empiric constants to estimate panel temperature, Tc(t). Installation with a fixed position,
tilt and the azimuth of panels were considered [40]. Thus, G(t) represents irradiance on
a tilted surface, obtainable either directly from a data source (e.g., Solcast API) or as the
composition of direct, diffuse and reflected irradiance.

2.7. Evaluation of Results

The evaluation of results is based on the simulation of a charging and discharging bat-
tery according to outputs from the optimization model, with respect to currently available
energy. The main purpose of the simulation is to validate optimization results in near-real
operation conditions. The optimization model results, based on predictions, consider the
amount of energy that may not be available under real conditions. To calculate the cur-
rently available energy, the simulation firstly covers the entire consumption of the charging
station by the production from the PV power plant. Then, the extra PV energy is stored
in the battery. Otherwise, when the PVPP production is insufficient, the lacking energy is
recovered from the battery.

The costs associated with battery usage and maintenance are calculated based on
economic parameters. If the battery is 100% charged, the excess energy from the PVPP is
sold to the grid (according to the current price); on the other hand, if the battery is at a
0% SOC, the consumption must be covered by supply from the grid. The BESS is charged
exclusively from the PVPP because charging the battery from the grid during covering
consumption creates additional costs. The prices for electrical energy are evaluated, in-
cluding distribution charges for consumption and supply to the grid. The energy flow
between individual units of the installation is shown in Figure 3. The BESS losses are
included in Equation (7), PV losses are considered in Equation (21) and transmission losses
are neglected.

The first step of evaluation is the calculation of the baseline state without consider-
ing a counter-imbalance, against which all other scenarios are subsequently compared.
An important parameter obtained from the baseline state of the installation, apart from
the total costs, is the SOC of the battery at the beginning and end of the counter-imbalance
provision time window. These values are used by the optimization module, which must
consider the battery’s initial SOC state at the beginning of the counter-imbalance pro-
vision window but, more importantly, calculates the required SOC level the battery
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must reach by the end of the window to ensure optimal support for charging through-
out the rest of the day. Additionally, there is an effort to maximize the profit from
counter-imbalance and minimize additional costs. Economic evaluation, cost and profit
calculations are carried out only within the chosen time window; the rest of the day
remains the same for all scenarios and is therefore not economically evaluated. The com-
pared scenarios and studied variations in the approach to providing counter-imbalance
are described in more detail in the following section.
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3. Results

This section starts with data analyses of candidate time windows for SI speculation.
Afterwards, the setup of planned experiments is listed. Finally, the numerical and graphical
results of the experiments are presented.

3.1. Data Analyses

Here, we analyse time windows selected for speculating with counter-imbalance based
on charging power, PV power, and SI prices. To ensure that we performed analyses on
different data than the computational experiments, we divided the EV charging dataset
into two parts. The first part precedes, and the second follows, 1 May 2019. We looked for
periods when the charging stations were idle, i.e., the BESS had sufficient power to provide
counter-imbalance. Figure 4 depicts the total charged energy at a given hour of the day
for the analysed period. The minimum values were observed in the early morning from
5:00 to 8:00, which we selected as the first time window. Also, at this time, the prices on the
day-ahead market (DAM), displayed in Figure 5, reached the morning peak. These prices
are important as they are input to the SI price calculation. The second time window was
selected as from 10:00 to 13:00 due to the combination of peaking PV power, depicted in
Figure 6, and low EV charging demand. To benefit from the high SI prices while the battery
could be charged from the PV power, we selected the last window as from 16:00 to 19:00. It
is necessary to point out that the selected time windows were evaluated independently of
each other, and, thus, the optimization and subsequent SI speculations were conducted in
each time window as separate experiments.
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3.2. Setting of Parameters

To investigate the profitability of providing counter-imbalance, simulation experiments
were conducted for a range of input parameters to inspect the influence of individual
parameters on the total energy cost of the system. We performed experiments with all
possible combinations of parameters, displayed in Table 2.

Table 2. Setting of parameters.

Parameter Values

Time window 5:00–8:00 10:00–13:00 16:00–19:00
BESS capacity 500 kWh 750 kWh 1000 kWh
BESS power 200 kW 300 kW 400 kW
PVPP power 70 kWp 100 kWp 130 kWp
MAXSPECUL 12.5 kWh 25 kWh 50 kWh 100 kWh

SI prediction accuracy 70% 80% 90% 100% (Oracle)

The initial value of the BESS capacity, 500 kWh, represents the minimum capacity
to reliably cover the average daily energy demand of the modelled installation. Higher
capacities are capable of covering more demand, enabling more effective power shifting
and providing higher potential for profiting from counter-imbalance. The disadvantage of
a higher capacity is the increased cost of the BESS.

The power of a Vanadium Redox Flow BESS (VRFB) is scalable independently from
its capacity. The presented values are based on datasheets of real BESSs [41]. Moreover, the
maximal charge and discharge power can be up to double the nominal power with this
battery technology. Limitations are represented by charge and discharge characteristics,
shown as the dependence of power on the SoC in Figure 7.
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A BESS with more power can manipulate a larger amount of energy and, hence,
can bring higher profits, mainly through economically advantageous periods. It is not
advisable to use a BESS with excessively large power. The main reasons are economic,
including investment costs and operating and maintenance expenses. Additionally, it is
necessary to consider the physical and spatial dimensions of the installation and the energy
infrastructure at the installation site. Local legislative restrictions are also one of the limiting
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factors. For relatively short lengths of investigated periods and specific VRFB technology,
the degradation of the VRFB is often neglected in operation simulations and economic
modelling, as in our case. However, the estimated number of cycles was computed to
indicate an impact on battery life.

The considered range of installed PVPP power was inspired by articles focused on the
optimization of EVCS parameters [35,36]. A larger installed power means higher revenue
from selling energy to the grid, faster and cheaper charging of the battery to cover peak or
nighttime consumption and a reduced impact of lower production from the PVPP (e.g., in
winter months).

The battery capacity and the installed power of the PVPP are the main parameters
that determine the costs of using these devices. The levelized cost of storage (denoted as
cBESS in the optimization model) is a commonly used economic indicator that summarizes
the costs of using a BESS, depending on initial investments, operation and maintenance
costs, expected lifetime and estimated number of cycles per year. This value is calculated
with regard to the primary purpose of the BESS. For a PVPP, the equivalent indicator is the
levelized cost of energy (denoted as cSOLAR—in the optimization model). Estimated values
of these parameters are listed in Table 3 and are used for cost evaluation in experiments.

Table 3. The setting of values of economic parameters.

BESS Capacity 500 kWh 750 kWh 1000 kWh
cBESS 0.252 EUR/kWh 0.371 EUR/kWh 0.489 EUR/kWh

Installed PVPP power 70 kWp 100 kWp 130 kWp
cSOLAR 0.0705 EUR/kWh 0.0705 EUR/kWh 0.0705 EUR/kWh

The optimization module restricts the size of SI speculations by limiting the minimum
(−MAXSPECUL) and maximum power (MAXSPECUL) that can be used to provide counter-
imbalance. A low SI limit represents a cautious approach to counter-imbalance, with lower
financial risk. A high SI limit has the potential for higher earnings, but also, it may result in
higher penalties for incorrect counter-imbalance. This parameter also directly determines
the battery power allocated for providing counter-imbalance. Suppose this limit is greater
than the battery’s power. In that case, the system can use the entire battery during the
counter-imbalance window, leaving no room for charging electric vehicles. However, this
is not an issue during periods of minimal power consumption.

A more powerful prediction model provides more accurate predictions for the op-
timization module. This increases the potential earnings from counter-imbalance while
losses from penalties are diminished. Additionally, the costs of using the battery and
drawing power from the grid decrease due to more efficient utilization of the energy flow
between installation components. To investigate the dependence between the profit from
counter-imbalance and the required level of the precision of SI predictions, we vary the
precision in the range from 70% to 100% (see Section 2.5). The value 100% corresponds
to a prediction with zero error (Oracle model), and thus, in such a case, we use real data
instead of predictions in the optimization module to demonstrate the maximum potential
of counter-imbalance.

3.3. Results for Scenario without Providing Counter-Imbalance—Baseline

In the first series of experiments, we investigated the baseline scenario without pro-
viding counter-imbalance. We evaluated the costs of using a BESS, the cost of a PVPP,
estimated earnings from sold energy based on DAM prices and estimated costs of pur-
chased electricity from the grid based on DAM prices. Further, we evaluated the total cost
of acquiring energy for charging electric vehicles for every combination of parameters. The
earnings from the provision of the EV charging service are beyond the scope of this article
and are not considered in the evaluations.

The baseline experiments confirmed that the installation generates different total costs
in various time windows (see Figure 8). The lowest costs in most of the experiments
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occurred in the midday window from 10:00–13:00 due to it evidencing the highest PVPP
production and low EV consumption. The negative value of costs represents profit from
sales of the surplus energy to the grid. In the early evening window from 16:00–19:00, the
highest value of cost was observed in the majority of experiments. During this period,
EV consumption reaches its maximum, and PVPP generation gradually decreases. The
BESS is discharged to cover the consumption, and the remaining energy needs are drawn
from the grid. Moreover, the dependence of total costs on the installation parameter
values was the most prominent in this time window. On the other hand, the costs in the
morning window, 5:00–8:00, were in the middle of the spectrum, and dependencies on the
installation parameters were stable due to it evidencing the lowest EV consumption and
almost negligible PVPP production. The battery is practically not actively engaged during
this period, and interaction with the grid is also minimal.
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The average total monthly costs of acquiring energy for EV charging as a function
of the BESS capacity can be seen in Figure 8. Considering the BESS capacity as given,
we report results for the best combination of other parameter values. For the morning
window, the PVPP installed power was 70 kWp, and for the midday and early evening
window, it was 130 kWp. In all the baseline experiments, the BESS power parameter had
no impact at all.

In Figure 8, the impact of the battery capacity size on the total energy cost is evident.
Naturally, a battery with a larger capacity is more expensive, and its usage generates more
costs if the volume of processed energy remains the same. Furthermore, it was found that
changes in the battery’s nominal power do not affect the overall system costs. The reason is
that even the smallest selected power rating of 200 kW is sufficient to absorb the difference
between simulated PVPP production and EVCS consumption.

Another parameter that significantly impacted the total energy cost of the baseline
experiments was the PVPP installed power (see Figure 9). It is evident that during the
midday and early evening time window, a higher installed PVPP power significantly
decreases the total energy costs. The generated energy fully charged the battery, and the rest
was sold to the network for a profit, especially during the period of maximum production
within the midday window. However, as the morning window behaves differently, using a
PVPP with smaller power is more effective during this period. The reason is the depleted
battery, which has to be charged with the energy generated by the PVPP, leaving a negligible
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amount of energy to be sold to the grid. Even with the highest value of considered PVPP
power, the system was not able to fully charge the battery due to the low irradiance during
this time window.
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The comparison of the average total costs when varying the PVPP power is shown in
Figure 9. In all time windows, the lowest costs were achieved with a BESS capacity set to
500 kWh, i.e., the smallest capacity of the battery.

Table 4 summarizes the values of parameters leading to the minimum total costs for
each considered time window and the baseline scenario. A more detailed breakdown
of individual energy cost components is also presented. We omitted the BESS power
parameter, as it did not impact the cost. The total cost of energy can be interpreted as
the cost of procuring energy for the purpose of charging electric vehicles. All costs and
earnings in the following tables are monthly averages.

Table 4. Results obtained for the best combination of installation parameters, leading to the
smallest costs.

Parameter Time Window

5:00–8:00 10:00–13:00 16:00–19:00

BESS capacity 500 kWh 500 kWh 500 kWh
PV power 70 kWp 130 kWp 130 kWp

Number of BESS cycles 0.253 1.063 0.727
The cost of using BESS EUR 64 EUR 268 EUR 183
The cost of using PVPP EUR 20 EUR 412 EUR 125

The cost of grid electricity EUR 8 EUR 2 EUR 73
Earnings—sales to grid EUR 7 EUR 1228 EUR 371

Total energy cost per month EUR 85 EUR −546 EUR 10

Through the analysis of individual cost components, it becomes evident that the most
significant impact on total costs can be attributed to grid sales. This component is directly
dependent on the installed power of the PVPP. The operational costs increase with growing
installed power, but the profit from selling energy to the grid surpasses these expenses.
The cost of purchasing energy from the grid reflects consumption levels. During the early
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evening window, when the PVPP, in conjunction with stored energy in the battery, does not
cover the entire consumption, purchases of energy from the grid are necessary. BESS costs
peak during the midday window as it represents the period when the battery is charged,
and the highest amounts of energy are manipulated, which is confirmed by the estimated
cycle count.

3.4. Results for Scenario with Counter-Imbalance

The second set of experiments involved evaluating the benefits of providing counter-
imbalance using predictions of the system imbalance, photovoltaic production, and charg-
ing station consumption. These predictions were not accurate, so the recommended distri-
bution of power flow delivered by the optimization module may differ from actual power
flows, potentially turning the expected gains from counter-imbalance into penalties for not
adhering to the reported nomination.

By evaluating all combinations of input parameters, it was revealed that the prediction
accuracy fundamentally impacts the success of providing counter-imbalance. Regardless of
the values of other parameters, a reduction in the overall costs was achieved only during
the morning time window and in experiments where the prediction accuracy was at least
90%. Profits from providing counter-imbalance can be achieved even with less accurate
forecasts, but they do not reach sufficient levels to achieve the desired effect of reducing the
overall energy costs (e.g., to overweight the costs of storing or extracting the energy from
the BESS). The profitability threshold for the time window from 5:00 to 8:00 is between
80% and 90%. In other time windows, for the prediction accuracy of less than 100%, the
counter-imbalance did not bring the expected cost reduction.

In Figure 10, the influence of prediction accuracy on the overall costs is analysed for
the best combinations of parameters, according to Table 5. The dotted line marks the total
energy cost for the baseline scenario. Thus, a desired result for providing counter-imbalance
should lead to costs that lie under the dotted line.
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It should be noted that the cost reduction did not occur even when using perfectly
accurate SI predictions in the midday and early evening time windows. The reason is that
other sources of uncertainty (prediction accuracy of PVPP production and EV charging
demand) cause a difference between the plan suggested by the optimization model and its
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realization that result in increased average total costs. The speculation limit (MAXSPECUL)
is also a significant aspect contributing to SI speculation. A larger speculation limit means
a greater amount of energy for counter-imbalance, which could lead to a higher profit.
However, experiments have shown that it is generally more advantageous to minimize
risk and set a low SI speculation limit because penalties in the case of widening the limit
increase the costs disproportionally. Figure 11 presents a cost comparison for the considered
SI speculation limit values with the accuracy of SI predictions set to 90% and parameters
according to Table 5.

Table 5. Results obtained for the combination of parameters leading to the smallest costs in experi-
ments with a counter-imbalance provision.

Parameter Time Window

5:00–8:00 10:00–13:00 16:00–19:00

BESS capacity 500 kWh 500 kWh 500 kWh
BESS power 400 kW 300 kW 200 kW
PV power 70 kWp 130 kWp 130 kWp

Max SI speculation 25 kWh 12.5 kWh 12.5 kWh
Number of BESS cycles 1.772 1.461 1.264
The cost of using BESS EUR 447 EUR 368 EUR 319
The cost of using PVPP EUR 20 EUR 412 EUR 125

The cost of grid electricity EUR 388 EUR 112 EUR 319
Penalties imbalance EUR 115 EUR 236 EUR 508

Earnings—sales to grid EUR 375 EUR 1302 EUR 627
Earnings—imbalance EUR 542 EUR 178 EUR 161

Total energy cost per month EUR 53 EUR −352 EUR 483
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The only profitable time window for providing counter-imbalance was from 5:00
to 8:00. In this window, SI speculation achieved the desired reduction in total energy
costs. The reasons for this are favourable DAM prices and very good predictability of
charging station consumption. The counter-imbalance did not reduce overall energy costs
in the other time windows. Increasing the PVPP installed power proportionally increases
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direct sales to the grid, similarly to the baseline scenario. Moreover, the optimization
module could not fully utilize this additional energy for counter-imbalance due to the
speculation limit. Thus, the installed power of the PVPP does not have a significant impact
on providing counter-imbalance. Increasing the battery capacity has a more significant
impact on the total energy cost from providing counter-imbalance, as is shown in Figure 12.
This figure compares different battery capacities for parameters shown in Table 5 and has
an SI prediction accuracy set to 90%. It has been found that it is more advantageous to use
a smaller battery despite cumulating more cycles, rather than a larger battery with fewer
cycles cumulated, due to battery costs.
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From Figure 12, it is evident that the impact of increasing BESS capacity is similar to
the baseline scenario. In addition, SI speculations exploit the battery to manipulate energy
from and to the grid according to counter-imbalance, which naturally generates some costs.
For the morning time window, we can see that the combination of a larger battery with SI
speculation has the potential to even the baseline energy costs, but generally, an overrating
of BESS capacity is ineffective.

Table 5 summarises experimental results with the provision of counter-imbalance with
an SI prediction accuracy set to 90% and presents the best combinations of installation
parameter values with achieved costs and profits. The parameter of BESS power was
different in every time window, corresponding to a decline in SI speculation effectiveness in
the midday and early evening time windows. Each time window was evaluated separately
and independently, and the total energy costs are directly comparable with the baseline
scenario results in Table 4. In the comparison with the baseline scenario, it is worth noticing
the increased cost of using a BESS and the increased costs of purchased grid electricity.
These costs are incurred by the energy manipulations necessary for SI speculation.

Finally, we evaluate the revenue, representing a difference between earnings and
penalties resulting from providing counter-imbalance, with an SI prediction accuracy of
90%, in Figure 13. The revenue from providing counter-imbalance is mostly positive;
however, it may not be sufficient to reduce the total cost of energy. From Figure 13, it
is visible that with an increase in the SI speculation limit, the SI revenue also increases.
However, excessive increases in the speculation limit eventually do not result in higher
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profits because other constraints are more restrictive, such as the maximum battery power.
The SI speculation limit directly determines how much battery power and capacity needs
to be allocated to provide the counter-imbalance and what level of risk we are willing to
accept. In summary, the main parameters influencing the profit from counter-imbalance
are the SI speculation limit and prediction accuracy.
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Table 6 summarizes installation parameters for the best scenarios from the point of
view of SI revenues, with the SI prediction accuracy set to 90%. The applicability of the
principle of high risk—high reward is apparent from the comparison of earnings and
penalties. Still, SI revenue is insufficient to reduce the total cost compared to the baseline
scenario with the same values of parameters (see Table 4).

Table 6. Results obtained for the combinations of parameters leading to the highest SI revenues.

Parameter Time Window

5:00–8:00 10:00–13:00 16:00–19:00

BESS capacity 500 kWh 500 kWh 500 kWh
BESS power 400 kW 400 kW 400 kW
PV power 70 kWp 70 kWp 70 kWp

Max SI speculation 100 kWh 100 kWh 100 kWh
Number of BESS cycles 4.799 3.849 4.964
The cost of using BESS EUR 1210 EUR 970 EUR 1252
The cost of using PVPP EUR 20 EUR 222 EUR 67

The cost of grid electricity EUR 1078 EUR 730 EUR 1484
Earnings—sales to grid EUR 1007 EUR 1188 EUR 1309
Earnings—imbalance EUR 1505 EUR 963 EUR 1484
Penalties imbalance EUR 336 EUR 453 EUR 928

SI revenue per month EUR 1169 EUR 510 EUR 556

Table 7 summarizes the results from counter-imbalance experiments while using
perfectly accurate SI predictions (Oracle). These results can be used as a reference case
to assess the impact of SI prediction accuracy. Compared to Table 6, the most significant
difference is in penalties for the wrong direction of the provided counter-imbalance. The
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relation between SI prediction accuracy and the decrease in penalties is nonlinear, caused
by changing imbalance prices throughout investigated periods. Perfectly accurate SI
predictions minimize penalties, while earnings remain roughly the same due to an identical
amount of available energy, as the installation parameters are also identical. Yet, the
optimization with SI Oracle predictions can use this available energy more effectively.
Despite this, penalties occurred in every time window, caused by other uncertainties. In
addition, the combination with a perfectly accurate prediction illustrates the maximum
potential for cost reduction by providing counter-imbalance.

Table 7. Comparison of average monthly SI revenues for Oracle predictions.

Parameter Time Window

5:00–8:00 10:00–13:00 16:00–19:00

BESS capacity 500 kWh 500 kWh 500 kWh
BESS power 400 kW 400 kW 400 kW
PV power 70 kWp 70 kWp 70 kWp

Max SI speculation 100 kWh 100 kWh 100 kWh
Number of BESS cycles 4.393 3.520 4.064
The cost of using BESS EUR 1108 EUR 887 EUR 1025
The cost of using PVPP EUR 20 EUR 222 EUR 67

The cost of grid electricity EUR 967 EUR 653 EUR 1180
Earnings—sales to grid EUR 912 EUR 1121 EUR 1094
Earnings—imbalance EUR 1515 EUR 1070 EUR 1440
Penalties imbalance EUR 26 EUR 106 EUR 460

SI revenue per month EUR 1489 EUR 964 EUR 980

4. Discussion

A direct comparative analysis of the studied scenarios can be facilitated by
Tables 4 and 5, presenting the best results obtained for the baseline scenario and the
scenario with a counter-imbalance provision. SI speculations increase the energy ex-
change with the grid, as evident from the comparison of electricity sales and purchases
from the grid in Tables 4 and 5. During the midday window, grid sales dominate in both
tables and constitute the main component of the total costs due to the peak PVPP pro-
duction. The comparison of the morning windows demonstrates a significant increase
in grid interaction, battery costs, and the corresponding cycle count. This is a result of
the counter-imbalance provision, which ultimately led to the energy cost reduction, an
effect that was not achieved in other time windows.

Tables 6 and 7 support the comparative analysis of the revenues (a difference between
earnings and penalties) derived from SI speculations. A high speculation limit in combina-
tion with a high battery capacity is required for a higher speculation profit. This is absent
in Tables 4 and 5 because SI speculations do not reduce the overall costs, despite significant
counter-imbalance revenue. A higher SI speculation limit without sufficiently accurate
predictions cannot generate enough profit to cover created costs. Table 7 represents the
maximum profit potential from counter-imbalance, using 100% accurate SI predictions. The
main difference between Tables 6 and 7 is in the imbalance penalties, which are significantly
increased if SI predictions are inaccurate and result in lower overall revenues.

This study includes several sources of uncertainty stemming from predictions of
input data for the optimization model, namely, predictions of SI, EVCS consumption, and
PVPP production. As previously stated in Section 3.4, the results were mostly affected by
uncertainties related to SI predictions. Generally, predicting SI is a challenging problem that
requires advanced prediction tools. Correctly determining the direction of SI is fundamental
to profit because providing counter-imbalance in the opposite direction results in penalties,
which was found to be a reason for low earnings. We established an approximate prediction
accuracy threshold, determining when providing counter-imbalance could be profitable
for a considered application case. A more sophisticated SI prediction model could open
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possibilities for more complex speculation strategies. For example, a prediction model
indicating prediction reliability could be used to determine periods when SI speculations
are less risky. A missing risk assessment in SI speculations is one of our study’s limitations,
as SI speculations were carried out in each period of the selected time windows, even in
cases of high penalty risk or unfavourable DAM prices.

Uncertainties in EV charging demand predictions directly impact the available energy
for SI speculations. The assumed reserved energy may not be actually available due to a
higher number of connected vehicles, resulting in less energy for counter-imbalance and
lost profit. Conversely, when EV charging demand is overestimated, profit from counter-
imbalance can be reduced, e.g., by selling the excess energy to the grid. In the case of
very inaccurate EV charging demand estimation, it may even happen that no energy is
available for counter-imbalance, and the energy deficit is covered by purchasing from the
grid. Improvements in estimations can be achieved by deeper analysis and comprehension
of consumer behaviour.

The prediction of PVPP output is directly linked to predicted meteorological data, each
having its own level of uncertainty. The most significant impact on the resulting predicted
PVPP output comes from uncertainties in irradiance forecasts. Other input meteorological
data, such as ambient temperature and wind speed, have only a minor influence. An
inaccurate estimate of PVPP production similarly impacts the assumed amount of available
energy as EV charging demand misestimation.

The mentioned sources of uncertainty in the input data are not subjected to risk
evaluation, nor does the used optimization model consider the uncertainties; therefore,
the proposed methodology represents a deterministic scheduling algorithm. However,
the impact of some uncertainties is captured in results, e.g., in the total energy costs or in
the profit from counter-imbalance. On one hand, we admit that the aspect of uncertainty
needs to be addressed in a more complex way, e.g., using more sophisticated optimization
models such as the uncertainty set-based robust optimization [42]. On the other hand,
when deploying more complex models and associated optimization methods in practice,
increased computational complexity must be taken into account. We assume that final
decisions may be taken by human operators based on the recommendations provided by
optimization results. Thus, optimization results may need to be delivered multiple times
within each 15 min period.

As another limitation of the presented study, the evaluation procedure of the overall
system costs can be outlined, as we experienced a lack of data on EV charging prices.
Without this information, it was not possible to assess the direct revenues from the primary
EVCS business. It can be assumed that, in practice, revenues must fully cover the opera-
tional costs of the installation. Therefore, additional income from SI speculation services
could, in practice, lead to a reduction in EV charging prices. With the evolving technology
of BESS and PVPP installations, a further decrease in operation costs can be expected,
contributing to the viability of SI speculations.

Finally, there remains the question of negative impacts of the proposed methodology.
The effects of devices connected to the grid through inverters, such as BESSs or some types
of EV charging stations, are generally known, and widespread deployment of these devices
on a large scale undoubtedly negatively affects the grid. However, these impacts need to
be addressed prior to their use, in the design and installation process of the devices, taking
into account local conditions in the grid. An analysis of negative impacts on system stability
is beyond the focus of our article. The primary purpose of our proposed methodology is
to reduce operating costs for residential EV charging stations supported by BESSs while
adding the benefit of supporting system stability rather than solving the system stability
problem itself. Since our methodology works with the counter-imbalance concept and is
more associated with intervention in the control systems of BESSs than in the hardware
itself, we believe that widespread deployment would positively impact grid stability
without worsening existing negatives or introducing new adverse effects.
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However, providing counter-imbalance negatively impacts the lifespans of BESSs,
as is evident from the comparison of the predicted number of cycles. Reduced lifespan
and increased wear of BESSs are natural effects of intensified energy manipulations. This
phenomenon was considered in our analysis, as in some experiments, the increased costs
due to intensive manipulation exceeded the profit from SI speculation. Ensuring the
economic efficiency of providing counter-imbalance is an optimization task that, in our
case, requires the identification of suitable parameters and time windows for speculation.
Under these conditions, the profit from counter-imbalance compensates for the negative
impact of reduced lifespan and increased wear of a BESS.

5. Conclusions

By means of computer simulation, we studied the economic feasibility of utilizing
a residential electric vehicle charging station with a battery energy storage system and
photovoltaic powerplant for speculations with system imbalance. To derive insights about
the suitable configuration of the system, we varied the parameter values in computation
experiments. The provision of the counter-imbalance can reduce installation costs by using
a BESS at times when it is not performing its primary function. By performing data analysis
of EV charging power demand, PVPP power, and system imbalance, we identified three
candidate time windows for providing counter-imbalance. Next, a series of experiments
were conducted to explore how the different installation parameters influence the total
energy cost of charging EVs. To derive a basic insight, we started with evaluating the
baseline scenario without providing counter-imbalance, which we used as a reference
case. This was compared with scenarios involving optimized energy flows together with
counter-imbalance speculations at different levels of SI prediction accuracy.

The results indicate that, for the baseline scenario, the battery capacity and the installed
PVPP power have the most significant impact on the total energy costs. A higher BESS
capacity leads to higher costs. This is due to similar amounts of manipulated energy across
the scenarios, as the PVPP production and EV consumption remained the same to maintain
the comparability of experiments. Thus, additional capacity gets mostly unused, but it
increases the costs. Regarding the PVPP, the balance between the generated cost and profits
from sales to the grid depends on the time window. In the morning time window, the
minimal PVPP installed power is sufficient as solar irradiation is low, and the profit is
generated from obtaining energy together with the reward from the counter-imbalance
in some periods and sending the energy back to the grid in some other periods when the
imbalance settlement price favours deliveries to the grid. This effect is supported by the
ascending trend of the DAM, as shown in Figure 5, and close-to-zero EV charging demand.
In the remaining time windows, it is the opposite. Larger PVPP installed power leads
to lower costs as the solar irradiation is higher. In the scenario with providing counter-
imbalance, the accuracy of the SI prediction proved to be the key parameter. The level
of prediction accuracy at which the system is able to achieve lower total energy costs
compared to the baseline scenario lies between 80 and 90%. Generally, minimizing the
risk and setting a reasonably low SI speculation limit is advantageous because the risk of a
penalty with a combination of high SI speculation limits increases costs.

We found that SI speculation can reduce costs in installations equipped with BESSs by
providing counter-imbalance during periods of minimal electric vehicle charging demand.
However, it is essential to configure the individual installation component parameters
properly. Charging infrastructure operators should not only consider investments in
developing high-quality prediction models, but such models should also be used together
with more sophisticated speculation strategies. Furthermore, using technologies with lower
initial and operation costs can help elevate the benefit of SI speculation.
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Outlooks and Further Implications

Further research will focus on the development of SI prediction models. Combining
predictions with estimated prediction reliability levels opens the possibility for more
complex SI speculation strategies. Speculations could be limited to periods with low risk
to strategically select multiple time windows or more actively respond to the currently
available energy instead of only following plans proposed by an optimization model. A
deeper analysis of EV charging behaviour and the use of more sophisticated localized
weather forecasts could also be an area for improvement. A comprehensive economic
analysis could be another subject of further research.

In this study, we considered residential charging stations. For commercial charging
stations, the energy consumption patterns are more random. The applicability of the
proposed approach is strongly tied to the predictability of energy flows. Thus, applying the
proposed approach to commercial charging stations needs to be studied separately.

The exploitation of counter-imbalance depends on several factors. An important
factor is the related legislation and regulations, which set the rules for financial incen-
tivization of counter-imbalance. Organizations responsible for their own imbalance must
dedicate additional expenses to implement energy management systems that incorporate
similar methodologies to the one proposed in this paper. Transmission and distribution
system operators positively value local flexibility, including the provision of counter-
imbalance. However, nowadays, counter-imbalance speculations are not a usual practice
in Slovakia, and no specific regulations address them. With the expected increase in
the share of flexible devices, higher motivation for counter-imbalance speculations can
also be expected. Hence, policymakers may need to introduce a legislation framework
regulating counter-imbalance speculations.
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