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Abstract: This paper examines the use of manifold learning in the context of electric power system
transient stability analysis. Since wide-area monitoring systems (WAMSs) introduced a big data
paradigm into the power system operation, manifold learning can be seen as a means of condensing
these high-dimensional data into an appropriate low-dimensional representation (i.e., embedding)
which preserves as much information as possible. In this paper, we consider several embedding
methods (principal component analysis (PCA) and its variants, singular value decomposition, isomap
and spectral embedding, locally linear embedding (LLE) and its variants, multidimensional scaling
(MDS), and others) and apply them to the dataset derived from the IEEE New England 39-bus
power system transient simulations. We found that PCA with a radial basis function kernel is well
suited to this type of power system data (where features are instances of three-phase phasor values).
We also found that the LLE (including its variants) did not produce a good embedding with this
particular kind of data. Furthermore, we found that a support vector machine, trained on top of the
embedding produced by several different methods was able to detect power system disturbances
from WAMS data.

Keywords: electric power system; bulk power system; transient stability analysis; rotor angle stability;
wide-area monitoring system; machine learning; manifold learning

1. Introduction

The electric power system features the most complex transport system to date. It
is presently undergoing a very rapid and intensive transformation, as it is transitioning
toward the renewable and sustainable future. The most important aspect of that trans-
formation is the accelerating change in the mix of generating resources, which reduces
the proportion of conventional power plants (with large synchronous generators) while
increasing the share of inverter-based resources (IBRs), i.e., wind and solar power plants.
This change in the generation mix represents a fundamental shift in the operational charac-
teristics of the power system as such, with potential (significant) reliability implications for
the electric grid [1]. Namely, generating resources need to provide on an ongoing basis,
among others, voltage control, frequency support, and ramping capability in order to bal-
ance and maintain the grid [2]. However, the vast majority of IBRs today do not participate
in this support. At the same time, generating resources need to provide system stability
during transient events, brought on by faults (i.e., short-circuits), severe weather, and
other internal and external disturbances. On this front, new resource mix will significantly
(and irreversibly) reduce the power system inertia, thereby exacerbating the power system
transient stability (TSA) problems of tomorrow. The response of the power grids with
low system inertia to disturbances necessitates new approaches for dealing with the TSA
issues [3]. The electric grid is also under increasing strain from the growing share of electric
vehicles, which increase in the overall grid load and electricity demands. These combined
stresses on the electric power system are without precedent and pose considerable technical
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challenges, which need to be successfully tackled if the electrification of the transport sector,
and transition to the renewable energy, is to be realized.

These aforementioned developments are accompanied by still more innovations in
the power system sector, one of which is the introduction of wide-area monitoring (WAM)
aspects to the electric grid, based on extensive communication infrastructure and dis-
tributed phasor measurement units (PMUs). WAMSs bring a “big data” paradigm into the
operational portfolio of the transmission system operators and provide novel avenues for
tackling various power system problems, from load flow, state estimation, relay protection,
to transient analyses [4,5]. Furthermore, electric power systems are integrating an increas-
ing number of power electronic components, FACTS, AC/DC devices, thereby changing
the response characteristics of the system to various disturbances [6]. All these different
aspects set new challenges and, at the same time, provide opportunities for novel technical
solutions. Namely, some well-known traditional solutions—particularly in the domain of
transient stability analysis—have acknowledged weaknesses that may compromise the
security of the bulk power system under increased stress emanating from the accelerated
pace of its ongoing transformation.

The transient stability analysis of the electric power system is currently the focus of
intense research [7], as it is increasingly becoming obvious that traditional solutions are
not future-proof and are becoming increasingly maladjusted to rapid changes in modern
systems. Neither time-domain simulations, direct methods (equal-area and Lyapunov
methods), nor different hybrid schemes are able to deliver solutions that would satisfy the
reliability requirements of modern power systems [8]. Hence, a new breed of methods is
slowly emerging, based on artificial intelligence and WAMS data troves.

Machine learning (ML) and its subset of deep learning have been thus far applied to
the TSA problem, with promising results on benchmark test cases. For example, Tan et al.
used a deep imbalanced learning framework for the TSA of a power system [9]. Liu et al.
introduced transient stability assessment models based on ensemble learning with network
topology [10], distance metric learning [11] and kernel regression. Su et al. proposed a prob-
abilistic stacked denoising autoencoder for a power system transient stability prediction
with wind farms [12]. Autoencoder is a special kind of artificial neural network (ANN) that
can be trained using an unsupervised learning approach. Tian et al. introduced a transient
stability boundary, constructed using the broad learning approach [13]. Ren and Xu recom-
mended a method for the TSA based on generative adversarial networks, where two ANNs
contested with each other in an unsupervised manner [14]. Also, Ren et al. employed
transfer learning for the transient stability analysis [15]. Transfer learning is the ability to
reuse ANNs pretrained on one (general) task and repurpose them (with fine-tuning) for
different but related (specialized) tasks. Li et al. suggested an intelligent TSA framework
with continual learning ability [16]. An ensemble of decision trees was employed in [17–19]
to tackle the TSA problem. Support vector machine (SVM) is a popular ML approach, used
by many authors for tackling the TSA problem, e.g., [20–22]. In addition, Bashiri et al.
introduced a learning framework for the TSA that relied on a twin convolutional SVM [23].

Inherent in the deep learning approach is the fact that the classical feature engineering
step of the ML model building process is absent and replaced by an automatic learning of
the features by the deep model itself during training [24]. This removes expert knowledge
and instead relies on deep ANN architectures to learn useful features. However, a consider-
able preprocessing of the data (signals) is still needed for any deep learning model, even
without classical feature engineering. Another important aspect of the TSA problem, which
any machine learning model needs to tackle, is the fact that data space is multidimensional,
often with many thousands of features or more. This poses a challenge to training ML
models, and some kind of dimensionality reduction technique or embedding process is
typically employed as part of the model training. For example, Chen in [25] applied an
indirect principal component analysis (PCA) as a dimensionality reduction technique for
a power system transient stability assessment. Bellizio et al. proposed a causality-based
feature selection [26]. Gnanavignesh and Shenoy introduced a relaxation-based spatial-
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domain decomposition method [27]. Arvizu et al. used a diffusion maps approach for the
dimensionality reduction in transient simulations [28]. Still, other signal feature extraction
and dimension reduction techniques have been proposed, e.g., [29,30].

This paper is concerned with examining the use of manifold learning (as part of the
wider ML landscape) in assessing the power system TSA, based on WAMS data and power
system simulations. Manifold learning is an approach to the nonlinear dimensionality
reduction of the data through its low-dimensional embedding that preserves maximum
information. The paper features both supervised and unsupervised learning with different
embedding methods in order to demonstrate their feasibility in the domain of power
system transient stability analysis with WAMS-PMU data. Namely, our overview of the
published peer-reviewed research did not show comprehensive comparisons of different
embedding methods for the power system TSA with PMU data. Hence, we believe that
this paper fills that need and brings new insights in the domain of applying manifold
learning to the power system TSA problem. The following methods are examined [31]:
(1) principal component analysis, (2) kernel PCA (kPCA), (3) truncated singular value
decomposition (tSVD), (4) isomap embedding, (5) locally linear embedding (LLE) and its
variants, (6) spectral embedding, (7) multidimensional scaling (MDS), and (8) t-distributed
stochastic neighbor embedding (t-SNE). These methods are applied on the WAMS-PMU
data derived from the IEEE New England 39-bus test-case benchmark power system [32].
The model hyperparameters are optimized using cross-validated metrics and a custom-
tailored simulated-annealing stochastic optimization algorithm. When supervised learning
is applied, it is based on a support vector machine classifier.

Our research hypothesis is that a low-dimensional embedding, derived from the
WAMS-PMU data (features), preserves information and can detect power system TSA
events in the supervised and unsupervised settings. However, it is shown that not all
embedding methods produce equally good results on the TSA data, and that some are
better suited than others. We find that a combination of kPCA with SVM classifier provides
good overall results in the domain of supervised learning. The same can be said about
the isomap embedding and MDS when used with the SVM. However, unlike kPCA,
embeddings produced by isomap and MDS are not divisible into separate clusters, which
makes them less favorable. We also find that LLE and its variants cannot produce useful
embeddings with these data. Furthermore, when the unsupervised learning is concerned,
we find that only kPCA is able to generate separable clusters. Finally, we find that the SVM
classifier trained on top of several of the tested embeddings is able to detect power system
disturbances from the WAMS-PMU data.

The paper is organized in the following manner. Section 2 first introduces in Section 2.1
a dataset which emanates from the IEEE New England test power system simulations
and brings a description of the steps in its processing pipeline. Next, in Section 2.2, it
exposes a simulated annealing stochastic optimization algorithm and its application to
hyperparameter tuning. Section 2.3 introduces unsupervised and supervised learning
for the power system transient stability assessment, with different embedding methods.
The results of the models’ applications on the IEEE New England dataset are provided in
Section 3, which is followed by a discussion in Section 4 and a conclusion is Section 5.

2. Materials and Methods

The materials part introduces the dataset and describes its processing steps: statistical
sampling, features engineering, shuffling, splitting, and normalizing. The methods part
first describes the simulated annealing algorithm and then briefly introduces embedding
models. Next, it provides details on the training process (i.e., supervised and unsupervised
learning), including the hyperparameter optimization and model scoring.

2.1. Power System Stability Dataset

The power system stability dataset was produced from the extensive set of time-
domain simulations on the IEEE New England 39-bus benchmark test power system,
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with varying degrees of loading and three different short-circuit types scattered throughout
the network. Further details on the benchmark power system, time-domain simulations,
and dataset construction can be found in [33]. The full 3.8 GB dataset of PMU signals was
deposited on Zenodo with a CC BY license [34]. These raw signals were further processed
according to the pipeline graphically depicted in Figure 1. It consisted of following steps: a
statistical processing of data cases (from systematic into the stochastic domain), extracting
features from the time-domain signals, splitting the data into training and test sets, and scal-
ing them. The processing of data cases by random sampling without replacement followed
a probability distribution of short-circuit events found in the actual power systems [33].
The splitting strategy used a stratified shuffle split in order to preserve the class imbalance
between stable (majority) and unstable (minority) cases. The scaling standardized (training
and test) the datasets by removing the mean and scaling them to a unit variance.

Raw data
(signals)

(signals)
(signals)

Processed data
(features)

Process

Sta�s�cal
processing 

Split

Stra�fied
Shuffle

Split

Scale

Standard
Scaler

Extract

Features
engineering

Figure 1. Data processing pipeline transforming the raw time-domain PMU signals into standardized
training and test feature sets.

Table 1 presents selected features extracted from the time-domain PMU signals. Each
time-domain signal was represented by only two points in time, based on prefault and
postfault values of the measured quantity. It needs to be stated here that based on the
fault location within the network, a coordination between generator out-of-step protection
and distance relay protection of the incident transmission lines should determine the
time instants for the feature selection. The labeling of data cases as stable or unstable
was carried out by means of the power system transient stability index (TSI) [8,33]. The
statistically processed dataset with 350+ features was also deposited on Zenodo with a
CC BY license [35].

Table 1. Features derived from the time-domain PMU signals.

Feature Description Number

Rotor speed 10
Rotor angle deviation 10

Rotor mechanical angle 10
Stator voltage 10

Stator d-component current 10
Stator q-component current 10

Power load angle 2 × 10 1

Generator active power 2 × 10 1

Generator reactive power 2 × 10 1

Bus voltage magnitude 3 × 2 × 39 2

1 prefault and postfault values. 2 prefault and postfault values in all three phases.

It should be mentioned that we used expert knowledge in selecting these features,
and that we had already removed some redundant features (e.g., one of the three phases, all
phase angle values, etc.). Notwithstanding that, the number of features was still quite large
for this small power system. More importantly, it grew considerably with the increase in
number of buses and generators in the system and could easily become difficult to manage
and process (i.e., curse of dimensionality). Hence, the main obstacle to the successful
training of ML models was controlling and/or reducing this large number of features
without significant loss of information.
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2.2. Simulated Annealing Algorithm

Simulated annealing is a general-purpose stochastic optimization algorithm that
usually consists of four main parts [36]: (1) an objective function that is being optimized,
(2) a perturbation method that is used for generating candidate solutions, (3) an acceptance
criterion, and (4) a temperature schedule (i.e., cooling). Our improvements on the classical
algorithm constituted using the burn-in period, a multidimensional random walk based on
Student’s t-distribution as a perturbation method, and an early stopping criterion. This
combination of burn-in with early stopping balanced exploration and exploitation while
reducing the possibility of overfitting.

The objective function in our case constructed the model for which the hyperpa-
rameters were being optimized f (x) and returned a cross-validated metric by which it
was scored.

We employed an n-dimensional random walk as a perturbation method, where n
is the model’s number of hyperparameters xi, i = 1, . . . , n. For that purpose, we drew
uncorrelated random samples from the multivariate statistical distribution in the following
manner. During the initial phase of the algorithm’s exploration of the search space (i.e.,
during a select number of initial iterations i ≤ k), random samples were drawn from the
multivariate Student’s t-distribution as follows, f or i = 1, . . . , k:

zi ∼ MVN(0, Σ), (1)

ui ∼ χ2(ν), (2)

wi =

√
ν

ui
· zi, (3)

with z being the random 1D vector drawn from the multivariate normal distribution, where
Σ = diag(σ2

1 , . . . , σ2
n) is the diagonal matrix of covariances for the hyperparameters (as

uncorrelated random variables); u is the random variable from the uniform χ2 distribution
with ν degrees of freedom, and w is finally the random 1D vector from the multivariate
Student’s t-distribution with ν degrees of freedom. This phase of the algorithm (where
i ≤ k) is called the burn-in period, and it emphasizes the exploration of the search space
(by using low values of the ν parameter). After the burn-in period, the samples for the
subsequent steps (i > k) are drawn directly from the multivariate normal distribution,
but (generally) with a lower variance, as follows:

wi ∼ MVN(0, Σ · fs); f or i > k, (4)

where 0 < fs ≤ 1 is the factor by which the initial standard deviations (that form the
diagonal covariance matrix) are scaled. If there is a statistical correlation between hyperpa-
rameters, that information can be readily introduced through the covariance matrix itself.

Hence, for the ith iteration, a random walk takes the steps xnew i = xold i + wi, where
w comes from Equation (3) if i ≤ k or from Equation (4) if i > k; x is the 1D vector holding
the (either new or old) coordinates of hyperparameter values inside the multidimensional
search space. It can be seen that the burn-in phase (first k iterations of the algorithm) take
longer steps (from the Student’s t-distribution which has more mass in the tail than a
normal distribution) and thus is able to explore more of the search space. After the burn-in
period, the step size is reduced and, in addition, the starting position of vector x at the
beginning of iteration k + 1 is taken from the best coordinates found during the burn-in
period of the previous k iterations. This starts the exploitation phase. Furthermore, bounds
can be imposed on hyperparameters within the search space, such that each variable x from
the 1D vector x can have upper and lower bounds, i.e., x ∈ [xl , xu], where xl is the lower
bound and xu is the upper bound. If, during the random walk, a step takes any variable
x outside its imposed bounds, that step is reversed as follows: xnew = xold − abs(w)/2 if
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xnew > xu and xnew = xold + abs(w)/2 if xnew < xl . In other words, if the step brings a
variable above the upper bound, it is reversed to the left; alternatively, if the step brings it
below the lower bound, it is reversed to the right.

The acceptance criterion is based on the Metropolis algorithm [31], where the dif-
ference between each two successive objective function’s evaluations is computed as
∆E = f (xnew)− f (xold). If ∆E ≤ 0, the new solution is readily accepted. On the other
hand, the case when ∆E > 0 is treated as probabilistic. First, a random number is drawn
from theuniform distribution r ∼ U (0, 1). Then, a probability that the new solution is
accepted is derived from the Boltzman probability distribution as follows:

p(∆E) = (2πT)−n/2 · exp(
−|∆E|2

2T
), (5)

where T is the current temperature. It can be seen that this probability is related to the
temperature, and that it decreases as the system state cools down. Now, a new solution
is accepted only if r < p(∆E); otherwise, it is rejected. As can be seen, this last step is
stochastic and allows us to accept inferior solutions at the beginning, when the temperature
is still high, which helps to explore the search space. Later, when the temperature is
decreased, the acceptance of inferior solutions is far less probable.

The temperature schedule (i.e., cooling) followed the exponential law, where the
temperature for the ith iteration can be determined as follows:

Ti = T0 · exp(−i/κ), (6)

where T0 is the initial temperature and κ is a constant that determines the cooling time. A to-
tal number of iterations is determined directly from the cooling schedule, i.e., the algorithm
proceeds until the system has cooled down to a certain predetermined temperature.

After each iteration step, the accepted solution is compared to the best solution that
has been found thus far and takes its place when having a lower value (i.e., is closer to the
optimum). Furthermore, when |∆E| < ε holds, where ε is an arbitrary small number, the
algorithm does not converge. This is monitored and if there is no progress after a certain
number of iterations (i.e., waiting period), the algorithm is terminated under the early
stopping criterion.

The complete simulated annealing algorithm, described in pseudocode, is depicted in
Algorithm 1.



Energies 2023, 16, 7810 7 of 20

Algorithm 1 Simulated annealing algorithm with burn-in and early stopping.

input: k, x0, [xl , xu]i=1,n, Σ, fs, T0, κ, ε, θ, stop
x = x0 . initial values
E = f (x0)
xbest = x
Ebest = E
i = 0; wait = 0
while T ≥ θ do

if i ≤ k then . burn-in phase
z ∼ MVN(0, Σ)
u ∼ χ2(ν)

w =
√

ν
u · z

else
w ∼ MVN(0, Σ · fs)

xnew ← x + w . random walk
for j = 1, n do

if xnew < xl then . below the lower bound
xnew ← x + abs(w)/2

else if xnew > xu then . above the upper bound
xnew ← x− abs(w)/2

Enew ← f (xnew)
∆E = Enew − E
if ∆E ≤ 0 then

x = xnew
E = Enew

else . Metropolis acceptance
r ∼ U (0, 1)

p(∆E) = (2πT)−n/2 · exp(
−|∆E|2

2T
)

if r < p(∆E) then
x = xnew
E = Enew

T← T0 · exp(−T/κ)
if E < Ebest then

xbest = xnew
Ebest = Enew

if abs(∆E) ≤ ε then
wait += 1

if wait > stop then
break

i += 1

2.3. Embedding Models

The following embedding methods, as already mentioned, are briefly introduced
hereafter: PCA, kPCA, tSVD, isomap embedding, LLE and its variants (modified and
Hessian), spectral embedding, MDS, and t-SNE. Interested readers are at this point advised
to consult [31] for more information and additional mathematical background on some of
these different methods.

2.3.1. PCA, kPCA, and tSVD

Principal component analysis is a well-known method for decomposing a multivariate
dataset into a set of orthogonal components (i.e., principal components). It employs a linear
projection and relies on the SVD algorithm. Kernel PCA is a direct extension of PCA, which
introduces a nonlinear dimensionality reduction through the use of kernels (i.e., the kernel
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trick); see [31] for more information. Different kernels can be applied, but we examined
only the radial basis function (RBF) kernel. Truncated SVD is another method closely
related to PCA. It uses, as the name suggests, a singular value decomposition of the feature
matrix and retains only its largest singular values, thereby reducing the dimensionality
of the feature space [31]. If k is the dimensionality of the projection, then a truncated
SVD applied to feature matrix X produces a low-rank approximation X ≈ Xk = UkΣkV>k ,
where Σk holds the top k singular values (from the main diagonal), while Uk and Vk hold,
respectively, the left- and right-singular vectors.

2.3.2. Isomap Embedding

Isomap embedding can be seen as an extension of the kernel PCA. It seeks a lower-
dimensional embedding that maintains geodesic distances between all data points, through
the following three-step process [37]: (1) construct a neighborhood graph from distances
between data points, (2) compute the shortest paths on the neighborhood graph, and (3) con-
struct a low-dimensional embedding from the partial eigenvalue decomposition. The near-
est search is based on the ball-tree algorithm [38]. The embedding is encoded in the
eigenvectors corresponding to the largest eigenvalues of the isomap kernel.

2.3.3. Locally Linear Embedding

Locally linear embedding is yet another extension of PCA which seeks a lower-
dimensional projection of the data that preserves distances within local neighborhoods. This
method can be viewed as an application of a series of local PCAs, which are then globally
compared to find the best nonlinear embedding [38]. This method also comprises a tree-step
process as follows [39]: (1) assign a neighborhood to each data point based on local distances,
(2) compute weights Wij that best linearly reconstruct the data points from their neighbors,
and (3) compute the low-dimensional embedding from these weights Wij, by finding the
smallest eigenmodes of the sparse symmetric matrix Mij = δij −Wij −Wji + ∑k WkiWkj,
where δij = 1 if i = j and 0 otherwise. Although it relies only on linear algebra, since
the data points are reconstructed only from their neighbors, this method can still pro-
duce highly nonlinear embeddings. If one were to use multiple weight vectors in each
neighborhood (instead of a single one), that would result in the so-called modified LLE
method. Furthermore, if the locally linear structure were to be recovered by means of the
Hessian-based quadratic form, that would result in the so-called Hessian eigenmapping.
This is a variant of LLE also known as Hessian-based LLE; see [40] for more information.

2.3.4. Spectral Embedding

Spectral embedding with Laplacian eigenmaps is yet another nonlinear embedding
method which is closely related to the locally linear embedding discussed above. It pre-
serves local information and implicitly emphasizes natural clusters in the data. This method
constructs a low-dimensional representation of the data using a spectral decomposition of
the graph Laplacian. It also consists of three individual steps, as follows [41]: (1) construct
the adjacency graph from nearest neighbors, (2) weight the graph edges by forming the
matrix W, where Wij = 1 if vertices i and j are connected by an edge and Wij = 0 otherwise,
and (3) compute eigenvalues and eigenvectors for the generalized eigenvalue problem
of the form L f = λD f , where D is a diagonal weight matrix Dii = ∑j Wji and L is the
Laplacian matrix L = D−W.

2.3.5. Multidimensional Scaling

The central concept in multidimensional scaling is the dissimilarity data δij expressed
through the distances in geometric spaces. The MDS algorithm minimizes the so-called
stress function for the configuration of points x1, . . . , xn in t-dimensional space (t < n),
which is described by the following root-mean-square residual:
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S =

√√√√∑ (dij − d̂ij)
2

∑ dij
, (7)

where dij are distances between points x1, . . . , xn, and d̂ij are those values that minimize S,
subject to the constraint that d̂ij have the same rank order as the dissimilarity measures δij.
The stress function is seen as a measure of how well the low-dimensional representation
matches the data. The minimization of the multiparameter stress function can be tackled
by means of the steepest decent or some other suitable optimization algorithm; see [42] for
more information.

2.3.6. t-Distributed Stochastic Neighbor Embedding

The t-SNE method is based on converting the affinities of data points into probabilities,
where the affinities in the original space are represented by Gaussian joint probabilities
and the affinities in the embedded space are represented by the Student’s t-distributions.
The t-SNE method then minimizes the Kullback–Leibler (KL) divergence between a joint
probability distribution, P, in the high-dimensional space and a joint probability distribu-
tion, Q, in the low-dimensional space [43]:

KL(P||Q) = ∑
i

∑
j

pij log
pij

qij
, (8)

with pij = pji, qij = qji, ∀ i, j, and pii = qii = 0. The pairwise similarities, for the low-
dimensional map qij, are given by:

qij =
exp

(
−
∥∥yi − yj

∥∥2
)

∑k 6=l exp
(
−‖yk − yl‖2

) , (9)

and for a high-dimensional map, it is stated that pij = (pi|j + pj|i)/2n, where pi|j is the
conditional probability [43]

pi|j =
exp

(
−
∥∥xi − xj

∥∥2/2σ2
)

∑k 6=l exp
(
−‖xk − xl‖2/2σ2

) , (10)

scaled by the variance σ of the Gaussian that is centered on the data point x.
The KL divergence is minimized by means of the steepest descent algorithm [43].

The t-SNE focuses on the local structure of the data and tends to extract clustered local
groups more than the other previously mentioned algorithms. This ability to group samples
based on the local structure might be beneficial in some circumstances.

2.4. Model Training with Supervised and Unsupervised Learning

Producing a low-dimensional embedding from the high-dimensional data entails
training the associated model by means of unsupervised learning. However, some models
(such as the PCA) can be trained using supervised learning as well; see [31] for more
information. In addition, a classifier can be trained, using supervised learning, on top
of the embedding produced by any of the above-introduced (dimensionality reduction)
models. This essentially establishes a pipeline which consists of the embedding model (as a
transformer) and a classifier. We used a support vector machine (SVM) with an RBF kernel
as a classifier. The entire process of model training (both supervised and unsupervised) is
graphically represented in Figure 2.

As can be seen from Figure 2, the unsupervised learning loop uses only data features
(matrix X), while the supervised learning loops additionally use targets (vector y) that are
fed to the classifier. In addition, supervised learning can optimize the entire pipeline (outer
loop), or only the classifier (inner loop). The hyperparameter optimization (both of the
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embedding method and of the SVM classifier) was carried out using the same simulated
annealing algorithm described in Section 2.2. Only the objective function was different,
as is explained next.

Embedding
model

SVM
classifierEmbedding

Simulated
annealing

Simulated
annealing

Simulated
annealing

Train set
(features, X)

Train set
(targets, y)

Visualize
(2D space)

data flow

information flow

unsupervised

supervised

Figure 2. Training models using supervised and unsupervised learning.

2.4.1. Unsupervised Learning

Unsupervised learning used only the features of the dataset and no targets when
optimizing the hyperparameters of the embedding models. We demonstrated this approach
using two different embedding models: (a) kPCA and (b) t-SNE.

(a) The kPCA model has only one hyperparameter, the γ value of the underlying RBF
kernel. The objective function here is the mean squared error (MSE). Namely, kPCA
first constructs a low-dimensional embedding and then reconstructs the original high-
dimensional data by the inverse transform. The MSE error between the original data
and their reconstruction was minimized using the simulated annealing algorithm
described in Section 2.2.

(b) The t-SNE model has one important hyperparameter, a perplexity (P) parameter [38].
The objective function here is based on the Kullback–Leibler divergence and can be
described by the following relation [44]:

S(P) = 2 · KL + log(n) · P
n

, (11)

where KL is the Kullback–Leibler divergence, P is the perplexity, and n is the number
of samples. This function was minimized using the simulated annealing algorithm
described in Section 2.2.

Unsupervised learning can be extended a step further by applying clustering on top
of the low-dimensional embedding; see for example [45]. We used K-means clustering for
separating the low-dimensional space of samples into stable and unstable cases [38]. Since
we knew a priori that there are only two classes (stable and unstable), we assigned the
K-means clustering with (hopefully) finding these clusters withing the embedding space.

2.4.2. Supervised Learning

Supervised learning used an SVM binary classifier with a radial basis function (RBF)
kernel and class-weight balancing for classifying cases into stable and unstable ones.
An SVM constructs a decision function of the form:

f (x) = ∑
i∈SV

yiαi · K(xi, x) + b, (12)
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where the summation of sample pairs (xi, yi) is over the space of the support vectors (SV),
while K(·) is the kernel:

K(x, x′) = exp(−γ‖x− x′‖2). (13)

Unknown coefficients αi and b are to be determined by solving the following optimiza-
tion problem [31]:

min
w,b,ζ

1
2
||w||2 + C

n

∑
i=1

ζi,

s.t.
{

yi(wTφ(xi) + b) ≥ 1− ζi,
ζi ≥ 0, i = 1, . . . , n,

(14)

where C is the penalty that acts as an inverse regularization parameter, while ζi is a slack
variable, and n is again the number of samples. The penalty (C) and the RBF kernel
coefficient (γ) are two crucial hyperparameters of the SVM that need to be optimized.

The supervised loop can be applied to the SVM classifier itself only or to the entire
pipeline (see Figure 2). In case that it is applied to the classifier itself, there are two
hyperparameters that need to be optimized. These are penalty C ∈ (0.1 − 1000) and
γ ∈ (0.0001− 1). In this case, the classifier “sits” on top of the embedding. The objective
function here was the negative value of the cross-validated F1-metric as a classification
score. On the other hand, if the supervised loop is applied to the entire pipeline, it optimizes
the hyperparameters of the embedding model in addition to those of the SVM, and it does
that at the same time. We demonstrated this approach on a pipeline which consisted of
kPCA as the embedding model (with an RBF kernel) and an SVM classifier (also with its
own RBF kernel). In this case there were a total of three hyperparameters (one for kPCA
and two for the SVM). Kernel PCA has its own γ parameter for the RBF kernel, that is
independent of and unrelated to that of the SVM classifier. All three hyperparameters were
optimized (by means of the simulated annealing) at the same time. The objective function
was again the negative value of the cross-validated F1-metric.

It is important to note that the hyperparameter search space during optimization (both
supervised and unsupervised) is based on the common logarithm space (i.e., decadic loga-
rithm). Namely, since the parameters can span large values, for example, C ∈ (0.1− 1000),
in log-space, this transforms to (10−1 − 103), which means searching within the interval
(−1, 3). Since this is a much narrower band (when seen in log-space), it significantly
improves the convergence speed.

2.4.3. Scoring Models

The SVM binary classifier, trained with supervised learning on top of the embedding,
was scored on the test set. The scoring metric is reported as the mean value with a standard
deviation (µ ± σ), obtained from a 3-fold cross validation. The process of scoring the
model is graphically visualized in Figure 3. It can be seen that the embedding model
(as a transformer) and the SVM classifier constituted a pipeline, which was fed the test
dataset along with the optimal hyperparameters obtained from the training phase. The
classifier produced predictions, which were compared to the ground-truth values (i.e., test-
set targets) and a certain metric was reported as the score (i.e., measure of test accuracy).
Since the dataset was class-imbalanced, we used the F1-score as the harmonic mean of
the classifier’s precision and recall, i.e., F1 = 2TP/(2TP + FP + FN), where TP is a true
positive, FP is a false positive, and FN is a false negative outcome (from the confusion
matrix of the classifier).

It can be seen that both the objective function and the scoring method were based on
the same metric, which was not necessary but streamlined the comparison. This scoring
process enabled us to compare different embedding models in terms of quality. Namely,
the SVM classifier had a higher score if the embedding on which it was trained preserved
more of the informational content.
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Figure 3. Scoring models on the test set.

3. Results

The previously discussed embedding models were applied to the IEEE New England
39-bus power system dataset (Section 2.1). This section presents the results and other
findings which were derived from that application. In order to make the task more chal-
lenging for this small power system, each embedding model was required to transform the
original high-dimensional space (with 350+ features) into a two-dimensional (2D) space,
while preserving as much information as possible. Each embedding model was individu-
ally trained using the unsupervised learning approach (Section 2.4). A good embedding
should feature only two (distinct) separable clusters, one (larger) for the stable and another
(smaller) for the unstable cases. In order to further compare the quality of embeddings,
the SVM classifier was individually trained (using the supervised training approach) on top
of each of the embeddings. A classifier with a higher score indicated that the embedding
model was able to preserve more of the information content and hence produced a better
low-dimensional representation.

First, in order to demonstrate the convergence of our modified simulated annealing
algorithm for hyperparameter tuning, as an example, Figure 4 presents the algorithm’s
convergence when optimizing the hyperparameters of the kPCA model using the unsu-
pervised learning approach. It can be seen that the algorithm attained convergence before
reaching 200 iterations.

The models produce embedding in a 2D space, which could be easily visualized and
further inspected. Hence, Figure 5 demonstrates an example of a “good” embedding (from
kPCA on the left side) and a “bad” embedding (from spectral embedding on the right side).
It can be clearly seen that kPCA produced two distinct clusters, while spectral embedding
was not able to provide a meaningful separation between stable and unstable cases. The
color in Figure 5 was superimposed on the data points from the labels (after the fact) in
order to visually emphasize stable and unstable cases (this information, however, was not
available during the unsupervised training of these models).

Moreover, we found that from all the different embedding models that we tested on
this dataset, only kPCA produced exactly two separable clusters. Furthermore, as can be
seen from Figure 5 (left side), these clusters (roughly) coincided with stable and unstable
classes. Other embedding models, such as the isomap embedding and MDS, preserved
information that could be valuable to the classifier which could be trained on top of them
but did not produce separable clusters (we found this to be the case with PCA and tSVD
as well), or produced too many meaningless clusters (which was the case with t-SNE).
For example, Figure 6 presents the embedding produced by t-SNE from unsupervised
learning (unlabeled on the left and labeled on the right), where the color was added after
the fact for visual emphasis. At the same time, Figure 7 presents the embedding produced
by MDS, without labels (on the left) and with the addition of labels after the fact (on the
right). It is clear from Figure 7 that this low-dimensional embedding produced a single
(somewhat loose) cluster of data points; similar (but more dense) single clusters resulted
from applying PCA and tSVD as well. However, if labels were present in the data, then
these embeddings would still preserve enough information for training the classifier on top
of them (with supervised learning or even semisupervised learning).
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Figure 4. Convergence of the simulated annealing algorithm for optimizing hyperparameters of the
kPCA model using the unsupervised learning approach.

Figure 5. Embedding produced by kPCA (left) and spectral embedding (right), from the unsuper-
vised learning approach (color added after the fact for visual emphasis).

In addition, when the kPCA model was trained together with the SVM classifier using
the pipeline approach (i.e., using the outer optimization loop from Figure 2), we found
that this prioritized the classifier’s accuracy (as would be expected), and that the resulting
embedding occasionally did not feature two clearly distinct clusters. An example of this
outcome is depicted in Figure 8, where we show labeled data on the left and unlabeled data
on the right. Of course, labels must be known a priori in order to apply this (supervised
learning) approach.
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Figure 6. Embedding produced by t-SNE from the unsupervised learning approach without labels
(left) and with the addition of labels after the fact (right).

Figure 7. Embedding produced by MDS, from the unsupervised learning approach, without labels
(left) and with the addition of labels after the fact (right).

Furthermore, interestingly, we found that locally linear embedding (LLE), including all
of the variants that we tested (i.e., modified and Hessian), produced a 2D embedding that
had very low informational content. Hence, classifiers trained on top of these embeddings
had low accuracy, as shown later. Moreover, we found that the embedding produced by
LLE (and its variants) was very sensitive to the number of neighbors used for producing
it. In order to demonstrate these effects, Figure 9 provides the embedding computed by
LLE with 10 (left) and 20 (right) neighbors. This high sensitivity was not found with other
embedding methods and makes LLE less useful for this particular application.
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Figure 8. Example of the embedding produced by the pipeline composed of kPCA and SVM with
supervised training; labeled data (left) and unlabeled data (right).

Figure 9. Embedding produced by locally linear embedding with 10 (left) and 20 (right) neighbors.

Finally, an SVM classifier was independently trained by means of supervised learning
(i.e., using the inner optimization loop from Figure 2) on top of each embedding, and its
classification metric (i.e., the threefold cross-validated F1-score) is reported, along with its
optimal hyperparameters (C, γ), in Table 2. The last column shows the number of iterations
of the simulating annealing algorithm, along with a Y/N indicator that reports if early
stopping was triggered. It should be mentioned that the SVM classifier was not calibrated.

In a fully unsupervised learning approach, one would take the unlabeled data and
train the embedding model (which hopefully would produce only two clusters), which
could then be discovered by the appropriate clustering algorithm (as another unsupervised
learning method). We demonstrate this approach here on the embedding produced by the
kPCA method trained using the unsupervised learning; see Figure 4 (left). The K-means
clustering was applied on top of that embedding. The produced clusters are graphically
presented in Figure 10 (left), where the color indicates the cluster membership of each data
point. If this is compared to Figure 4 (left), it can be seen that many of the points from the
clusters also belong to the actual classes, which means that a completely unsupervised
learning approach (kPCA plus K-means) is able to detect power system disturbances from
the WAMS-PMU data. Furthermore, Figure 10 (on the right) presents a decision boundary
from the SVM classifier trained on top that embedding with a supervised learning approach.
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An overlap between cluster and classifier boundaries can be discerned from Figure 10 by
comparing the left- and right-hand sides, corroborating the fact that clustering on top of
the kPCA embedding can separate power system TSA cases and identify unstable ones.

Table 2. The SVM classifier’s parameters and scores after being applied to each of the embeddings.

Embedding
Model SVM (C, γ)

F1-Score
(µ ± σ)

No. Iters.

PCA 1.93 0.0064 0.8521± 0.0121 75 (Y)
kPCA 98.5 0.2610 0.8456± 0.0223 167 (Y)
tSVD 0.43 0.0118 0.8517± 0.0058 43 (Y)
t-SNE 4.51 0.0496 0.9316± 0.0301 232 (N)
MDS 14.95 0.0443 0.9281± 0.0133 67 (Y)

kPCA (pipeline) 398.1 6.5463 0.9114± 0.0226 232 (N)
LLE (default) 67.1 8.8491 0.7307± 0.0301 64 (Y)

LLE (modified) 147.7 1.2313 0.7352± 0.0297 39 (Y)
Hessian eigen. 212.6 0.0184 0.8213± 0.0406 37 (Y)

Spectral embed. 405.5 0.0733 0.7541± 0.0346 99 (Y)
Isomap embed. 5.14 0.0036 0.8984± 0.0391 65 (Y)

Figure 10. K-means clusters (left) and SVM decision boundary (right) on top of the embedding
produced by kPCA with unsupervised learning.

4. Discussion

We compared our proposed simulated annealing approach to a hyperparameter op-
timization with a random search approach [38] and found that it produced better results
with the same scoring method, while (generally) using fewer iterations. We further found
that the random search was less consistent since it exhibited a larger deviation of the
cross-validated scores. This is not completely unexpected, since a random search simply
draws samples from (in our case exponential) distributions and has no overarching guid-
ing principle in finding the objective function’s optimum value. On the other hand, our
simulated annealing balances exploration with exploitation through the use of burn-in
and cooling schedule and avoids overfitting by means of the early stopping. Also, early
stopping enables the simulated annealing to stop searching before all iterations have been
exhausted, which is not possible with a random search [38]. However, the random search
algorithm, unlike simulated annealing, can be run in parallel on multicore architectures,
which helps reduce its execution time.

As far as different embedding methods are concerned, we found that the isomap
embedding and MDS provided good bases for supervised classification (which can be seen
from Table 2) but, unfortunately, could not produce separable clusters. Hence, they are not
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well suited for a fully unsupervised learning approach with this kind of data. The same can
be said about the PCA and tSVD methods, which also could not produce separable clusters.
Furthermore, although an SVM trained on top of the t-SNE embedding had a high score (as
evident from Table 2), it suffered from a similar deficiency, which emanated from the fact
that that embedding contained a lot of small and artificial clusters (see Figure 6). Hence,
the t-SNE method could not be combined with clustering in a fully unsupervised learning
approach, in contrast to what was proposed for some other datasets, e.g., see [45]. This
finding is characteristic for the studied dataset and may be due to its peculiar information
content (time instants of phase voltages, currents, active and reactive powers, etc.). We also
found that only kPCA, when applied to this dataset, produced an embedding that could be
utilized in a fully unsupervised manner, as evidenced from Figure 10 (left side).

It is important to mention that there are several sources of randomness that need to
be considered here: in the dataset itself (statistical sampling), in the way it was split into
training and test sets, in the embedding process (finding nearest neighbors, etc.), and in the
simulated annealing (which rests on a random walk). All of these aspects contribute to the
variability in the classifier scores between different runs. However, we found that there
was a persistence where some embedding methods, when combined with the SVM, would
reliably (and consistently) produce better results. These were the PCA, kPCA, and MDS
methods (even their 2D embeddings were consistent between runs, despite different data
splits). This is a reassuring finding. Also, the tSVD often produced embedding (almost)
identical to that of the PCA, which is not surprising considering their similar backgrounds.
On the other hand, we found that LLE (and its variants) was quite brittle, sensitive to inputs,
and produced embeddings with a low informational content. Finally, although t-SNE often
produced embeddings that happened to be fertile ground for the SVM training, it was not
consistent between runs and could not produce meaningful (nor separable) clusters.

Also, it can be stated that the classifier scores improved across the board when more
than two dimensions were retained for the low-dimensional embedding, which was some-
thing to be expected. For example, PCA with only seven principal components was able to
explain 90% of the variance in the dataset. Classifiers trained on embeddings with more
than two dimensions generally produce F1-scores above the 0.9 level. However, if the
goal is to use unsupervised (or semisupervised) learning, then two- and three-dimensional
embeddings are particularly appealing, since results of applied clustering can be easily visu-
alized, inspected, and explained (i.e., retaining the properties of the white-box model). We
showed that kPCA with K-means clustering produced satisfactory results on the IEEE New
England 39-bus dataset. We also found that contrary to the findings on other datasets [45],
t-SNE was not able to produce meaningful clusters. Neither could the other embedding
models that we tested.

In addition, we also tested an LLE variant that implemented a local tangent space
alignment algorithm [38]. This approach proved no better than any other LLE variant.
Furthermore, it can be mentioned in passing that we also examined a stacked autoencoder
for embedding this same dataset and found that it could not consistently produce separable
clusters [33]. However, we did not carry out exhaustive tests of different autoencoder
architectures and hence, our conclusions are limited by these facts. Finally, there are still
other embedding methods, but due to the limited space, they could not be tested here.

5. Conclusions

This paper introduced manifold learning to the electric power system transient sta-
bility analysis, based on the dataset derived from extensive transient simulations of the
IEEE New England 39-bus benchmark power system. A majority of published papers that
applied machine learning approaches to the power system TSA problem were based on
supervised learning, with very few exceptions. This paper, however, explored supervised
and unsupervised learning for the power system TSA problem. It compared and contrasted
different embedding methods. The main contributions of this paper to the state of the
art can be summarized through the following findings: (1) kPCA is able to produce a
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two-dimensional embedding with clearly separable clusters of stable and unstable cases;
(2) K-means clustering can be linked with kPCA for a fully unsupervised learning approach;
(3) several embedding methods (e.g., multidimensional scaling, isomap embedding) pro-
duce a low-dimensional embedding which preserves information without finding clearly
separable clusters; (4) an SVM classifier can attain a high accuracy when trained on top of
these low-dimensional embeddings; (5) t-SNE embedding could not produce meaningful
clusters; and (6) simulated annealing can be used for hyperparameter optimization and
provides better results than a random search approach.

It should be mentioned that some of these conclusions may be restricted to the exam-
ined dataset, although some findings reported here (e.g., the SVM classifier performance)
have been corroborated by other researchers. Certainly, further research is needed to
independently verify and extrapolate these findings on other power system datasets. Fur-
thermore, additional research is needed to stress-test these findings in an environment that
is not a benchmark test power system. This would include introducing various levels of
noise into the dataset, along with missing values, measurement errors, etc., that would
corrupt the data in different ways. Also, the resilience of different embeddings to the data
drift could be examined. These are some future research directions that we can foresee at
the present time.
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