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Abstract: Charge injection and conduction are fundamental phenomena that occur in dielectric
materials when subjected to both low and high electric fields. This paper delves into the exploration
of various conduction mechanisms, including space-charge-limited current (SCLC), Schottky charge
injection, Poole–Frenkel, and hopping charge conduction, to elucidate the prevailing conduction
mechanism in single and multilayer polyimide (PI)/SiO2 nanocomposite films across a range of
temperatures. At elevated electric field strengths, the conduction behavior transitions from ohmic to
exhibiting a non-linear current–voltage dependence. The investigation highlights that PI nanocom-
posite films display distinct conduction behaviors contingent on both the applied electric field and
temperature conditions. The insights derived from this study provide valuable empirical groundwork
and explanations for conducting current measurements in PI-based insulation systems, particularly
in applications such as motor insulation for electric vehicles.

Keywords: polyimide; conduction current; multilayer insulation; nanocomposite films

1. Introduction

Polyimide (PI) film, known for its exceptional dielectric properties, remarkable thermal
and chemical stability, and high breakdown strength, finds wide-ranging applications in
critical industries [1,2]. These applications include superconducting cable insulation, wind
power generator winding insulation, variable-frequency motor winding insulation, and
aerospace technologies [3–5]. Furthermore, these thin films serve versatile roles as coating
films for electronic devices, buffer coatings, intermetallic layers, protective surface coatings
in spacecraft, and enameling for electric motor insulation.

The physical properties of PI nanocomposite films, through chemical analysis and ther-
mal analysis, have been extensively explored and documented in various well-researched
articles [6,7]. However, their electrical conduction mechanisms, charge transport, and
dielectric breakdown strength across different electrical fields and temperature conditions
have not been addressed in these studies. Therefore, in this research, the main focus is on
early breakdown phenomena such as conduction current, which are extensively covered
for PI nanocomposite films.

Adding aromatic heterocycles to PI’s main chain makes it much more stable at high
temperatures and under pressure, and also makes it less likely to conduct corona. Addition-
ally, due to PI’s excellent electrical insulation properties, it has garnered significant interest
as an inter-turn insulation material for variable-frequency traction motors [8,9]. Neverthe-
less, conventional PI and other polymer insulating materials are susceptible to failure after
exposure to corona and prolonged damp heat aging, necessitating modifications to meet
the ever-increasing demands of various applications [8–13].
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Under conditions involving high voltage and high-speed pulses, material breakdown
primarily results from electrical breakdown, electrochemical corrosion breakdown, and
thermal breakdown, each following distinct corona breakdown principles [3,4]. Presently,
the predominant approach to enhancing the corona resistance of PI matrices involves
nano-composite modification [14–18]. This entails the incorporation of inorganic materials
such as ceramics, clays, and polysilanes, aiming to augment the electrical conductivity,
electrochemical stability, and thermal conductivity of polymer materials, thereby fortifying
the material’s resistance to corona [19–24].

Recent experimental evidence highlights the pivotal role played by space charge accu-
mulation within the bulk of PI films in direct current (DC) breakdown [25–27]. Additionally,
it is evident that several other conduction processes occur at the interface between elec-
trodes and PI films, contributing to localized electric field reinforcement before eventual
breakdown [28,29]. Conduction currents arise from diverse polarization and depolarization
processes occurring within the material. The complete polarization process encompasses
instantaneous currents resulting from displacement polarization, relaxation polarization
currents, and conduction currents attributed to specimen conductivity [28,30]. The Simons
and Tam theory elaborates on depolarization currents, describing them as a superposition
of various relaxation processes contingent upon trap levels [31]. In the steady state, the
current density through each electrode and the bulk material must be constant, i.e., it must
have the same value at every place. It is therefore not a situation where the current is either
injected (i.e., the Schottky process) or carried by bulk transport, but one in which one of
the processes acts as the controller of the others. For example, where injection at a given
electrode field is higher than bulk transport, space charge builds up to limit the injection
to what can be carried by bulk transport; this is the controlling process. The injection of
charge at a lower electric field is almost very low, and the current density J, which follows
the Ohm law, can be computed from the following expression, as shown in Equation (1):

J = eµnE (1)

where n represents the charge density and e expresses the elementary charge. The charge
injection becomes high with the increase in E-field, and is then captured by the traps. In
addition, J-E curves show the conduction characteristics, including the SCLC model and
Schottky emission process. Figure 1a illustrates the Schottky and electrode limited currents.
ΦD represents the metal work function, and Φ0(x) is the actual barrier, which represents the
electrostatic attraction among positive charges and electrons on the metal surface. Φmax and
xmax both started to decrease with the rise in E-field, as shown in Figure 1a. This leads to a
decrease in the height and thickness of the injection barrier for Schottky injection, facilitating
greater charge injection from the electrode and contributing to the overall injection current.
On the other side, Figure 1b represents the SCLC model and bulk current. In the SCLC
model, a fundamental condition is that the electrode must establish an ohmic contact with
the insulator to guarantee adequate space charge in the dielectric [32]. However, due to
the reduced and thinner injection barrier under a high electric field, a substantial amount
of charge can be injected via Schottky emission. Consequently, even if the electrode and
insulator lack ohmic contact, the significant injected charge and trapping process cause
the conduction behavior of the dielectric to align with the SCLC model. According to the
illustration in Figure 1b, the injection current (Ji) in the dielectric surpasses the electron
current (Je), resulting in the accumulation of space charge in the vicinity of the electrode.
The presence of space charge results in the SCLC Js, leading to the relationship Ji = Je + Js.
Because Js significantly outweighs Je, the SCLC represents the conduction current in the
dielectric. It should be noted that varying distributions of trap levels contribute to different
trap-limited SCLC scenarios. In general, as the electric field strength increases from low to
high, the Schottky current is encouraged due to the reduced and thinner injection barrier.
Simultaneously, a significant accumulation of injected charge within the dielectric aligns its
conduction characteristics with the SCLC model. With further electric field augmentation,
the number of charges may exceed that of the traps, possibly resulting in the complete filling
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of the traps by the charges. To summarize, when the electric field is below 100 kV/mm,
the conduction process typically involves electrode-limited and bulk-limited conduction.
However, as the electric field attains exceptionally high values, the nature of bulk-limited
conduction may undergo changes, while the status of electrode-limited conduction remains
uncertain.
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Figure 1. Space charge injection and formation of conduction current. (a) Electron injection by
Schottky emission, (b) space-charge-limited current in dielectric.

2. Experimental Section
2.1. Synthesis of Samples

To produce the PI samples, we initiated the synthesis of polyamic acid (PAA) by
reacting two monomers, namely, diamine (ODA) and pyromellitic dianhydride (PMDA), in
N, N-dimethylacetamide (DMAC) solvent. Subsequently, the PAA was converted into the
PI films through the solvent evaporation process. The thermal conductivity and mechanical
flexibility for PI samples can be tailored by employing various available monomers. In the
course of the reaction, variations in the proportions of ODA and PMDA can exert an impact
on the molecular weight of PAA [33,34]. To ensure the attainment of a high molecular
weight for PAA, it becomes imperative to eliminate any absorbed moisture from PMDA
at a temperature of 150 ◦C. The synthetic procedure commenced by placing ODA into a
beaker and subsequently mixing it with DMAC for a duration of 45 min. This mixture was
subjected to agitation through an electromechanical system. Subsequently, PMDA was
incrementally introduced in two stages (initially 80%, followed by the remaining 20%), and
the concoction was further stirred for a period spanning 6 to 8 h to produce the ultimate
PAA solution for PI film fabrication [3]. The preparation of the PAA/SiO2 nanocomposite
is elucidated in Figure 2. To establish a chemical bond between the organic PI and the
inorganic SiO2 nanoparticles, the surface of SiO2 was subjected to modification utilizing
the KH-560 coupling agent. After the modification process, the SiO2 (3% by weight)
nanoparticles underwent drying and were mixed with DMAC under the influence of
ultrasonic waves for a duration of 45 min. The size of SiO2 nanoparticles is 100 nm and the
SEM images of well-distributed SiO2 nanoparticles are shown in Figure 3b,c. Subsequently,
ODA was incorporated and mixed for an additional 40 min. Following this, PMDA was
introduced in two stages (initially 80%, followed by the remaining 20%) and mixed for a
period of 6–8 h, ultimately yielding a yellow-colored nanocomposite-based PAA solution.
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Figure 3. (a) Sample view and deposition of guard-ring electrode: (b) PI/SiO2 single layer; (c) PI/SiO2

multilayer.

2.2. Preparation of PI Films Using the Spin-Coating Method

The PAA solution was deposited onto substrates using the spin-coating technique [3].
Typically, this involves pouring the PAA solution onto a vacuum chuck substrate and
spinning it at high speeds, often reaching up to 5000 rpm. The precise control of the
spinning speed is crucial for achieving a uniform distribution of the PAA solution across
the entire surface. In some cases, a gradual increase in spinning speed through two to
three steps can be employed to ensure that the PAA solution covers more than 85% of the
substrate before reaching the final speed. For the fabrication of multilayer PI/SiO2 films, a
two-step spinning speed approach was utilized. Following calibration, the initial PI layer,
with a thickness of 50 µm, was achieved by spinning at 600 rpm for 30 s, followed by a
soft bake at 80 ◦C for 20 min. Subsequently, the second PI/nanocomposite layer, with a
thickness of 30 µm, was obtained via spinning at 1200 rpm for 20 s. The average thickness
for all samples varies between 80 and 100 µm.
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2.3. Measurements

The measuring setup, which includes electrodes and samples, was placed in a humid-
ity and temperature controllable chamber to measure the conduction current. The Copper
electrodes’ deposition, as shown in Figure 3a, was used for better contact between the
sample and the measuring electrode. An electric field of 55 kV/mm was injected with the
help of an electrode using a ripple-free voltage supply. The power supply operates at a
voltage rating of 35 kV HVDC (Fug HCP140-35000). The quasi-steady-state polarization
current, commonly referred to as the conduction current, was measured after the initial
transient phase of absorption, which occurred between 3000 and 5000 s. In our experi-
mental setup, we employed a PI film with a guard ring electrode deposition, illustrated in
Figure 4. After applying the electric field to the samples, a minor conduction current was
observed. Several factors contribute to this current conduction, as indicated by previous
studies [28,30]:

1. Alignment of dipoles within the material;
2. The movement of both positive and negative charges;
3. Movement of ions and charge collection on impurities;
4. Injection of charges and their accumulation within the sample’s bulk.
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3. Results and Discussion

Polyimide plays a significant role in providing insulation for electric motor windings.
However, it is susceptible to degradation due to thermal fluctuations and electrical stresses.
In practical electric motor operation, temperatures can reach up to 150 ◦C, increasing the
risk of premature breakdown, including the accumulation of space charges and other forms
of electrical conduction within the material. Hence, this study aims to investigate the
correlation between current density and electric field under varying temperatures, with the
goal of yielding valuable insights applicable to electric motor systems in electric vehicles.
The results are subjected to a comprehensive analysis aimed at identifying the prevailing
injection or conduction mechanisms across all samples. Two prominent mechanisms were
identified: Schottky injection and Poole–Frenkel barrier injection. Schottky injection occurs
due to the activation energy barrier that electrons encounter at the junction between the
electrodes and the dielectrics material, which results in a reduction of the energy barrier
at this interface. Conversely, Poole–Frenkel emissions are associated with conduction of
trapped electrons within the bulk of the insulating material. Such trapping electrons are able
to acquire sufficient activation energy to de-trap and contribute to the overall conduction
process. A further notable conduction phenomenon, capable of inducing nonlinearity (with
a slope ≥ 2) in current density vs. electric field (J-E) plots, is space-charge-limited current
(SCLC). The presence of traps within the material can exert an influence on the behavior
of space-charge-limited current (SCLC). Consequently, these theoretical models can be
effectively applied to interpret experimental findings and elucidate underlying conduction
mechanisms. In a previous study, the results were assessed by employing various depictions
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of J in relation to E [35–37]. When the data were presented on a log–log scale, it became
apparent that in most samples, an ohmic current behavior was observed, characterized by a
slope ≤ 1 in the low-field region denoted AB. However, upon reaching a threshold electric
field, typically falling within the range of 10 to 15.5 kV/mm, contingent on temperatures
condition, a notable nonlinear curve becomes evident in the graph, characterized by a
slope exceeding 1. This nonohmic conduction behavior [36] can be attributed to the SCLC
regime. In this regime, the relationship between current density and electric field follows
Equation (2) and is graphically represented in Figure 5.

J = (9/8)εrεoµ(V
2/d3) (2)

To ascertain SCLC conduction, it is imperative that the slope of the J vs. E2/d curve
equals 1. In Figure 5, when the slope is less than 1 within the AB region, it points to an
ohmic-dominant conduction mechanism, ruling out the possibility of SCLC being in effect.

A slope of 1 signifies trap-free SCLC, while a slope greater than 1 indicates SCLC with
traps present. An examination of Figure 5 reveals a slope equal to 1 for FPI and PI/SiO2
samples at a temperature of 160 ◦C (with PI/SiO2 showing a slightly better fit than FPI) [28].
This confirmation of SCLC in this specific region reinforces the conclusion that the SCLC
mechanism does not hold dominance in our samples under the examined conditions.
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Figure 5. The conduction mechanism of space-charge-limited current (SCLC) at varying temperatures.
(a) Plotting V–I behaviour on logarithmic-scale (log/log) J vs. E2/d graphs at a temperature of 55 ◦C.
(b) Plotting V–I behaviour on logarithmic-scale (log/log) J vs. E2/d graphs at a temperature of 110 ◦C.
(c) Plotting V–I behaviour on logarithmic-scale (log/log) J vs. E2/d graphs at a temperature of 160 ◦C.

In summary, it appears that the space-charge-limited current (SCLC) phenomenon is
only observable at 160 ◦C for FPI and PI/SiO2 samples. However, when examining the
second slope in the J–E curves for PI, FPI, PI/SiO2, and PI-PI/SiO2 films subjected to higher
E, it becomes evident that these slopes exhibit higher values, which could be indicative of
either trap-filled regions or alternative conduction mechanisms. Specifically, the second
slope for PI film at 55 ◦C and for PI and FPI films at high temperature (160 ◦C) surpasses a
value of 2, suggesting the involvement of alternative conduction mechanisms. Regions BC,
where the slopes exceed 2, defy explanation through the SCLC regime alone. It is plausible
that the chemical and physical composition of the samples, particularly with respect to the
glass transition, exert a significant influence on conduction in these regions. Consequently,
the dominant conduction mechanisms observed in this area likely involve factors beyond
SCLC. Additional conduction mechanisms, such as Schottky, Poole–Frenkel, and hopping
conductions, need to be included in order to comprehensively understand the observed
behaviors. The Poole–Frenkel effect, for instance, constitutes a bulk conduction mechanism
in which the barrier between localized states is diminished under the influence of a high
electric field, and this effect is characterized by Equation (3) [36].

σ = σoexp(
βPF
√

E
kT

) (3)

βPF= (q3/πεoεr)
0.5 (4)

In the context of this analysis, let us consider the following parameters: σ0 represents
the intrinsic conductivity of the material, and βPF is the Poole–Frenkel constant defined in
Equation (4), with k representing the Boltzmann constant and T denoting the absolute tem-
perature. When the Poole–Frenkel conduction mechanism takes precedence, it is expected
that the plot of ln (J/E) versus E1/2 will manifest as a linear relationship, with a slope closely
approximating βPF/(kT). The first step involves computing the βPF coefficients based on the
slope observed, followed by deriving estimates of dielectric constants using Equation (4). If
these estimated dielectric constants align with values found in the established literature,
it suggests that the samples conform to the associated conduction mechanism. We have
illustrated these representations in the ln (J/E) versus E1/2 coordinates in Figure 6. Upon
examination, these representations do not exhibit linearity for FPI, PI/SiO2, and PI-PI/SiO2
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films at 55 ◦C, and their calculated dielectric constants fall within the range of 6 to 15.
This range surpasses the measured values. Similarly, the slopes of these representations
are non-linear for PI, FPI, and PI/SiO2 films at 160 ◦C, with their calculated dielectric
constants falling within the range of 0.8 to 2.2, which is below the measured values, as
detailed in Table 1. Consequently, it appears that Poole–Frenkel conduction is not the
predominant mechanism for these films. However, notable exceptions include the linearity
observed for PI at 50 ◦C, FPI, PI/SiO2, and PI-PI/SiO2 films at 110 ◦C, where the values
closely approximate the calculated βPF/(kT) values. Furthermore, this linear behavior
extends to multilayer PI-PI/SiO2 nanocomposite films at 160 ◦C, where the calculated
dielectric constant closely aligns with the measured one. This alignment lends support to
the presence of Poole–Frenkel conduction in these particular films. In cases wherein the
Poole–Frenkel conduction mechanism is not observed in the films, it becomes imperative
to explore alternative conduction pathways. Consequently, we turn our attention to the
charge injection phenomenon, specifically Schottky injection, as a potential candidate for
explaining conduction in these films. In the context of Schottky injection, the applied
electric field serves to diminish the potential barriers, enabling electrons to surmount these
barriers through a process often described as “jumping” [28].
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Figure 6. Examining the Poole–Frenkel conduction mechanism across a range of temperatures.
(a) Plotting V–I behaviour on logarithmic-scale ln(σ) vs. E1/2 graphs at a temperature of 55 ◦C.
(b) Plotting V–I behaviour on logarithmic-scale ln(σ) vs. E1/2 graphs at a temperature of 110 ◦C.
(c) Plotting V–I behaviour on logarithmic-scale ln(σ) vs. E1/2 graphs at a temperature of 160 ◦C.

Table 1. Comparison of slope value and calculated βPF/kT value at various temperatures.

Samples εr
(Measured) Slope BPF/kT εr

(Calculated)
Temperature

(◦C)

PI 3.9 1 × 10−3 1.4 × 10−3 2.3

55
FPI 3.6 0.4 × 10−4 1.4 × 10−3 6.1

PI/SiO2 3.95 0.8 × 10−3 1.4 × 10−3 9.2

PI-PI/SiO2 3.98 0.6 × 10−3 1.4 × 10−3 15.1

PI 4 1.5 × 10−3 1.2 × 10−3 2.4

110
FPI 3.6 1.1 × 10−3 1.2 × 10−3 4.6

PI/SiO2 3.65 1 × 10−3 1.2 × 10−3 5.5

PI-PI/SiO2 3.63 1 × 10−3 1.2 × 10−3 5.5

PI 3.8 2 × 10−3 1.1 × 10−3 1

160
FPI 3.6 2.3 × 10−3 1.1 × 10−3 0.8

PI/SiO2 3.5 1.4 × 10−3 1.1 × 10−3 2.2

PI-PI/SiO2 3.58 1 × 10−3 1.1 × 10−3 4.3

The current density resulting from the Schottky effect can be quantified using Equation (5),
and its graphical representation can be found in Figure 7.

Js= AsT2exp(− f0−βs
√

Ec

kT
) (5)

βs =
√

q3/4πεoεr (6)
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Figure 7. Examining the Schottky injection mechanism across a range of temperatures. (a) Plotting
V–I behaviour on logarithmic-scale ln(J) vs. E1/2 graphs at a temperature of 55 ◦C. (b) Plotting V–I
behaviour on logarithmic-scale ln(J) vs. E1/2 graphs at a temperature of 110 ◦C. (c) Plotting V–I
behaviour on logarithmic-scale ln(J) vs. E1/2 graphs at a temperature of 160 ◦C.
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In this context, let us introduce the key parameters involved. As represents the
Richardson–Dushman constant, characterizing thermionic emission, while ϕ0 signifies the
potential barrier height at the metal–dielectric interface in the absence of any applied field.
Additionally, βS, defined in Equation (6), corresponds to the Schottky constant, and EC
pertains to the electric field at the cathode. Determining the precise electric field at the
cathode during measurements can be challenging due to distortion caused by space charge
effects. To address this, we propose the utilization of a parameter denoted as γ, as outlined
in Equation (7):

Ec= γ(
V
d
) (7)

When γ is less than 1, indicating a prevailing contact homocharge, and when γ is
greater than 1, indicating a prevailing contact heterocharge, the Schottky current expression
is modified by the field distortion correction, as depicted in Equation (8):

Js= AsT2exp(−
ϕ0−βs

√
γV

d

kT
) (8)

We determined the γ parameter by calculating it from the slope of the fitted curves, as
depicted in Figure 7, using Equation (9). With the knowledge of εr and the experimental
slope, γ can be computed, as summarized in Table 2. Moreover, extending this straight-line
analysis provides insight into the determination of ϕ0. Notably, higher γ values indicate
a pronounced influence of heterocharge near the cathode, which significantly augments
the local electric field and tends to diminish the energy barrier at the interface. Table 2
provides an overview of the experimental slope values, calculated βS/kT values, measured
and computed dielectric constants, as well as the derived γ values for reference.

γ =
(Slope×kT)24πε0εr

q3 (9)

Table 2. Computed γ values and a comparison between the measured slope and βs/kT values.

Samples εr (Measured) Slope Bs/kT γ εr (Calculated) Temperature (◦C)

PI 3.9 2.2 × 10−3 0.69 × 10−3 10.16 0.38

55
FPI 3.6 0.4 × 10−3 0.71 × 10−3 0.31 11.6

PI/SiO2 3.95 1.1 × 10−3 0.68 × 10−3 2.57 1.53

PI-PI/SiO2 3.98 0.9 × 10−3 0.68 × 10−3 1.73 2.29

PI 4 1.9 × 10−3 0.59 × 10−3 10.36 0.38

110
FPI 3.6 1.3 × 10−3 0.62 × 10−3 4.36 0.82

PI/SiO2 3.65 1.3 × 10−3 0.61 × 10−3 4.42 0.82

PI-PI/SiO2 3.63 1.3 × 10−3 0.62 × 10−3 4.40 0.82

PI 3.8 2.4 × 10−3 0.53 × 10−3 20.21 0.18

160
FPI 3.6 2.7 × 10−3 0.54 × 10−3 24.23 0.14

PI/SiO2 3.5 1.6 × 10−3 0.55 × 10−3 8.2 0.42

PI-PI/SiO2 3.58 1.2 × 10−3 0.53 × 10−3 4.76 0.75

When evaluating the dominance of Schottky emission in conduction, it is expected
that a plot of log (J) against E1/2 will exhibit a proportional relationship, forming a linear
curve in accordance with Equation (5). Initially, we calculate the βS coefficients based on
the slopes of the log (J) vs. E1/2 plots. Subsequently, we estimate dielectric constants from
these coefficients, employing Equation (6). The alignment of these calculated dielectric
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constants with measured values serves as an indicator of whether the samples adhere to the
Schottky conduction mechanism. Figure 7 reveals that only single and multilayer PI/SiO2
films at 55 ◦C exhibit linear ln(J) vs. E1/2 plots, with their slope values closely resembling
βS/kT values. Furthermore, the calculated dielectric constant values for these films closely
match the measured values. Consequently, it is plausible that Schottky conduction may
be a valid mechanism for these particular films. However, for other films, the ln(J) vs.
E1/2 plots deviate from linearity, and their calculated dielectric constants are notably lower
than the measured ones. In fact, the dielectric constant values derived from the slopes
in Figure 7 fall below 1, which is not a tenable scenario. In contrast, measurements in
Table 2 and the available literature consistently report dielectric constants ranging from 3.6
to 4.0 [36]. This stark disparity strongly suggests that the Schottky conduction mechanism
is likely not applicable to all the films, except for PI/SiO2 and PI-PI/SiO2 films at 55 ◦C,
which exhibit dielectric constants of 1.53 and 2.29, respectively. Hence, it becomes evident
that Schottky conduction can be ruled out, pointing toward the presence of alternative
conduction mechanisms, possibly involving hopping between trapping sites, in these films.

Ultimately, we can employ the concept of the hopping conduction model to elucidate
the conduction process in the films that do not conform to alternative models. In hopping
conduction in an electrical field, the barrier for ion transport is reduced by an electric field
as in Equation (10), i.e., in an electrical field the energy that the ions require to transport (the
energy barrier) is reduced by energy gained from the field in moving in the field direction.
Thus, the ions gain energy from both electrical and thermal sources. Equation (10) allows
us to express the current density, denoted J, through the framework of the ionic hopping
conduction model [35].

Jh= nαυ exp(− U
kT

) sin h(
eEα
2kT

) (10)

In this context, we introduce a set of vital parameters: e (electron charge), n (carrier
density), α (hopping distance), ν (attempt to escape frequency), U (activation energy), k
(Boltzmann constant), and T (absolute temperature). These parameters collectively govern
the hopping conduction model. The hopping distance (α) can also be approximated by
analyzing the slope of ln(J) vs. E plots, as presented in Figure 8. To align the hopping
conduction model with experimental data, we fine-tune constant parameters such as charge
carrier density (n), hopping distance (α), and attempt-to-escape frequency (ν), as depicted
in Figures 9–11. It is worth noting that these parameters are inherently material-specific,
with polyimide being our primary material. Their estimation can be accomplished through
experimental data and validated against existing literature [10,29]. Our findings indicate
that the hopping distances for all samples fall within the range of 2.6 nm to 5 nm. This range
exhibits slight variations due to factors such as temperature and material composition.
To address this, two approaches are viable: we can define a specific range and select
values based on temperature considerations, or alternatively, we can opt for a single value
that accommodates all temperature conditions. It is important to note that these minor
variations in value do not significantly impact the final calculation of current density. In our
analysis, we have chosen a value that is most suitable for all the materials studied within the
range of 2.6 to 5 nm, encompassing temperatures of 55 ◦C, 110 ◦C, and 160 ◦C. To ascertain
the presence of hopping conduction in the films, the model-fitted curves must align closely
with the experimental data. As observed in Figure 9, FPI and PI-PI/SiO2 films exhibit a
strong curve fitting at 55 ◦C. However, at 110 ◦C, as seen in Figure 10, no film demonstrates
a satisfactory curve fit, thereby excluding the possibility of hopping conduction. At 160 ◦C,
as depicted in Figure 11, PI and FPI films exhibit the best data matching across the entire
electric field range, confirming the occurrence of hopping conduction in these materials.
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Figure 8. Plotting the V–I behaviour of J vs. E graphs on a log/linear scale at (a) 55 ◦C; (b) 110 ◦C;
and (c) 160 ◦C.
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Table 3 below provides a comprehensive overview of potential conduction phenomena
observed across all the materials investigated at various temperatures and within the
considered electric field ranges. To describe the steady-state conduction current, it is
essential for at least one conduction mechanism from each class, encompassing both
charge injection and bulk conduction, to be present. However, some samples, such as FPI
and PI-PI/SiO2, appear to exhibit two different conduction mechanisms falling within
the same bulk conduction category, especially at the elevated temperature of 160 ◦C, as
depicted in Table 3. For instance, in the case of FPI films at 160 ◦C, both space-charge-
limited current (SCLC) and hopping conduction appear to coexist. SCLC is associated
with the mobility of both holes and electrons, while hopping conduction involves ions at
donor and acceptor sites within the bulk. These ions require either thermal or electrical
energy to participate in conduction by making room for neighboring electrons or holes,
depending on their respective trap energy levels. It is important to note that our estimation
of these conduction phenomena is based on the analysis of current density slopes over
specific electric field ranges, rather than at individual points. Therefore, it is challenging
to precisely pinpoint the exact electric field in which these conduction mechanisms occur.
Exploring conduction mechanisms in polymeric materials, particularly in the case of
composite materials, presents a complex challenge. This complexity becomes even more
pronounced in the context of this study. Our findings underscore that the dominant
conduction mechanisms are significantly influenced by both the electric field strength
and the measurement temperature, regardless of the specific material under examination.
However, within the scope of this study involving polyimide-based materials, it is evident
that two bulk conduction mechanisms, namely Poole–Frenkel and hopping, emerge as
primary contributors, particularly at elevated temperatures of 110 ◦C and 160 ◦C.

Table 3. Summarizing the potential conduction mechanisms observed in all the films.

Samples Possible Conduction Temperature (◦C)

PI Poole–Frenkel

55
FPI Hopping

PI/SiO2 Schottky

PI-PI/SiO2 Schottky, Hopping

PI Poole–Frenkel

110
FPI Poole–Frenkel

PI/SiO2 Poole–Frenkel

PI-PI/SiO2 Poole–Frenkel

PI Hopping

160
FPI SCLC, Hopping

PI/SiO2 Hopping

PI-PI/SiO2 Poole–Frenkel, Hopping

The Poole–Frenkel effect and hopping conduction are two different mechanisms that
describe the electrical behavior of insulating materials, including polymers. These mech-
anisms are often associated with the flow of charge carriers (usually electrons) through
insulating materials, and they occur under different conditions and have distinct char-
acteristics. Poole–Frenkel conduction is a mechanism that explains electrical conduction
in insulating materials due to the presence of localized traps or defect states within the
material’s bandgap. It occurs when charge carriers (usually electrons) are thermally excited
from the valence band into these localized traps or defect states, where they can then
move under the influence of an applied electric field. The Poole–Frenkel effect is highly
temperature-dependent. As temperature increases, more charge carriers are thermally
excited into the traps, resulting in an increase in conductivity. Hopping conduction is a
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mechanism that describes electrical conduction in insulating materials through a series of
random, localized hopping events between neighboring sites or states. In hopping con-
duction, charge carriers move from one localized state to another by tunneling or hopping.
This mechanism is usually more relevant at lower temperatures and in materials with a
wide distribution of energy states. Hopping conduction is strongly temperature-dependent,
and is often described by Mott’s variable-range hopping law. At low temperatures, the
conductivity decreases exponentially with decreasing temperature. The energy gap of
polyimides typically spans between 3 and 4 (eV) [37]. The chemical structure of polyimide
features both crystalline and amorphous regions. The amorphous structure extends the
electron into the band gap, giving rise to localized energy levels below the conduction band
for electrons and above the valence band for holes. Other chemical irregularities, such as
structural imperfections and molecules (e.g., additives or impurities), introduce additional
localized energy levels within the band gap. These energy levels, situated within the for-
bidden energy range, serve as capture sites for available charge carriers, thereby impeding
charge transport. While electrons cannot be thermally excited to bridge the significant band
gap, they can potentially surmount the potential barrier that separates local energy levels
below the conduction band, thus facilitating electron transfer in polymers. Hole transport
can similarly occur by surmounting the potential barrier between energy levels positioned
just above the valence band. The specific mechanism, whether it involves hopping or
tunneling, depends on the energy of excited electrons, the shape of the barrier’s height,
and the separation between these energy levels. Both mechanisms collectively contribute to
the bulk conduction behavior of polymers. In situations where a series of single-level trap
sites, each with an energy level denoted φ, are located within the band gap of polymers,
trapped electrons have the ability to leap over the potential barrier. The probability of
electron hopping per unit of time can be described using Equation (11). Where v is the
escape velocity in the range of of 1011 to 1014 per second; kB is the Boltzmann constant and
T is the temperature.

P = v exp(− φ

kT
) (11)

Electrons confined within localized states also possess the capability to transfer and
migrate into the conduction band of insulators. This occurrence can be attributed to an
internal Schottky effect (Equation (12)), where the potential barrier height due to the
Coulombic force generated by positively charged ionic centers is reduced by high electric
fields. Importantly, the Coulombic force in the Poole–Frenkel effect (Equation (13)) stems
from a stationary positive charge, whereas in the Schottky effect, it results from a movable
image charge. Consequently, the potential barrier reduction in the Poole–Frenkel effect is
twice as substantial as what is observed in the Schottky effect [38]:

∆φSch = βSchF1/2 =

(
q3F
4πε

)1/2

(12)

∆φPF = βPFF1/2 = 2βSchF1/2 (13)

where βSch is called the Schottky constant and βPF is the Poole–Frenkel constant. Con-
sequently, the conductivity due to the Poole–Frenkel effect in the bulk of insulators can
be expressed as Equation (14), in which the Poole–Frenkel conductivity is expressed as a
function of the Schottky beta function.

σ = σ0 exp

(
2βSchF1/2

kBT

)
(14)

4. Conclusions

In conclusion, this study has provided an encompassing overview of the conduction
phenomena exhibited by the various materials under investigation, spanning different
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temperature regimes and electric field intensities. In the steady state, there must be a
constant current density throughout the whole system; thus, the current density through
each electrode and through the bulk material must be equal. Therefore, all processes
must be operational. What is important is which process is the driver, and hence which
process contributes the field dependence to the observed current density. It is because the
various mechanisms have different temperature and field dependencies that the dominant
one at one set of T and E can be replaced by a different mechanism when T and E are
changed, which is what seems to be observed. To elucidate the steady-state conduction
current, it is evident that at least one conduction mechanism, pertaining either to charge
injection or bulk conduction, must be dominant. Notably, in the case of certain samples,
such as FPI and PI-PI/SiO2, there is intriguing evidence suggesting the coexistence of two
distinct conduction mechanisms within the same bulk conduction category, particularly at
elevated temperatures (160 ◦C). Additionally, various other conduction mechanisms appear
to be linked to ion donors and acceptor sites residing within the bulk material. These
entities necessitate thermal or electrical energy input to engage in conduction, thereby
facilitating the migration of adjacent electrons or holes, contingent on their respective
trap energy levels. It is essential to highlight that our assessment of these conduction
phenomena extends beyond mere point observations, as we evaluate the current density
slope across a defined range of electric field strengths. Consequently, it becomes apparent
that pinpointing the precise electric field in which these conduction mechanisms occur
poses a considerable challenge. This study underscores the intricate nature of elucidating
conduction mechanisms in polymeric materials, a challenge further compounded when
dealing with composite materials. Notably, the dominant conduction mechanisms observed
here are markedly sensitive to variations in both electric field intensity and measurement
temperature, irrespective of the material type under investigation. Nevertheless, within the
scope of this study focusing on polyimide-based materials, it is reasonable to conclude that,
at elevated temperatures, two distinct volume conduction mechanisms appear to exert a
predominant influence.
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