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Abstract: As a power converter of battery energy storage, the multi-level converter and its battery
balancing control have received much attention from scholars. This paper focuses on the modular
multi-level half-bridge energy storage converter (MMH-ESC), including its topology, working prin-
ciple, and pulse width modulation (PWM) methods. Under the battery balancing control strategy
based on level-shifted carrier PWM (LS-PWM), formulas are derived and calculations are performed
to get the charge or discharge of each submodule (SM), thereby obtaining the tolerance for capacity
differences among these batteries. A range of battery capacity values that can maintain a balanced
state is provided to enhance flexibility in battery configuration and utilization, avoiding the limitation
of all batteries to the same capacity. Finally, a new bridge arm modulation wave allocation method is
proposed. This method significantly expands the range of SM battery capacity selection and provides
a high-tolerance modulation method for the converter under extreme or even fault conditions.

Keywords: battery energy storage; multi-level converter; state of charge; balancing control

1. Introduction

In recent years, the development of clean energy has rapidly increased due to the
demand for reducing carbon emissions. A significant amount of new energy generation has
been integrated into the power grid [1]. Renewable energy sources are characterized by their
intermittency, leading to the issue of curtailment when there is excess electricity production.
Energy storage systems (ESS) [2,3] have the capability to store surplus renewable energy
and release electrical energy to the grid when the load demand is high. The introduction of
ESS enhances the flexibility and reliability of grid operation. Thus, ESS holds promising
prospects for further development.

Multi-level converters have attracted attention and research from many scholars
due to their characteristics of high output quality, strong fault tolerance, and excellent
scalability [4]. The research content covers topologies [5], modulation strategies [6], fault
diagnosis [7], fault-tolerant operation [8], loss optimization [9,10], etc. When a multi-level
converter is used as a power converter in ESS [11,12], the energy storage batteries can be
distributed among the sub-units of the converter. Through this subdivision, the batteries
exhibit enhanced fault tolerance [13]. Additionally, it becomes possible to monitor the
operational status of each battery sub-unit while controlling the output of the multi-level
converter, enabling precise control over a large number of batteries. Therefore, multi-level
converters are also applied to power converters in ESS [14,15].

It is difficult to achieve complete consistency across parameters such as the rated
voltage and capacity among individual battery submodules (SMs). Even if the multi-level
converter ensures a relatively balanced utilization of each battery SM [16,17], the state of
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charge (SOC) of the batteries still becomes imbalanced after prolonged operation. There-
fore, it is necessary to implement battery balancing control for multi-level converters [18].
In [19], SOC balancing among battery packs is achieved through a lossless operation of the
multi-level converter, distributing the dc-to-ac power flow among batteries based on their
respective SOC. Investigating the unbalanced operating principle of the studied topology,
reference [20] designs a control strategy to optimize component voltage stress by allocat-
ing unbalanced module power, accompanied by a novel fast-balancing charging strategy.
In [21], a new three-phase battery ESS with a single branch instead of three branches is
proposed, eliminating the need for SOC balancing among branches. Subsequently, a novel
SOC balancing strategy is introduced for the proposed topology of the three-phase ESS.

At present, in addition to the balancing strategies for specific topologies, the methods
to achieve battery balancing control are mainly based on droop control or improved pulse
width modulation (PWM) methods. The battery balancing method based on droop control
adds a component related to SOC deviation into the independent current control link
of each SM. When the battery SOCs are unbalanced, the output current of each battery
also has a corresponding difference, so that the multi-level converter gradually reaches a
balanced state during operation. In [22], the utilization of SOC information as the droop
variable is implemented. Each module’s SOC is integrated into its individual current
closed loop through inverse droop control, facilitating dynamic adjustments to the average
operating current for each SM. Reference [23] presents a gain-scheduling-based adaptive
SOC balancing method for the examined topology. The proportional controllers’ gains
are updated at every sampling interval, utilizing the mathematical relationship between
instantaneous SOCs and voltage reference. An advanced virtual battery drooped control
is constructed in [24] for ESSs in the primary layer of the system framework, enabling
adaptive load sharing and SOC balancing. Battery SOC balance is a crucial aspect of the
multi-level energy management discussed in this paper.

On the other hand, there are many ways to achieve equalization control through
improved PWM modulation methods. Reference [25] employs a battery balancing control
method based on level-shifted carrier pulse width modulation (LS-PWM), where carriers
are sorted according to the corresponding battery SOC. Experimental verification confirms
the effectiveness of the balancing effect. In [26], the underlying cause of SOC imbalance
in LS-PWM is analyzed, highlighting the drawbacks of voltage-matching-based SOC bal-
ancing methods. An SOC balancing method is then proposed from the perspective of
power-matching. Considering the properties of level-adjusted phase-shifted-carrier modu-
lation, which incorporates a minimal circulating current to guarantee accurate balancing
direction, reference [27] presents a straightforward voltage estimation approach using
back-propagation without the need for extra measurements. The algorithm also results in
reduced steady-state errors and fluctuations. Reference [28] introduces a power balance
modulation strategy that aims to equalize the switching loss of certain cells by adjusting the
triangular carriers. Furthermore, it controls the conducting angle of the other cell to achieve
a balanced power distribution among cascaded cells when operating at full modulation
indexes. [29] uncovers and addresses the disturbance and unbalance mechanisms affecting
capacitor voltages in an MMC system using phase-shifted carrier PWM (PS-PWM). A
novel method for capacitor voltage balancing is introduced, leveraging the distinctive
characteristics of the extracted disturbances in the asynchronous sampling mode.

Battery SOC balancing control based on droop control requires avoiding over-modulation
issues [23]. In contrast, the battery balancing method based on the LS-PWM only changes
the arrangement order of carriers, which has a minor impact on the output quality of the
converter [25,26]. The fundamental research of such SOC balancing methods has matured.
The balanced state of the battery is achieved through active control by taking advantage of
the characteristics of the LS-PWM battery charge–discharge imbalance. However, existing
research focuses on the realization of the balanced state of multi-level converters. When
batteries are distributed into SMs, they are often set to the same rated voltage and rated
capacity. This limitation of the unified parameters of the battery pack undoubtedly weakens
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the significance of subdividing the battery into multi-level converter SMs. Analyzing and
improving the tolerance of battery balancing strategies to battery differences can make full
use of the characteristics of multi-level converters and improve the flexibility of energy
storage batteries. This study is based on an existing energy storage multi-level converter
topology [30] to investigate the tolerance for battery capacity differences when batteries’
rated voltages are the same. Then a balancing control scheme with higher tolerance is
proposed, enabling the converter to operate under extreme conditions with large differences
in battery capacities.

2. Fundamental Principles of the Studied Multi-Level Converter
2.1. Topology of the Studied Multi-Level Converter

Figure 1 illustrates the topology of the modular multi-level half-bridge energy storage
converter (MMH-ESC). The converter is composed of two sets of bridge arms connected
in reverse series, with Lf being the filter inductance. Each SM contains a sub-battery pack
E1/2,j, filter capacitor C1/2,j, and a half-bridge used for controlling the output. Table 1
presents the operational states of SMs. The half-bridge SM can be in either the connected
state or the bypassed state with respect to the main circuit. Due to the different connection
configurations, the upper arm SM (UA-SM) can provide a positive DC voltage output, while
the lower arm SM (LA-SM) can provide a negative DC voltage output. By coordinating
the operation of UA-SMs and LA-SMs, a stepped AC voltage can be generated. Assuming
that the number of bridge arm SMs is N, each bridge arm can output up to N + 1 levels,
and the maximum number of output levels of the converter is 2N + 1. When N = 4, the
approximate sinusoidal voltage output is depicted in Figure 2.
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Figure 1. Topology of MMH-ESC. 

Table 1. Operational states of SMs in each bridge arm. 

S1 State S2 State UA-SM Output u1,i LA-SM Output u2,i SM Working State 

1 0 E1,i − E2,i Connected 

0 1 0 0 Bypassed 

Figure 1. Topology of MMH-ESC.

Table 1. Operational states of SMs in each bridge arm.

S1 State S2 State UA-SM Output u1,i LA-SM Output u2,i SM Working State

1 0 E1,i −E2,i Connected
0 1 0 0 Bypassed
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Figure 2. AC output voltage when N = 4.

2.2. Pulse Width Modulation Mode

The main PWM methods for multi-level converters include the nearest level modula-
tion (NLM), space vector PWM (SVPWM), LS-PWM, and PS-PWM. The NLM approximates
the target output voltage using a stepped output voltage. The switching frequency and
losses are low under NLM. However, it results in higher harmonic content for fewer SMs.
So, this method is usually used when the number of SMs is large. SVPWM has a high volt-
age utilization rate but is more complex to implement. Both LS-PWM and PS-PWM have
low output harmonics. The operating time of the switches under the LS-PWM is concen-
trated. The biggest advantage of the PS-PWM is the high equivalent switching frequency,
which means that the frequency of each switch can be lower. When there are fewer SMs,
LS-PWM and PS-PWM are commonly used modulation methods for multi-level converters.

Each carrier has a different level within LS-PWM. For the topology studied in this
paper, the commonly used LS-PWM is illustrated in Figure 3 when N = 4. The output AC
voltage is achieved by the coordination of the upper arm (UA) and lower arm (LA). The
mode where the UA outputs a positive half-wave and the LA outputs a negative half-wave
is called the sine half-wave cross level-shifted PWM (SHCLS-PWM), as shown in Figure 3a.
The mode where each bridge arm carries half of the AC current is called dual carrier cross
level-shifted PWM (DCCLS-PWM), as shown in Figure 3b. The amplitude of each carrier
is 1, where Ac is numerically equal to the SM number in one bridge arm, Mu and Ml are
the modulation waves for the UA and LA, respectively. Under the SHCLS-PWM, each
bridge arm works separately. When a UA-SM is in the on state, no LA-SM is connected to
the main circuit. So, there is no energy exchange between the two bridge arms. Under the
DCCLS-PWM, SMs in both bridge arms operate throughout the entire period. So, there
exists an energy exchange between the UA and LA. The energy flow changes when the
direction of the converter’s output current changes.
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Figure 3. Schematic diagram of the LS-PWM: (a) SHCLS-PWM; (b) DCCLS-PWM.
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Under the PS-PWM, each carrier has the same level but with a phase difference. For
the topology studied in this paper, the commonly used PS-PWM is illustrated in Figure 4.
The modulation waves for the two types of PS-PWM are the same as those shown in
Figure 3, but the carriers are replaced with triangular waves with an amplitude of Ac and
a phase difference of 2π/N between each carrier. The phase-shifted carriers can increase
the equivalent switching frequency of the converter, and the magnitude of the equivalent
switching frequency is affected by the value of the phase difference θ between carriers of
the UA and LA. After amplification and translation, the carrier and modulation waves of
the DCCPS-PWM can be transformed into bipolar modulation forms [21].
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Under the PS-PWM, the difference between the on and bypass times of each SM is
small, which results in the relatively balanced usage of batteries. However, under the
LS-PWM, due to the characteristics of the modulation wave as a unary function, the bottom
carrier corresponding to the SMs always has more opportunities to connect to the main
circuit. While the top carrier corresponding to the SMs has fewer chances to connect to the
main circuit. This means that the bottom SMs participate in more energy exchange. When
the entire bridge arm is in the charging or discharging state, it is evident that the charging
and discharging amounts of each SM are unbalanced. This imbalance is unfavorable for
the long-term operation of the converter. However, this characteristic can also be actively
utilized for battery balancing control. Therefore, LS-PWM is the main focus of this paper.

2.3. Battery Balancing Control

Due to the inevitable process and usage differences, the batteries within the SM exhibit
imbalanced charge states during operation. Without balancing control, an SM’s battery
may reach its charging or discharging limits over prolonged operation, necessitating its
disconnection from the main circuit, thus impacting the normal operation of the con-
verter. Therefore, implementing battery balancing control for multi-level converters is
highly necessary.

Bridge arm battery balancing control based on the LS-PWM often involves sorting
the batteries. Each carrier corresponds to an SM. The basis for sorting can be either the
terminal voltage or SOC of the batteries. The terminal voltage is easy to measure, while the
SOC provides a more accurate reflection of battery capacity utilization. In this study, the
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SOC is adopted as the sorting criterion. When the controlled bridge arm outputs energy,
the SMs with higher SOCs are given priority. Conversely, when absorbing energy from
external sources, SMs with lower SOCs are given priority, gradually achieving SOC balance
among all SMs during continuous operation.

Figure 5 presents the MATLAB/Simulink simulation results for the battery SOC
balancing control of the SMs within both arms using SHCLS-PWM. The simulation model
includes four SMs per arm. The rated voltage of each SM battery is 12 V, with a rated
capacity of 1500 mAh, and the converter outputs a sine current with an amplitude of 4 A.
The initial SOC of each SM battery is set to a different value. The SM batteries within the
same arm can quickly reach a SOC equilibrium state after active balancing control. Figure 6
shows the simulation results of battery SOC balancing control based on the DCCLS-PWM
under the same conditions. In this case, both arms have SMs working throughout the entire
time period, and the SMs with low battery SOCs have the opportunity to absorb energy
from the SMs with high battery SOCs in the other arm, thereby reducing the time required
to reach an equilibrium state.
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3. Analysis of Capacity Difference Tolerance
3.1. Calculation Method

Section 2.3 presents the simulation results of the equilibrium control when the SM
battery parameters are identical. The rated voltage of each battery in the SM should be the
same, in order to ensure the harmonic quality of the output voltage. However, the SOC
equilibrium control based on the LS-PWM utilizes the characteristic that the charge and
discharge of each battery are different and does not require a strict equality of the rated
parameters for each group of batteries. With the rated voltage of the battery being kept the
same, the SOC equilibrium strategy can allow for a certain degree of difference in battery
capacity. This means that the multi-level converter studied in this paper has flexibility in the
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selection of energy storage batteries. This chapter will calculate and analyze the permissible
degree of difference in battery capacity for the SOC equilibrium strategy involved.

When the output of the converter is sinusoidal AC, the initial modulation wave from
the converter’s closed-loop control is expressed as:

M0(t) = M sin ωt (1)

where M is the amplitude of the modulation wave, and ω is the angular frequency of the
output voltage.

The MMH-ESC consists of two bridge arms connected in reverse series, and the
modulation waves of the two bridge arms satisfy the following relationship:

Mu(t)−Ml(t) = M0(t) (2)

where Mu is the modulation wave of the UA, and Ml is the modulation wave of the LA.
The two LS-PWMs shown in Figure 3 represent two different arm modulation wave

distributions. The modulation waves of the UA and LA in the SHCLS-PWM corresponding
to Figure 3a are represented as follows:

Mu1(t) =

{
M sin ωt, 2kπ/ω ≤ t ≤ (2k + 1)π/ω

0, (2k + 1)π/ω < t < (2k + 2)π/ω
(3)

Ml1(t) =

{
0, 2kπ/ω ≤ t ≤ (2k + 1)π/ω

−M sin ωt, (2k + 1)π/ω < t < (2k + 2)π/ω
(4)

where Mu1 is the modulation wave of the UA under the SHCLS-PWM, Ml1 is the modula-
tion wave of the LA under the SHCLS-PWM, and k is an integer.

Similarly, the modulation waves of the UA and LA under the DCCLS-PWM corre-
sponding to Figure 3b are represented as follows:

Mu2(t) =
Ac

2
+

M
2

sin ωt (5)

Ml2(t) =
Ac

2
− M

2
sin ωt (6)

where Mu2 is the modulation wave of the UA under the DCCLS-PWM, Ml2 is the modula-
tion wave of the LA under the DCCLS-PWM, and Ac is the total amplitude of the carriers
in the same arm. The carrier amplitude is set to 1 in this paper, so Ac is numerically equal
to the SM number N.

The triangular carriers can be defined as:

Ci(t) =

{
2 fct + i− 1 , k/ fc ≤ t ≤ (2k + 1)/2 fc

−2 fct + i + 1 , (2k + 1)/2 fc < t < (k + 1)/ fc
(7)

where Ci is the expression of the i th carrier from the bottom up, and i = 1, 2, . . ., N, fc is the
carrier frequency.

The output current of the converter is defined as:

Id(t) = I sin(ωt + ϕ) (8)

where I is the amplitude of the output current, and ϕ is the phase difference between the
output current and the output voltage.
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The SM has two states, connected and bypassed, and its output current can be ex-
pressed as:

Iui(t) =

{
Id(t), Mu,1/2(t) ≥ Ci(t)
0, Mu,1/2(t) < Ci(t)

(9)

Ili(t) =

{
−Id(t), Ml,1/2(t) ≥ Ci(t)
0, Ml,1/2(t) < Ci(t)

(10)

where Iui is the output current of the i th UA-SM, and Ili is the output current of the i th
LA-SM.

The amount of battery SOC change in one cycle can be calculated using the ampere-
hour integration method:

∆SOCu/l,i =
1

36Qu/l,i

∫ 2π/ω

0
Iu/l,i(t)dt (11)

where Qu/l,i is the battery capacity of the i th SM in the UA or LA.
Figure 7 shows the output currents of UA-SMs using SHCLS-PWM for different phase

differences between Id and M0. Where N = 4, I = 4 A, ω = 100π rad/s, the modulation ratio
η = M/N = 1. Figure 8 shows the output current of UA-SMs using DCCLS-PWM under
the same conditions as those shown in Figure 7. The currents shown in Figures 7 and 8 are
generated by the modulation shown in Figure 3 and used in the calculation in Equation (11).
Because the load connected to a multi-level converter is often not purely resistive, there
exists a phase difference between the output current and the modulation wave. Inductive
load is the most common in real life, so this paper analyzes and studies them under
inductive load.
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The existence of phase differences causes each SM to have problems with output
current commutation in one cycle, as shown in Figures 7 and 8. SM 1# discharges the most
power when outputting forward current. At the same time, the amount of charge is also the
largest when the current is reversed. This affects the efficiency of the battery SOC balancing.
Therefore, it is necessary to distinguish the direction of the output current and use different
sort orders. The modified output currents are shown in Figures 9 and 10. SM 1# discharges
the most power while also charging the least.
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The calculation of SOC change can be adjusted to:

∆SOCu/l,i =
1

36Qu/l,i

 2π/ω/∆t

∑
k=1

Iu/l,i(k∆t)>0

Iu/l,i(k∆t)∆t +
2π/ω/∆t

∑
k=1

Iu/l,N−i+1(k∆t)<0

Iu/l,N−i+1(k∆t)∆t

 (12)

where ∆t is the time step of the calculation process.

3.2. Calculation Results

The tolerance of battery SOC balancing control under the LS-PWM for battery capacity
difference comes from the difference in current ampere-hour integration value:

Su/l,i =
2π/ω/∆t

∑
k=1

Iu/l,i(k∆t)>0

Iu/l,i(k∆t)∆t +
2π/ω/∆t

∑
k=1

Iu/l,N−i+1(k∆t)<0

Iu/l,N−i+1(k∆t)∆t (13)

where Su/l,i is the current ampere-hour integration value of the i th SM in the UA or LA.
Figures 11 and 12 show the normalized ampere-hour integral calculation. Where

N = 10, I = 4 A, ω = 100π rad/s, fc = 10 kHz, and ∆t = 5 × 10−6 s. Figure 11 shows the
calculation of the two modulation methods when the phase difference ϕ is fixed at 0.2 rad
and the modulation ratio η changes from 0.1 to 1. SMs are sorted by charge or discharge
amount. Based on the ampere-hour integral value of SM No. 1, the ampere-hour integration
ratio of all remaining SMs is calculated. Similarly, Figure 12 shows the calculation of the
two modulation methods when η is fixed at 1 and the phase difference ϕ changes from 0
rad to 0.9 rad. When the modulation ratio decreases or the phase difference increases, the
imbalance in the integration value between SMs increases. The magnitude of the phase
difference is determined by the load connected to the converter and generally cannot be
actively adjusted. Appropriately reducing the modulation ratio can increase the imbalance
of the ampere-hour integration value, which means that the tolerance of battery capacity
difference is improved, which helps to achieve equalization control. However, there is a
trade-off between the battery capacity difference tolerance and voltage utilization.
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The amount of battery SOC change in a single cycle of each SM can be calculated when
the ampere-hour integral value, the initial voltage, and the capacities of the SM are given.
The SOC curve can be obtained according to the SOC balancing control strategy, and then
the time taken to reach the balanced state can be recorded. At the same time, it can also
determine whether the SOC curves are convergent.

Figure 13 shows examples of three sets of SOC curve calculation results under the
SHCLS-PWM. The parameters are the same as those corresponding to Figure 5, expect for
Q1,1, the battery capacity of SM1 in the UA. When Q1,1 = 1800 mAh, although there is a
difference in battery capacity between the other three SMs, it can still reach a balanced
state at about 7.9 s, as shown in Figure 13a. This scenario is verified in simulation, and the
balancing time is about 7.8 s. The calculation error is 1.28%, which is within the allowable
range. The running time of the calculation program is much less than that of the simulation,
increasing the efficiency. When Q1,1 is 2500 mAh, the battery capacity of SM1 is too large,
resulting in too little SOC change and divergence of SOC curves of the UA. Similarly, when
Q1,1 is 700 mAh, the SM1′s battery capacity is too small, causing the SOC curve of the UA
to diverge. Therefore, the capacity of the batteries needs to be within a reasonable range to
ensure that the SOC balancing control based on the LS-PWM can be carried out.
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The battery capacities of SMs in one bridge arm are changed and the time taken to reach
the balance state is calculated to analyze the battery capacity difference tolerance of the
LS-PWM-based battery SOC balancing strategy. The values of the calculation parameters
are shown in Table 2. Where T is the upper limit of the balancing time, Q1,i is SM battery
capacity, and SOCi,0 is the initial value of battery SOC.

Table 2. Values of the calculation parameters.

Parameter Value Parameter Value

N 4 Q1,1 (mAh) 20~3000
M 4 Q1,2 (mAh) 20~3000

I (A) 4 Q1,3 (mAh) 20~3000
ω (rad/s) 100π Q1,4 (mAh) 1500

ϕ (rad) −0.2 SOC1,0 (%) 48.3310
fc (Hz) 10,000 SOC2,0 (%) 48.3207
∆t (s) 0.000005 SOC3,0 (%) 48.3103
T (s) 10 SOC4,0 (%) 48.3000

Figures 14–16 show the different calculation results under two modulation modes. In
the case corresponding to Figure 14, Q1,2 and Q1,3 remain constant at 1500 mAh, while Q1,1
increases from 20 mAh to 3000 mAh. In the case corresponding to Figure 15, Q1,3 remains
constant at 1500 mAh, while Q1,1 and Q1,2 increase from 20 mAh to 3000 mAh. The time
taken to reach the SOC balanced state is recorded. If, at the time limit T, the sum of the
absolute differences in battery SOCs still exceeds the set threshold, it is considered a failure
of battery balancing, and the balancing time is recorded as 0. In the case corresponding
to Figure 16, Q1,1, Q1,2, and Q1,3 increase from 20 mAh to 3000 mAh. It is challenging
to display the balancing time when all three battery capacities are changing in a three-



Energies 2023, 16, 7789 13 of 22

dimensional graph. Therefore, the data points that can achieve the equilibrium state within
the specified time limit are plotted instead.
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(b) under the DCCLS-PWM.
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From Figures 14 and 15, it can be observed that when the capacities of the batteries
are similar, the time required to achieve equilibrium is shorter. However, when a battery
has a significantly larger or smaller capacity than the other batteries, the balancing time
increases, and even cases of SOC divergence may occur. Figures 11 and 12 demonstrate the
degrees of imbalance in the SM currents under two modulation methods. Due to the greater
time that SMs are connected to the main circuit under the DCCLS-PWM than that under
the SHCLS-PWM, there is more reverse current, resulting in a higher level of imbalance
compared to the SHCLS-PWM. A higher degree of current imbalance indicates that this
modulation method allows for greater tolerance of battery capacity differences, which can
be visually observed in Figures 14–16.

4. Optimization of Capacity Difference Tolerance
4.1. Modified Modulation

As analyzed in the previous section, the battery SOC balancing control using the
DCCLS-PWM exhibits significantly higher tolerance for battery capacity differences com-
pared to the SHCLS-PWM. This is because one bridge arm operates only during half of
the cycle under the SHCLS-PWM, with the majority of that time having positive output
currents from the SMs. Although it performs worse in terms of balancing control, the single
direction of output current is more favorable for battery lifespan. At the same time, the
unused half cycle in the SHCLS-PWM provides room for improvement.

Supposing there is a capacity mismatch between one SM in the UA and the other
SMs in the converter, the originally zero half-wave of the modulation wave in the UA can
be raised. By constructing an energy exchange between the UA and LA, the degree of
imbalance in the UA’s output current can be increased, thereby enhancing the tolerance
for battery capacity differences. The optimized schematic diagram of the SHCLS-PWM
is shown in Figure 17. The originally zero half-wave is raised by one carrier height. To
ensure that the output voltage of the converter remains unchanged, as in Equation (2), the
modulation wave of the lower bridge arm also needs to be correspondingly raised.
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Figure 17. Schematic diagram of the modified SHCLS-PWM when L = 1 and L + M > N.

The modulation waves of the UA and LA in the modified SHCLS-PWM c are repre-
sented as follows:

Mu(t) =

{
M sin ωt, 2kπ/ω ≤ t ≤ (2k + 1)π/ω

L, (2k + 1)π/ω < t < (2k + 2)π/ω
(14)
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Ml(t) =

{
0, 2kπ/ω ≤ t ≤ (2k + 1)π/ω

L−M sin ωt , (2k + 1)π/ω < t < (2k + 2)π/ω
(15)

where L is the height at which the half-wave was lifted from 0.
The above equations are correct when the modulation waves do not exceed the sum of

the carrier amplitudes, that is, L + M ≤ N (the carrier amplitude is set to 1 in this paper).
When L + M > N, overmodulation occurs in the lower bridge arm. To ensure that the
output voltage remains unchanged, it is necessary to change the UA synchronously. The
modulation wave in this case can be represented as follows. Figure 17 precisely depicts the
modulation waves when L = 1 and L + M > N.

Mu(t) =



M sin ωt, 2kπ/ω ≤ t ≤ (2k + 1)π/ω

L, (2k + 1)π/ω < t <
[
(2k + 1)π + arcsin N−L

M

]
/ω

M sin ωt + N,
[
(2k + 1)π + arcsin N−L

M

]
/ω ≤ t ≤

[
(2k + 2)π − arcsin N−L

M

]
/ω

L,
[
(2k + 2)π − arcsin N−L

M

]
/ω < t < (2k + 2)π/ω

(16)

Ml(t) =



0, 2kπ/ω ≤ t ≤ (2k + 1)π/ω

L−M sin ωt , (2k + 1)π/ω < t <
[
(2k + 1)π + arcsin N−L

M

]
/ω

N ,
[
(2k + 1)π + arcsin N−L

M

]
/ω ≤ t ≤

[
(2k + 2)π − arcsin N−L

M

]
/ω

L−M sin ωt ,
[
(2k + 2)π − arcsin N−L

M

]
/ω < t < (2k + 2)π/ω

(17)

4.2. Optimized Results

An analysis of the tolerance for battery capacity differences in the modified SHCLS-
PWM is conducted in the same environment as described in Section 3.2. The parameters
used in the calculation are shown in Table 2. Figures 18–20 present the results of the equilib-
rium control when the battery capacities change for one, two, and three SMs, respectively.
Figure 18 compares the SOC balancing time between the improved SHCLS-PWM and
the two original modulation methods. It can be observed that the improved modulation
strategy exhibits a significantly greater capacity difference margin compared to the SHCLS-
PWM and DCCLS-PWM. Particularly, even when the battery capacity of one SM is much
lower than that of the other SMs, the modified modulation strategy still achieves SOC
balance in the bridge arm. It is attributed to the increased imbalance in the output current
of the SM due to the added half-cycle current. This implies that when a battery in one SM
of the converter becomes unusable unexpectedly, it can be temporarily replaced with a
small-capacity backup battery of an equivalent rated voltage, which improves the fault
tolerance capability and reduces the cost of backup components.
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As shown in Figure 18, the tolerance for capacity differences and the SOC balancing
speed are both better when L = 2 compared to L = 1. However, L = 2 means that two
SMs are connected to the main circuit during the half cycle where they should have been
bypassed. This disrupts the power balance between the UA and LA and is not suitable for
long-term operation in this mode. When comparing Figure 19 with Figures 15 and 20 with
Figure 16, it can be observed that the modified SHCLS-PWM has already shown significant
improvements in terms of the tolerance for capacity differences at L = 1. Therefore, there is
no need to choose a larger value for L to further sacrifice the power balance between the
two bridge arms.

4.3. Simulation and Verification

Section 2.3 shows the MATLAB/Simulink simulation results for the battery SOC
balancing control of the SMs within both arms using SHCLS-PWM and DCCLS-PWM. In
addition, as mentioned in Section 3.2, the balancing time calculation error of the corre-
sponding case in Figure 13a is 1.28%. This section will introduce the simulation verification
scheme, and further verify the proposed calculation method and modified modulation
method through the MATLAB/Simulink simulation. Figure 21 shows the framework of the
simulation verification. The MMH-ESC is connected to a controlled current source (CCS) to
control the converter output current. All parameters are set according to Table 2 for simu-
lation verification, including current amplitude and phase, modulation wave amplitude,
battery capacities, initial SOCs, etc.
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Eight cases with different values of battery capacity and different modulation methods
are conducted, and the SOC calculation result curves and SOC simulation result curves
of the corresponding cases are given in Figures 22–29. The time taken to reach the SOC
balanced state and the calculation errors are recorded in Table 3.
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• Case 7: Q1,1 = 2000 mAh, Q1,2 = Q1,3 = Q1,4 = 1500 mAh, under the SHCLS-PWM;
• Case 8: Q1,1 = 2000 mAh, Q1,2 = Q1,3 = Q1,4 = 1500 mAh, under the DCCLS-PWM.

Among the eight cases shown in Figures 22–29, the changing trends of all SOC curve
calculation results are the same as the simulation results. The calculation errors of the
balancing time are all within 5%. When the capacity of all batteries is not less than 1500
mAh, the calculation results are more accurate, with an error of less than 3%. When a
certain battery capacity value is small, its SOC and terminal voltage change amplitude is
large, affecting the calculation accuracy. Cases 5–8 compare the balancing control effects
of different modulation methods when the battery capacities are the same. The results
correspond to Figure 18. At this time, neither the SHCLS-PWM nor the DCCLS-PWM
can balance the SOCs within 10 s. The improved modulation method has been verified to
improve the tolerance of battery capacity differences.
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Table 3. Balancing time and calculation errors in eight cases.

Case Number
Balancing Time

Error/%
Calculation Results/s Simulation Results/s

1 1.92 1.87 2.67
2 2.78 2.69 3.35
3 4.74 4.53 4.64
4 1.56 1.55 0.65
5 3.96 3.90 1.54
6 2.96 2.94 0.68
7 / / /
8 / / /

5. Conclusions

This paper focuses on a multi-level converter topology and analyzes and compares
two pulse width modulation methods for their tolerance to capacity differences in SMs.
The calculations are performed, and the modified modulation method with the higher
tolerance is presented. The main results can be summarized as follows:

1. MMH-ESC consists of two groups of reverse-connected half-bridges. Under the
SHCLS-PWM, the bridge arms generate positive and negative half-wave AC voltages,
respectively. In contrast, under the DCCLS-PWM, the bridge arms share the AC
voltage to be output, resulting in each SM operating throughout the entire cycle. This
leads to greater variation in output currents among SMs under the DCCLS-PWM.

2. In the SM battery SOC balancing control strategy based on the LS-PWM, the carriers are
arranged according to the battery SOCs. By utilizing the imbalance in battery charge
and discharge under the LS-PWM, active SOC balancing control is performed. After
obtaining the measured load current values, the SOC change rate for the given battery
capacities can be calculated to determine if equilibrium can be achieved. If possible, the
time required to reach the balanced state can be predicted through calculations.

3. Studying and calculating the tolerance for capacity differences among batteries allows
for determining the range of battery capacity values that can maintain a balanced
state, without the need to restrict all batteries to the same capacity. This enhances
flexibility in battery configuration and utilization.

4. Finally, by combining the characteristics of the two existing modulation methods and
aiming to improve capacity tolerance, a new bridge arm modulation wave allocation
method is proposed. This method significantly expands the range of SM battery
capacity selection and provides a high-tolerance modulation method for the converter
under extreme or even fault conditions.
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