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Abstract: In recent years, with the rapid growth in the number of electric vehicles (EVs), the large-
scale grid connection of EVs has had a profound impact on the power grid. As a flexible energy
storage resource, EVs can participate in auxiliary services of the power grid via vehicle-to-grid (V2G)
technology. Due to the uncertainty of EVs accessing the grid, it is difficult to accurately control their
charging and charging behaviors at both the day-ahead and real-time stages. Aiming at this problem,
this paper proposes a two-stage scheduling strategy framework for EVs. In the presented framework,
according to historical driving data, a day-ahead scheduling model based on distributionally robust
optimization (DRO) is first established to determine the total power plan. In the real-time scheduling
stage, a real-time scheduling model based on model predictive control (MPC) is established to track
the day-ahead power plan. It can reduce the impact of EVs’ uncertainties. This strategy can ensure
the charging demand of users is under the control of the charging and discharging behaviors of
EVs, which can improve the accuracy of controlling EVs. The case study shows that the scheduling
strategy can achieve accurate and fast control of charging and discharging. At the same time, it can
effectively contribute to the security and stability of grid operations.

Keywords: electric vehicles; model predictive control; time-of-use tariff; two-stage scheduling;
distributionally robust optimization

1. Introduction

At present, with the rapid growth in the global economy, the demand for energy is
increasing swiftly [1]. Due to the advantages of energy savings and emission reduction,
electric vehicles (EVs) have been developing rapidly, making them the choice of more and
more people. The large-scale access of EVs to the grid will have various impacts on the
stable operation of the power grid. On the one hand, the disorderly charging of EVs will
bring many negative impacts to the operation of the power grid [2,3], such as an increase in
the peak load of the power grid [4,5], the influence of harmonics on the power quality [6,7],
and an increase in the difficulty of power grid control. On the other hand, large-scale
EVs can also be used as energy storage devices, which can play an important role in
many aspects, such as shaving peaks and filling valleys, providing auxiliary services [8,9],
accelerating the integrated construction of renewable energy [10,11], and more. Therefore,
EVs are potential and promising demand response resources [12].

There has been a lot of research on scheduling EVs. Day-ahead scheduling and real-
time scheduling are the two main ways to schedule the charging and discharging of EVs.
Day-ahead scheduling usually obtains relevant characteristic parameters in advance based
on historical data, day-ahead reports, and statistical data. The optimal scheduling of EVs is
essentially an optimization problem considering multiple uncertainties, mainly the arrival
time, departure time, and initial state of charge (SOC).
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In the existing research, the approaches to uncertainty problems can be broadly classi-
fied into stochastic optimization (SO), fuzzy optimization (FO), and robust optimization
(RO) [13]. Based on stochastic optimization or fuzzy optimization, reference [14] con-
structed an optimal bidding strategy model through a stochastic optimization method
considering the uncertainty of wind power and EVs. Reference [15] quantified the re-
sponse willingness of EVs using the Takagi–Sugeno–Kang (TSK) fuzzy model with charg-
ing/discharging spreads and the battery SOC as the influencing factors of EV response
willingness. A demand response strategy for EVs, considering the dynamic adjustment of
response willingness, is proposed. Stochastic optimization and fuzzy optimization need
to obtain the real probability distribution and membership function [16]. But the proba-
bility distribution and membership function are difficult to predict accurately or obtain.
Therefore, the application of stochastic optimization and fuzzy optimization has limited ef-
fectiveness. Robust optimization does not need a real probability distribution, and the data
acquisition is simple and accurate. Reference [17] proposed a robust optimization model
that takes price uncertainty into account, and it aims to develop various decision strategies
that can be used by electricity retailers. However, the results of the robust optimization are
too conservative. Distributionally robust optimization (DRO) combines the advantages and
disadvantages of stochastic optimization and robust optimization. It reduces conservatism
by considering the degree of influence of uncertain parameters on decision variables [18,19].
Reference [20] constructed a distributionally robust model for EV clustering by considering
user preferences and aiming at cost minimization.

Compared with day-ahead scheduling, real-time scheduling is accurate to hours and
minutes, enabling the precise scheduling of EVs. Moreover, due to the lack of sufficient
information, the control of EVs is more difficult in real time. Reference [21] proposed
a dynamic, non-cooperative game model considering the interests of all parties. Refer-
ence [22] established a real-time scheduling model that minimizes power fluctuations and
charging costs based on deep learning. Reference [23] established a convex optimization
model for EVs to stabilize photovoltaic outputs. It also realized the effective stabilization
of photovoltaic power in real time through rolling optimization and tracked the power
signal of the grid in real time. Reference [24] established a hysteresis model to control the
charging and discharging process of EVs and completed the tracking of the control target.

Usually, we can perform a global optimal scheduling of EVs after obtaining data (in-
cluding the arrival time, departure time, and initial SOC). However, due to the uncertainty
of EVs’ arrivals, the precise control of EVs in real time is a great challenge. Model predictive
control (MPC) can cope with the uncertainties and randomness in the model and has been
applied in the field of EV scheduling control. The core idea of MPC is to use a model to
predict the dynamic characteristics of the system for a certain period of time in the future
and then solve the optimal control strategy within the finite time horizon of the current
control cycle. Reference [25] applied an MPC strategy to control the dispatch of power in a
charging station. But it assumes that the chargers are charging at the rated power without
considering vehicle-to-grid (V2G). Reference [26] developed a method based on MPC to
solve the charging scheduling and power control problems of EVs. It aims at minimizing
the charging costs and energy generation costs while meeting the electricity demand of
residential and EVs. An online optimal charging problem was formulated in [27]. A dis-
tributed MPC-based scheme is designed to solve the optimization problem. The model
takes into account data privacy, individual economic interests, and EV uncertainties.

Based on the above considerations, this paper deals with the problem of EV charging
and discharging strategies within a region. Most of the current literature researches the
charging and discharging behaviors of electric vehicles at day-ahead scheduling and
real-time scheduling, respectively. However, there are few studies that consider the day-
ahead and real-time, two-stage scheduling process comprehensively at the same time.
Aggregators can aggregate EVs to participate in ancillary services, such as peak regulation.
The power deviation between the real-time and day-ahead stages of EVs needs to be kept
within certain limits; otherwise, the aggregator’s revenue will be affected. The strategy
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focuses on researching an EV scheduling problem under the control of an aggregator. The
main contributions of this work can be summarized as follows:

• A two-stage optimal scheduling framework for EVs is proposed. Moreover, a charging
and discharging power scheduling strategy, which includes day-ahead scheduling and
real-time scheduling, is introduced to solve the problem of inaccurate power control
in EVs.

• In the day-ahead scheduling stage, a distributionally robust optimization method is
adopted to deal with the uncertainty of EVs. And the day-ahead scheduling model is
established with the objective of minimizing charging and discharging costs. Therefore,
the day-ahead power curve can be obtained.

• In the real-time scheduling stage, considering the dynamic connectivity of EVs, a
real-time scheduling model based on MPC is established for tracking the day-ahead
scheduling curve.

The remainder of this paper is organized as follows. Section 2 describes the two-stage
control framework for EVs. Models of day-ahead scheduling and real-time scheduling are
proposed in Section 3. Section 4 discusses the case studies of the presented method, and
the paper concludes with Section 5.

2. The Control Framework for EVs

This section describes a framework for the two-stage scheduling control of EVs. In
this paper, the objects of the study are EVs under the control of an aggregator. It assumes
that all EVs are acceptable to V2G and that all chargers have V2G capability. In addition,
time-of-use tariff information can be obtained in advance. In Figure 1, the control process
consists of day-ahead scheduling and real-time scheduling.
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2.1. Day-Ahead Scheduling

In the day-ahead stage, the scheduling period is 24 h, and the time scale is 15 min. We
can forecast the charging demands based on collected information. The aggregator can
collect historical data reported by EV users, including arrival time, departure time, and the
initial SOC. After that, considering time-of-use tariff information, we can initiate charging
and discharging plans by minimizing the cost of charging and discharging. The obtained
day-ahead power curve is used as a target power in the real-time stage.
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2.2. Real-Time Scheduling

Although the charging load has been predicted in the day-ahead stage, the charging
parameters (arrival time, departure time, and the initial SOC) of EVs in the real-time stage
are still stochastic. If not controlled, the charging power may deviate significantly from the
power plan in the day-ahead stage, affecting the aggregator’s revenue from participating
in the market. And it will also cause fluctuations in the grid loads, which is not conducive
to the safe operation of the grid. Therefore, it is necessary to monitor the charging power in
real time.

The aggregator only knows the remaining charging demands and departure deadlines
of the EVs that have already arrived in real-time stage-. Moreover, the EVs are dynamically
connected to chargers. Therefore, online optimization calculations need to be performed
at each time slot. Based on the day-ahead scheduling plan, the MPC method is applied
to perform rolling optimal scheduling of EVs. Through continuous rolling optimization,
the impact of EV uncertainty on real-time optimal scheduling is effectively reduced. The
control time horizon of rolling optimization is set to 1 h. A single rolling optimization is
based on a 15 min scale for scheduling plans in the control time horizon. But only the
scheduling instructions for the first 15 min period are issued for execution. Then, the rolling
optimization rolls forward every 15 min and repeats the process.

3. Mathematical Modeling

In this section, different typical scenarios of EV charging and discharging are generated
based on the collected historical data. A day-ahead scheduling model based on DRO is
established to determine the day-ahead power plan of the aggregator. It can consider the
charging and discharging costs of EVs and the charging demands of users. In the real-time
stage, a real-time scheduling model based on MPC is established, which can track the
day-ahead power schedule and reduce the aggregator control error.

3.1. The Day-Ahead Scheduling Based on Distributionally Robust Optimization
3.1.1. Uncertainty Set

The uncertainty parameters in this paper are the arrival time, departure time, and
initial SOC of the EVs. The set of uncertain probabilities for EVs is usually difficult to
obtain. Through a probability-based reduction approach, this paper uses a data-driven
approach to characterize the possible values of uncertain information by obtaining K
discrete typical scenarios

(
ξ1, ξ2, · · · , ξK

)
in M samples of historical data. And then the

resulting probability distribution is used as the initial probability distribution. The discrete
values of each reduction scenario are still uncertain. In order to ensure the probability
of the scenario fluctuates within a reasonable range, a comprehensive norm constraint
centered on the above initial probability distribution is proposed. This constraint limits the
probability distribution of the uncertain scenarios and makes it closer to the real scenarios,
as shown in Equations (1) and (2).

‖pk − p0
k‖1 =

K

∑
k=1

∣∣∣pk − p0
k

∣∣∣ ≤ θ1 (1)

‖pk − p0
k‖∞ = max

1≤k≤K

∣∣∣pk − p0
k

∣∣∣ ≤ θ∞ (2)

where Equation (1) represents the constraint of the 1-norm. Equation (2) represents the
constraint of the ∞-norm. ‖·‖1 and ‖·‖∞ are the 1-norm and ∞-norm. p0

k is the initial
scenario’s probability distribution. θ1 and θ∞ are the allowable deviations of the probability
distribution under the ∞-norm and 1-norm constraints.

Therefore, the synthetic norm fuzzy set is shown as follows:

Ω =

{
pk

∣∣∣∣∣pk ≥ 0, k = 1, 2, . . . , K;
K

∑
k=1

pk = 1; ‖pk − p0
k‖1 ≤ θ1; ‖pk − p0

k‖2 ≤ θ∞

}
(3)
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In addition, according to [28], the probability distribution satisfies the confidence
constraints of Equations (4) and (5).

Pr
{
‖pk − p0

k‖1 ≤ θ1

}
≥ 1− 2Ke−

2Mθ1
K (4)

Pr
{
‖pk − p0

k‖∞ ≤ θ∞

}
≥ 1− 2Ke−2Mθ∞ (5)

The right-hand side of Equations (4) and (5) represents the confidence levels, α1 and
α∞, of the probability of uncertainty. If the confidence level is 95%, Equations (4) and (5)
guarantee that there is at least a 95% probability that a fuzzy distribution exists within a
given set.

θ1 =
K

2M
ln

2K
1− β1

(6)

θ∞ =
1

2M
ln

2K
1− β∞

(7)

The deviation values, θ1 and θ∞, indicate that the scenario’s probability can deviate
from the maximum value of the initial scenario’s probability. The larger the values of θ1
and θ∞, the more conservative the robust model is. Conversely, the smaller these values
are, the more adventurous it is. θ1 and θ∞ can be calculated from Equations (6) and (7).

3.1.2. Distributionally Robust Optimization Model for Electric Vehicle Scheduling

The optimization problem formulated for the day-ahead stage is based on the re-
quirements of EV owners and the forecasted energy prices. In this paper, considering the
economic benefits of charging and discharging for EV users, the day-ahead scheduling
model takes the charging and discharging power of EVs as the decision variables. And the
objective function is to minimize the cost of charging and discharging. Moreover, taking
into account the battery discharging loss cost in the V2G mode, a charging and discharging
plan model for EVs based on the time-of-use tariff is established. Let N denote the number
of EVs present during the system time and T denote the time slot number. The model can
be expressed as follows:

max
A∈Ω

min
X

{
K

∑
k=1

T

∑
t=1

N

∑
i=1

pk

(
(Pc

i,t,k · c
c
t + Pd

i,t,k · c
d
t ) + Pd

i,t,k · cd,i

)}
(8)

where pk is the probability distribution in scenario ξk. The first part of the objective
function is the charging and discharging costs of EVs. Pc

i,t,k and Pd
i,t,k are the charging

and discharging powers of the ith EV at time t, respectively. cc
t and cd

t are the charging
and discharging tariffs at time t, respectively. The second part of the objective function
is the loss of EVs due to V2G. cd,i is the battery degradation cost of the ith EV, which is
a constant number in this paper. A is the set of decision variables for the max model,
A = {pk}. Ω is the set of scenarios that have been reduced. X is the set of decision
variables for the min model, and X =

{
Pc

i,t,k , Pd
i,t,k

}
.

3.1.3. Power Constraints

Since EVs cannot be charged and discharged at the same time, this paper defines
binary variables, δc

i,t,k and δd
i,t,k, that represent the EVs to be charged/discharged or not.

Pc
i,max and Pd

i,max denote the maximum values of the charging and discharging power of
EVs, respectively. If δc

i,t,k = 1 and δd
i,t,k = 0, the EV is charging; if δd

i,t,k = 1 and δc
i,t,k = 0, the

EV is discharging; if δd
i,t,k = 0 and δc

i,t,k = 0, the EV is neither charging nor discharging. The
constraints for the charging and discharging power limitations are presented as follows:
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0 ≤ Pc
i,t,k ≤ Pc

i,max · δc
i,t,k (9)

−Pd
i,max · δd

i,t,k ≤ Pd
i,t,k ≤ 0 (10)

δc
i,t,k + δd

i,t,k ≤ 1 (11)

3.1.4. Constraints for SOC

EV charging and discharging also need to meet the user’s electricity demands. The
constraints for the SOC are given in (12)–(14).

SSOC
i,t,k = SSOC

i,t−1,k + (ηc · Pc
i,t,k +

Pd
i,t,k

ηd ) · ∆t
Ecap

i
, ∀t ∈ [tarr

i,k + 1, tdep
i,k ] (12)

SSOC
i,min ≤ SSOC

i,t,k ≤ SSOC
i,max, ∀t ∈ [tarr

i,k , tdep
i,k ] (13)

SSOC
i,t,k ≥ SSOC

i,exp,k, t = tdep
i,k (14)

where SSOC
i,t,k is the SOC of an EV in scenario ξk. ηc and ηd represent the efficiencies of

charging and discharging, respectively. tarr
i,k and tdep

i,k are arrival time and departure time of
an EV in scenario ξk. Ecap

i denotes the battery capacity. SSOC
i,exp,k is the expected SOC when

an EV departs in scenario ξk. Equation (13) limits the maximum and minimum constraints
on the SOC. Equation (14) guarantees the SOC when EVs depart.

3.1.5. Constraints for Transformer

In order to ensure a safe and stable grid operation, the charging load of EVs connected
to the transformer should be limited to its maximum capacity.

εdown
t · Ptrans

t ≤
N

∑
i=1

(Pc
i,t,k + Pd

i,t,k) ≤ ε
up
t · P

trans
t (15)

where εdown
t and ε

up
t are the load factors of the transformer. Ptrans

t is the capacity of
the transformer.

By solving the day-ahead model, the total scheduling power can be obtained at each
time slot. It can be expressed as follows:

Pre f
t =

K

∑
k=1

N

∑
i=1

pk(Pc
i,t,k + Pd

i,t,k) (16)

where Pre f
t is the total power of the charging loads during the day-ahead stage.

3.2. The Real-Time Scheduling Model Based on Model Predictive Control
3.2.1. Model Predictive Control

Model predictive control is an advanced control strategy that has been widely studied
and applied in recent years [29]. Model predictive control is based on the ideas of rolling
optimization and advance control. It can better solve optimization problems with multiple
uncertainties. In this paper, model predictive control is used to make rolling corrections to
the day-ahead scheduling plan.

The basic structure of model predictive control is shown in Figure 2. r(k) represents
the reference value. u(k) and y(k) are the control variable and the output variable. d(k)
is the perturbation value. Models are mainly used to describe the dynamic behaviors of
a control system. The future output of the system is predicted through information and
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specific control strategies. Based on the state of the system and its inputs, the output of the
system during the optimization time horizon is predicted. Therefore, the system model
used for prediction must be sufficiently accurate and appropriate.
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For the rolling optimization, the main responsibility is to provide the computation
of the control sequence. Unlike traditional optimal control algorithms, model predictive
control selects only the first instruction in the control sequence to be used for the actual
system control. The rolling optimization under model predictive control obtains a global
suboptimal solution in the case of open-loop control. Compared with global optimization
under optimal control, although it has certain limitations, it can effectively overcome the
effects of uncertainties in the power system.

In the actual scheduling process, information on EVs cannot be obtained in advance,
and the arrival of EVs needs to be monitored dynamically in real time and then optimized
for calculation. In addition, at the real-time scheduling stage, there is a lack of global
information on the access of EVs in the future period. The period of each optimization
schedule should not be too long or too short. Therefore, in order to track the instructions
issued by the scheduling center accurately, this section establishes a real-time scheduling
model for EVs based on model predictive control. This model continuously optimizes
the charging and discharging power through rolling optimization. The process of rolling
optimization is shown in Figure 3. The specific modeling process is given below.
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3.2.3. Constraints 
When users of EVs depart, the SOC of EVs needs to reach the expected value. How-

ever, rolling optimization optimizes the objective function over a limited time horizon in 
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( ) ( )+ Δ Δ ≥ Δ − < ΔdepSOC SOC SOC
i ,arr i i ,exp iS S T S T ,    t t T  (18)
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i ,expS T
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3.2.2. Objective Function

There are non-convex constraints in EV modeling such that EV charging and discharg-
ing behaviors cannot be carried out at the same time. Ref. [23] relaxes the non-convex
constraints by adding barrier terms, and the method has good performance in terms of
control. Inspired by this, a real-time scheduling model for EVs is established by adding
barrier terms to the objective function in this paper. Taking the charging and discharging
powers of EVs as decision variables, in the mode of responding to the power instructions,
the objective function can be expressed as in Equation (17): min f (t) = (Pre f

t −
N
∑

i=1
PEV

i,t )2 + r1

∣∣∣Pc∗
i,j

∣∣∣+ r2

∣∣∣Pd∗
i,j

∣∣∣
PEV

i,t = Pc∗
i,j + Pd∗

i,j

(17)

where r1 and r2 are the barrier terms. In this paper, r1 = r2 = 2.

3.2.3. Constraints

When users of EVs depart, the SOC of EVs needs to reach the expected value. However,
rolling optimization optimizes the objective function over a limited time horizon in the
future. If the SOC constraint is added at the end, the model may have no solution or
invalid constraint conditions, and it is difficult to effectively ensure that the SOC reaches
the expected value when EVs leave the grid. The actual departure time of the users may be
earlier, and in order to avoid the users’ travel being affected, constraints are added within
30 min of the expected departure time.

SSOC
i,arr + ∆SSOC

i (∆T) ≥ SSOC
i,exp(∆T), tdep

i − t < ∆T (18)

where ∆T indicates the distance between the current period and the expected departure
period, ∆T = 1, 2, · · · , 96. SSOC

i,exp(∆T) represents that the EVs need to meet the value of SOC
at ∆T period from the departure time. The rest of the constraints are the same as in the
day-ahead optimization.

It is assumed that the time horizon of rolling optimization is H. Taking the current
moment t as an example, the optimization time horizon is t ∈ [t, t + 1, . . . , t + H]. In
summary, the real-time scheduling model of EVs based on MPC can be expressed as (19):

min
H+h
∑

t=h
f (t)

s.t.

εdown
t · Ptrans

t ≤
N
∑

i=1
(Pc∗

i,t + Pd∗
i,t ) ≤ ε

up
t · Ptrans

t

PEV
i,t = Pc∗

i,t + Pd∗
i,t

0 ≤ Pc∗
i,t ≤ Pc

i,max, ∀t ∈ [h, h + H]

−Pd
i,max ≤ Pd∗

i,t ≤ 0, ∀t ∈ [h, h + H]

SSOC
i,t = SSOC

i,t−1 + (ηc · Pc
i,t +

Pd
i,t

ηd ) · ∆t
Ecap

i
, ∀t ∈ [h, h + H]

SSOC
i,min ≤ SSOC

i,t ≤ SSOC
i,max, ∀t ∈ [h, h + H]

SSOC
i,arr + ∆SSOC

i (M) ≥ SSOC
i,exp(M), tdep

i − t < M

(19)

The model can be iterated with EV data updated online in real time. The total power of
the EVs in the day-ahead stage is used as the tracking objective, and the objective function
is to minimize the error between the actual and planned values of charging and discharging
power. After solving the model, the control sequence, consisting of the charging and
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discharging power of all EVs in the control time horizon, can be obtained. Only the first
value of the control sequence is applied to the control system at the moment of issuing the
command, waiting for the next cycle to arrive. And then it will repeat the above rolling
optimization process.

The real-time scheduling solution of the model relies on the collection of information.
In fact, the length of the optimization time horizon can be set according to practical needs,
such as considering the forecast time and data update frequency. On the one hand, if the
optimization time horizon is too short, the solution to the problem will lack a sufficient
prediction of the future state and become shortsighted. And the obtained solution may be
very different from the theoretical optimal solution. On the other hand, if the optimization
time horizon is obtained too long, the complexity of the rolling optimization then rises
significantly, leading to an inefficient solution and increased prediction pressure. In order
to ensure that the real-time solution speed of the problem can meet the requirements of the
real-time optimization, the complexity of the problem should not be too high, so this paper
chooses H = 1h as the length of the optimization time horizon.

4. Case Study

In this section, a case is used to solve the two-stage strategy optimization model
proposed in this paper based on the driving data of EVs. The results of the solved model
are analyzed to verify the reasonableness and effectiveness of the model.

4.1. Simulation Parameter Settings

In this paper, the objects are 100 EVs under an aggregator. The scheduling period, T, is
24 h. Taking 15 min as the scheduling period, a day can be divided into 96 time steps. The
time horizon of rolling optimization is set to 1 h. The time-of-use tariff information is shown
in Figure 4. The data samples of the EVs are generated using a normal distribution or
random distribution based on the predicted values. The number of samples, M, is 100. The
probability distribution of the initial scenarios is obtained through a probabilistic distance-
based scenario reduction technique. The number of reduced scenarios, K, is 10. Figure 5
shows one of the typical scenarios, and the initial probability distribution is stochastic.

The other parameter settings of the EVs are shown in Table 1. The platform used for
the case is Python, and the solver is Gurobi.
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Table 1. Parameter settings of EVs.

Parameter Value

Maximum charging/discharging power (kW) 20
Initial SOC N

(
0.4, 0.032)

Expected departure SOC 0.9
Charging/discharging efficiency 0.9

Battery capacity (kWh) 60
Minimum value of SOC 0.2

β1/β∞ 0.95
cd (CNY/kWh) 0.15

εdown
t , ε

up
t 1

Ptrans
t (kW) 450

Arrival time N
(
8, 12)

Departure time N
(
18, 12)

4.2. Results of Day-Ahead Scheduling
4.2.1. Power Curve

Figures 6 and 7 show the results of the day-ahead scheduling. Most of the initial SOCs
of the 100 EVs are in the range of 0.3 to 0.6 and the ultimate goal of the EVs is to be fully
charged. Therefore, during the entire scheduling period in Figure 7, it can be seen that the
EVs are in the charging state most of the time, and discharging behaviors only exist for
short amounts of times. In Figure 6, the red color represents the charging power and blue
color represents discharging power. The overall charging load profile values are positive
due to the presence of multiple EVs charging and discharging. The total charging load
does not exceed the maximum capacity limit of the transformer. It is worth noting that the
charging and discharging behaviors of the EVs are guided by the charging and discharging
time-of-use tariffs. The charging and discharging time-of-use tariffs set in this paper are
only one case. The aggregator can set appropriate time-of-use tariffs to guide the charging
and discharging behaviors of EVs according to the control demand. Corresponding to the
time-of-use tariffs, it can be seen that the time the EVs are charging is concentrated in the
periods 6:00–10:00 and 15:00–19:00. And some EVs are discharging from 15:00 to 18:00.
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4.2.2. Comparative Analysis with Other Uncertainty Methods

In order to verify the effectiveness of the proposed method, the evaluation model based
on distributionally robust optimization (DRO) proposed in this paper is compared with
the EV charging and discharging scheduling model based on stochastic optimization (SO)
and robust optimization (RO). The historical data sample size M is 100. β1 = β∞ = 0.95. In
this case, the SO model schedules EVs in discrete scenarios with a deterministic probability
distribution. The robust optimization model is the worst-case scenario. The analysis results
are shown in Table 2 and Figure 8.



Energies 2023, 16, 7737 12 of 17

Table 2. Cost of three methods.

Method Cost (CNY)

RO 4493.48

DRO 4245.23

SO 4218.46
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Through analyzing the EV charging curves and cost results of the three methods, it
can be seen that the stochastic optimization method simulates the uncertainty of the EV
driving parameters in multiple scenarios. The charging and discharging costs are the lowest
for this method. The robust optimization method considers the worst-case scenario, and
the charging and discharging costs are the highest. In comparison, the distributionally
robust optimization method solves the day-ahead scheduling model under the worst-case
probability distribution of EV driving data. And the cost results are slightly higher than
the stochastic optimization results and lower than the robust optimization results. Overall,
the distributionally robust optimization method fully combines the economy of stochastic
optimization andthe robustness characteristics of robust optimization. It can be seen that
the distributionally robust optimization method proposed in this paper is able to strike a
good balance between economy and conservatism.

4.2.3. Impact of Confidence on Robustness

Under the distributionally robust optimization approach, the confidence level con-
strains the allowed deviation values through the 1-norm and ∞-norm, which in turn affects
the probability distribution of the scenarios. In order to analyze the impact of confidence
levels on robustness, different confidence levels are set to solve the charging plans of EVs
to compare the difference in charging costs. The selected historical data sample size M is
100. The ranges of β1 and β∞ are [0.3, 0.95] and [0.8, 0.95].

The charging and discharging costs of the EVs at different confidence levels are shown
in Table 3. With the increase in the confidence levels, β1 and β∞, the deviation value allowed
by the integrated norm constraint becomes larger. And the charging and discharging costs
of the EVs increase. This is because as the level of confidence increases, the confidence
interval increases. Therefore, the solution range of the worst-case scenario’s probability
expands, so the cost increases. Among them, the ∞-norm constraint corresponds to a more
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pronounced change in charging cost caused by the increase in confidence levels. When
β1 > 0.6 and β∞ = 0.8, the relationship between the 1-norm constraint confidence level
and the results of the charging cost is ambiguous. The average charging cost difference
is within 0.4 CNY. This indicates that the constraint has a weak effect on the scenario’s
probability distribution at this time. Overall, the robustness of the model can be adjusted
by controlling the confidence level to avoid the charging cost being too high when the
charging and discharging powers are formulated too conservatively.

Table 3. Charging and discharging costs of EVs at different confidence levels.

β1
β∞

0.8 0.95

0.3 4238.71 (CNY) 4242.11 (CNY)
0.6 4239.16 (CNY) 4243.87 (CNY)

0.95 4239.22 (CNY) 4245.23 (CNY)

The charging and discharging cost of EVs under different a typical number of scenarios
are shown in Table 4.

Table 4. Charging and discharging cost for different typical numbers of scenarios.

Number of Typical Scenarios Cost (CNY)

5 4156.73
10 4245.23
15 4620.58

The historical data sample size M is 100. β1 = β∞ = 0.95. Table 4 shows the charging
and discharging costs of the EVs for typical scenarios with numbers of 5, 10, and 15. When
the number of EV driving data samples is certain, the higher the number of typical scenarios
obtained by clustering, the more scenario sample information is retained. Therefore, typical
scenarios will contain certain extreme samples of information. At the same time, the
deviation value allowed by the integrated norm constraints increases, so the scenarios
obtained through model solving are more severe. In summary, the model conservatism
will rise, and the cost will increase.

4.3. Results of Real-Time Scheduling
4.3.1. Power of Real-Time Scheduling

In order to verify the validity of the real-time scheduling model, two methods are
proposed in this section:

(1) Method 1: Global optimization. Optimal solution with perfect information. The
information about EVs is all known in advance.

(2) Method 2: Disorderly charging. The EVs are charged at the maximum power of the
chargers immediately after being connected to the grid. The charging of EVs stops
when the expected SOC is reached.

(3) Method 3: The proposed real-time scheduling strategy.

Figures 9 and 10 show the charging and discharging powers of EVs in the real time
stage. If EVs are charged in method 2, the charging load will be concentrated in the
period from 6:00 to 12:00. The resulting charging peak load will lead to overloading
of the transformer, which will affect the safety of users’ electricity consumption. After
the aggregator has taken control of method 3, the optimized power in the real-time
stage effectively tracks the target power formulated in the day-ahead stage. The power
tracking effect is very good before 16:00. In the 16:00–20:00, the tracking effect seems
to not be good. This is because many EVs will depart and leave the grid during this
time period. In order to ensure the electricity demand of users, part of the tracking effect



Energies 2023, 16, 7737 14 of 17

is abandoned. According to the need for real-time control, the aggregator controls the
charging and discharging of the EVs. It can also be seen that the EVs are mostly in a
state of charging in Figure 10. The control strategy proposed in this paper can adapt
to the dynamic access of EVs and shows good performance in the real-time scheduling
stage. Method 1 is performing a global optimization. Method 1 differs from the plans in
the day-ahead stage due to the presence of a barrier term in the objective function. The
main difference between Method 1 and Method 3 is at 16:00–19:00. This is because the
rolling optimization used in Method 3 is a finite time horizon optimization. Therefore, it
is difficult to take into account the global optimum.
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4.3.2. SOC at Departure Time

Figure 11 shows the SOC of the 100 EVs when they depart. It can be seen that after
adding the SOC constraint method proposed in this paper for rolling optimization, the SOC
of the 100 EVs neatly reaches 1.0. The effectiveness of the method proposed in this paper is
verified. Therefore, incorporating the constraints of Equation (18) can ensure that the SOC
of EVs reaches the expected value in the rolling optimization process. In the meantime, it
can effectively satisfy the needs of the aggregator’s regulation.
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5. Conclusions

In this paper, a two-stage scheduling strategy, including day-ahead scheduling and
real-time scheduling, is proposed to address the control error problem caused by the
uncertainty of EVs at the aggregator level. Firstly, based on a series of EV driving data, a
day-ahead scheduling model is established through a distributionally robust optimization
method. The advantages of the proposed strategy are verified by comparing it with the
stochastic optimization method and the robust optimization method. The results show
that the distributionally robust optimization method proposed is able to strike a good
balance between economy and conservatism. Furthermore, in the real-time stage, a real-
time scheduling model for EVs based on model predictive control is established. The
charging and discharging power of the EVs is controlled in real-time stage using a rolling
optimization method. The results show that the strategy achieves accurate control of
EV charging and discharging behaviors in the real-time stage. Compared to disordered
charging, transformer overload control is also carried out to effectively ensure the safe
and stable operation of the power grid. The method proposed in this paper can accurately
control EVs while considering the user’s willingness and charging costs.
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