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Abstract: In this paper, the application and future vision of Artificial Intelligence (AI)-based tech-
niques in microgrids are presented from a cyber-security perspective of physical devices and commu-
nication networks. The vulnerabilities of microgrids are investigated under a variety of cyber-attacks
targeting sensor measurements, control signals, and information sharing. With the inclusion of
communication networks and smart metering devices, the attack surface has increased in microgrids,
making them vulnerable to various cyber-attacks. The negative impact of such attacks may render the
microgrids out-of-service, and the attacks may propagate throughout the network due to the absence
of efficient mitigation approaches. AI-based techniques are being employed to tackle such data-driven
cyber-attacks due to their exceptional pattern recognition and learning capabilities. AI-based methods
for cyber-attack detection and mitigation that address the cyber-attacks in microgrids are summa-
rized. A case study is presented showing the performance of AI-based cyber-attack mitigation in a
distributed cooperative control-based AC microgrid. Finally, future potential research directions are
provided that include the application of transfer learning and explainable AI techniques to increase
the trust of AI-based models in the microgrid domain.

Keywords: cyber-attacks; false data injection;microgrids; artificial intelligence; detection; mitigation;
neural networks; smart grids

1. Introduction

A microgrid is a group of interconnected loads and distributed energy resources (DERs)
that supply power to local customers and can operate in either islanded or grid-connected
mode. Microgrids are being leveraged to achieve economic operation, sustainable energy,
and resilient power provision objectives [1–4]. The microgrid’s controller orchestrates
multiple DERs and controllable loads to provide clean and reliable energy at economical
prices. As shown in Figure 1, a typical hierarchical control architecture consists of three
layers that operate at varying time scales to achieve the control objectives [5]. The secondary
control layer is vital to maintain voltage and frequency at nominal values in islanded
operating mode and, in contrast to centralized control, the distributed secondary control
offers flexible, reliable, and seamless integration of DERs [6–8].

Modern microgrids have transformed into cyber-physical systems where physical
assets such as DERs, loads, and power electronics devices make the physical layer and
the cyber layer constitutes a communication network and software-based controllers [9].
As a result of their reliance on the Internet of Things (IoT) and newly developed wide-
area sensor networks, microgrids are particularly vulnerable to cyber-attacks and network
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outages. Examples of real-world network failures include North America (2003), which
experienced a problem with the status estimator and alarm system, Austria (2013), which
experienced network congestion as a result of a software defect, and Switzerland (2005),
which experienced information overload. Due to a cyber-attack brought on by malware
known as BlackEnergy in control center computers, Ukraine’s power infrastructure failed
in December 2015, knocking out thousands of homes and facilities. A significant percentage
of consumers would lose power due to such malfunctions and cyber-attacks, and very
sensitive and mission-critical equipment may suffer serious harm [10–15].

Figure 1. The hierarchical control structure operates at three levels to meet the microgrid’s operator
objectives.

Table 1 summarizes the actual reported cyber-attacks on the energy industry [16–18].
After examining reported cyber-attacks on the energy sector, a typical cyber-attack chain
is found to be initiated by gaining initial access through spear phishing. After gaining an
initial foothold, adversaries perform a reconnaissance of the network data to spread out
and exfiltrate critical information. Once suspicious logins are established, the attackers
manipulate the control and safety systems by dispatching malicious commands and locking
out the operators from their machines [19]. The extensive communication network-based
cyber layer has resulted in an increased attack surface in microgrids, making them vulnera-
ble to cyber-attacks [20]. As shown in Figure 2, such cyber-attacks may target information
sharing among the microgrid’s controller and various intelligent electronic devices (IEDs)
by either manipulating the measurements or causing communication delays [21,22]. At-
tackers with malicious intent can disrupt the transfer of information, resulting in power
outages, financial loss, and system instability. With the development of smart grids and
the growing interconnection of communication networks, significant cyber-security risks
are affecting power grids [23,24]. With the inclusion of cutting-edge communication and
computing tools, the current electricity networks are evolving into smarter systems with
increased efficiency. However, because there are so many intelligent devices connected via
communication networks, it has led to significant concerns about cyber security. A modern
power system’s ability to operate reliably and securely is directly impacted by cyber-attacks
on such devices. Man-in-the-middle, distributed denial of service, jamming, and false data
injection are some of the main types of cyber-attacks that target smart grids [25–27].



Energies 2023, 16, 7644 3 of 23

Figure 2. A network of microgrids’ architecture with potential cyber-attack targets is shown. Micro-
grids connect with the main electrical utility at the point of common coupling (PCC). The converters
are controlled locally in the physical layers using the primary level control. The distributed secondary-
level control implements the control objective that is received from the tertiary-level controller. IED
sensor measurements and communications are susceptible to false data injection (FDI) attacks, while
denial of service (DoS) attacks could target the control signals being delivered to the actuators.

Table 1. A summary of major cyber-attacks against the energy industry is provided.

Location Target Type Impact

North America (2003)
Network failures in

control room
operating system

Denial of service Blackout across
multiple regions

Korea Hydro and
Nuclear Power (2014)

Unauthorized access
to critical information

Potential loss of
confidential

information and
designs

Compromised
security and safety of
plant and personnel

Ukraine (2015)
BackEnergy malware

in control room
computers

Denial of service,
False data injection

Blackout across
multiple substations

Kyiv (2016)
Industroyer malware
targeting industrial

control systems

Denial of service,
Issuing false control

commands

Power outage to at
least one-fifth of Kyiv

Middle East
petrochemical plant

(2017)

Safety system of
the plant

Potential denial of
services and life loss Plant shut down

IoT networks and devices are rapidly evolving, producing massive volumes of data
that require rigorous authentication and security. One of the most promising approaches
for addressing cybersecurity risks and providing security is artificial intelligence (AI). AI
technology appears to be a potential way to improve control, security, and performance
in smart grid networks [28,29]. AI-based algorithms are being used in microgrids for a
range of applications including intelligent control designs, forecasting, and cyber-attack
identification and mitigation [30–33]. Data-driven methods are being used to predict the
availability of renewable resources. The seasonal dependency of solar and wind along
with load demand is forecast using various ensemble learning methods. This information
helps in power system planning and unit commitment decisions [34,35]. Power system
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operations can experience interruptions due to power system faults and cyber-attacks.
Under such scenarios, the restoration time depends upon the nature and location of a
cyber-attack. Modern distributed power systems are equipped with communication layers
that accelerate the propagation of such attacks. The AI-based learning algorithms can
localize and identify the type of such attack. This helps to reduce the restoration time of
compromised systems [36–41]. The power grid resilience can be estimated by the frequency
and duration of power outage events. The availability of active and reactive power from
each generating unit can be adversely affected if control and communication infrastructure
are compromised. AI-based resilient control architectures can improve the reliability of
the power network. The learning capabilities of artificial neural networks can mitigate the
effects of cyber-attacks [42–46].

Microgrids need to be robust and dependable to deliver a continuous and uninter-
rupted power supply. Communication networks are necessary for microgrids to coordinate
and manage DERs. Microgrids can be efficiently managed by distributed cooperative
control strategies, which rely upon real-time monitoring, communication protocols, and
interoperability to enable the smooth integration of various microgrid components. Cy-
berattacks have the potential to compromise security and interrupt regular operations
of microgrid control systems. Adversaries might use communication network vulnera-
bilities to their advantage to intercept or modify the transfer of data. Comprehensive
safety precautions need to be taken to stop hostile interference, unauthorized access, and
manipulation of control signals. In an ever-evolving environment of cybersecurity threats,
regular upgrades, monitoring, and adherence to cybersecurity, best practices are crucial to
the optimal operation of microgrids [47–50].

The learning capability of AI-based techniques enables them to estimate the parameters
of complex systems, making them suitable for microgrid applications. Various types
of artificial neural networks (ANNs), such as the adaptive linear neuron, multi-layer
perceptron, feed-forward neural network, Elman neural network, radial basis function
network, general regression neural network, and deep neural networks, are in use to design
resilient control for microgrids to withstand cyber-attacks [51]. This work specifically
focuses on AI-based techniques for cyber-attack detection and mitigation in microgrids.
Some of the main contributions of this work are as follows:

1. We conducted a systematic search across several scholarly databases, including Google
Scholar, IEEE, MDPI, Elsevier, and Springer, using a combination of keywords and
focused search terms associated with our area of study. We focused on peer-reviewed
books, journals, conference proceedings, and industry white papers to cover a broad
spectrum of perspectives and findings, as shown in Figure 3.

2. The existing techniques are divided into two main categories, i.e., cyber attack de-
tection and mitigation. The system under study, attack type, data acquisition, and
training method of AI-based techniques are summarized in tables for each category.

3. A case study is presented on the use case of AI-based technique in the microgrid.

The rest of the paper is organized into 8 sections. The attack surface in modern
power systems is expanding with the inclusion of communication networks and intelligent
control design. Adversaries can take advantage of various vulnerabilities in microgrids to
initiate malicious cyber-attacks. Therefore, Section 2 covers various types of cyber-attacks
targeting microgrids. There are several advantages of using intelligent cyber-attack defense
strategies, such as early detection of cyber-attacks before they can cause significant damage
or disruption to the system, less manual intervention, and enhanced understanding of the
system to identify areas for improvement. Hence, cyber-attack detection using AI-based
techniques in microgrids is described in Section 3, and Section 4 contains cyber-attack
mitigation using AI-based techniques. Learning-based AI techniques are discussed in
Section 5. In Section 6, a case study of a test microgrid is presented. The proposed control
technique utilizes an advanced AI-based tool tailored to mitigate the data-driven cyber
anomalies targeting the communication network of the microgrid. Also, it is scalable and
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depicts improved performance under complex real-time test scenarios. In Section 7, some
challenges and future directions are discussed and, finally, Section 8, concludes this work.

Figure 3. The flow chart depicts the process of selecting articles for this research.

2. Types of Cyber-Attacks in Microgrids

The integrated architecture and related communication networks of microgrids are
particularly susceptible to cyber-attacks. The incorporation of intelligent electronic and
information-sharing devices and the lack of thorough security standards might leave them
vulnerable to malicious cyber-attacks to take advantage of flaws in the system. The potential
for smart grid technologies with scalable solutions directly affects the volume of data flow
in terms of increased communication and computational needs.

Microgids’ interoperability requires the use of numerous information exchange proto-
cols and communication architectures, which could leave the system prone to cyber-attacks
due to insufficient information [52]. Figure 4 depicts several cyber-attacks targeting the
cyber and physical layer in a microgrid, and an overview of these types of cyber-attacks
targeting microgrids is covered below.

Figure 4. The potential targets of cyber-attacks include the communication networks in the cyber
layer and the intelligent devices in the physical layer of the microgrids.

If this issue is not effectively resolved, the system may become more susceptible to
cyber-attacks [53].
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2.1. False Data Injection Cyber-Attack

False data injection (FDI) is a data-driven attack, in which the attacker may tamper with
sensors and phasor measurement units, and compromise the critical information by either
injecting false information into the communication network or completely replacing the
actual values. This could result in compromised state loss of synchronism and compromised
state estimation, which would adversely impact economic dispatch and power supply to
critical loads [54,55]. The integrity of the state estimator can be jeopardized by an attacker
compromising a subset of meters and sending revised measurements without entirely
altering the result. FDI attacks can be carried out even when the attacker is unfamiliar
with the power system configuration by obtaining online data, market data, and power
flow measurements [56]. Under FDI attack, the feedback signal of a distributed smart grid
controller can be described as:

U(xn(t)) = xn(t) + φn(t), (1)

where U(xn(t)) is the feedback signal after false data φn(t) is injected into the nth normal
feedback signal of the controller xn(t). Various types of FDI cyber-attacks, such as periodic,
non-periodic, and simultaneous cyber-attacks, can be modeled by updating φn(t) [57].
These FDI attacks also have the potential to undermine or even destroy the distributed
control systems that govern modern microgrids. FDI attacks typically change the output
of AC microgrids, causing equipment damage, by spoofing communications routes and
altering signal levels through a distributed communication network. To prevent the FDI
attack from being noticed, the malicious data injection range is chosen inside the range of
the nominal working condition of the system. By introducing a variety of false information
into the communication network, various FDI attacks can be executed against distributed
controller feedback signals [58].

2.2. Denial-of-Service Cyber-Attack

The Denial-of-service (DoS) is a type of cyber-attack that aims to restrict access of an
authorized user to a network. Microgrids are becoming a prime target of such DoS cyber-
attacks due to their dependency on information sharing to meet control objectives [59].
Such attacks are accomplished by jamming communication lines with inaccurate data
and disrupting normal data access between control centers and peripheral devices like
sensors and actuators. To carry out these kinds of attacks, one is not required to be familiar
with the microgrids’ settings or have the necessary skills to alter control messages and
measurements. During the DoS cyber-attack on the Ukrainian power grid, operators
were unable to communicate control signals to the actuators [10]. Wide area networks
can be vulnerable to DoS cyber-attacks if malware is placed in substation routers, giving
attackers access to phasor measurement unit (PMU) communications. The reliability of the
microgrid is compromised if an attack is successful, since all communication channels must
be available for the timely dispatch of control signals. Advanced metering infrastructures
may face a cyber threat if an attacker contacts a compromised device after malware has
been deployed. By managing a large number of agents, it is possible to deceive the system
user into receiving an excessive amount of communication packets. Some of the permitted
packets will be lost by the authorized user due to the volume of traffic [53]. In a distributed
control-based microgrid with n DERs, the DoS cyber-attack can be modeled as:

[χi]n×1 = αi(τ)[γi]n×1 + αj(τ)[γj]n×1, (2)

where χi represents one of the compromised target nodes and γij are the neighboring
nodes of the compromised node. αij(τ) are gain factors, (t1 < τ < t2) is the time interval
for the occurrence of a malicious cyber-attack, and ij ∈ R represents one of the DERs in
the microgrid. A gain factor of value (1) means the communication link is compromised
and not available, and a gain factor of value (0) means the communication channel is not
compromised [57]. The use of data filtering techniques, intrusion detection and prevention
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systems, and cryptographic authentications can significantly reduce DoS in smart grids by
detecting it promptly [60].

2.3. Man-in-the-Middle Cyber-Attack

Man-in-the-Middle (MiTM) cyber-attacks may target the information that devices in
the microgrid need to share with one another, including control signals, sensor data, and
dispatch commands. Such attacks may also target vital power system components in an
effort to intercept and gather information on the communications of control center staff,
which may be used to launch more attacks [61]. The attacker can assume the identity of
a genuine user, intercept and modify message packets sent between two communication
nodes, and insert new message packets, all while remaining undetected. The attacker
may establish an illegitimate communication channel between two active nodes and start
sending malicious data to modify the communication between the sending and receiving
end [62]. To ensure the resilience of the microgrids with an increased attack surface, intelli-
gent technologies must be developed. A great number of bidirectional power electronic
converters are essential to the two-way power flow controllability and transactive energy
capabilities of modern microgrids. These converters must be adaptable, quick, and durable
to support the grid under both normal and compromised operating conditions. The risk
of cyber-attacks can be considerably decreased by implementing improved cyber-attack
detection and mitigation techniques for microgrids [63].

3. AI-Based Cyber-Attack Detection

The presence of communication networks and smart metering devices in microgrids
is generating a large data set. These data sets are enabling increased situational awareness
of the microgrids and making them vulnerable to cyber-attacks. Therefore, AI-based tech-
niques are being utilized to detect such data-driven attacks due to their exceptional learning
and generalization capabilities [64]. A linear regression-based cyber-attack detection for a
distributed control-based islanded DC microgrid is used to detect FDI against voltage and
current measurements to maintain a stable control operation [36]. Through their sensors
and communication interactions, DC microgrids are vulnerable to cyber-attacks. False
data injection into the cyber layer can interfere with control goals, resulting in voltage
instability and unbalanced load-sharing patterns. Detection of such attacks is integral
to the stable operation of DC microgrids. Therefore, in [37–39], a deep learning-based
detection technique is proposed that takes into account the input features, such as the DC
bus voltage and the reference voltage, to forecast the duty cycle of the converter. Apart from
FDI, Man-in-the-Middle (MiTM), and denial of service (DoS) type cyber-attacks may also
target the communication networks due to the interconnected architecture of smart grids.
Therefore, deep learning, Naive Bayes, and Random Forest-based detection techniques are
proposed in [40,41]. These techniques are trained using supervised learning with real-world
operational and network traffic data sets, and showed a higher accuracy rate of above 95%
to prevent loss of communication and secure the network and metering data obtained from
intelligent electronic devices.

By combining predictions from different models, the machine learning technique
known as ensemble learning increases prediction accuracy and robustness. The use of
the collective intelligence of the ensemble aims to remove any biases or errors that may
occur in individual models [65–67]. Therefore, an ensemble learning-based approach using
Decision Trees to detect cyber-attacks on bulk electric power transmission networks target-
ing bid price and quantity signals is proposed in [68]. This method showed an improved
accuracy of 99% to secure the system from attackers to manipulate the system’s reliability
and make illegitimate profits by compromising electricity pricing contracts. The manip-
ulation of measurements obtained from substations may lead to incorrect power system
state estimations in large connected power networks. An ensemble learning-based tech-
nique is developed to detect such attacks that give higher accuracy compared to multiple
state-of-the-art machine learning-based algorithms in [69]. The data obtained from phasor
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measurement units in wide area power networks is also a target for data spoofing attacks
that may lead to incorrect power system state estimation by compromising the measure-
ment source authentication. Therefore, an ensemble empirical mode decomposition using
a back propagation neural network is proposed in [70]. This proposed method is trained
using supervised learning with real data from universal grid analyzers from multiple
locations and showed improved performance compared to the long short-term memory
(LSTM)-based model. Various types of artificial neural networks are being extensively
employed for intelligent cyber-attack detection in microgrids. An auto-encoder neural
network and a deep learning auto-encoder neural network are used for FDI against load
frequency control and voltage sensor measurements in an islanded AC and DC microgrid,
respectively [71,72]. Since the auto-encoder neural network can manage undesired in-
put, such as communication channel disruptions, it is often advantageous for microgrid
applications. Also, unsupervised learning is utilized in these auto-encoder-based cyber-
attack detection techniques to secure communication networks [73]. Recurrent neural
networks (RNN) such as LSTM, convolutional neural networks (CNN), and nonlinear
auto-regressive exogenous model (NARX) neural networks have shown promising results
for cyber-attack detection in microgrids [74–79]. RNNs are a subclass of neural networks
that are particularly adept at forecasting time-related data sequences. RNNs permit cyclical
connections that can map to each output from prior inputs, in contrast to feed-forward
neural networks. The case studies demonstrate that deep RNNs outperform traditional and
shallow RNNs and gain from the depth of hidden layers in islanded and grid-connected
AC microgrids for FDI and DoS type cyber-attack detection on the communication network
and phasor measurements [74,75]. A gated recurrent unit-based neural network and a
NARX neural network-based detection techniques against cyber-attacks on current and
voltage measurements in an islanded SC microgrid are proposed in [76,80], respectively.

Apart from Deep and recurrent ANNs, classical machine learning methods are widely
being used for classification and cyber-attack detection in microgrids such as Logis-
tic regression (LR), k-nearest neighbors (kNN), Gradient boosting (GBT), Random For-
est(RF), multi-layer perceptron (MLP), Naive Bayes (NB), and Support vector machines
(SVM) [57,81–86]. Tables 2 and 3 summarize the various AI-based cyber-attack detection
techniques including the information about data acquisition, training, and performance
benchmarking of the proposed methods.

Table 2. Summary of AI-based techniques for cyber-attack detection in microgrids is provided.

System Attack Algorithm Data Performance Metric

Islanded AC

FDI (control signals,
communication

networks)

Wavelet transform with
deep learning using
deep auto-encoder

MATLAB simulations,
Unsupervised Accuracy, >97% [73]

FDI into load frequency
control

Auto-encoder neural
network

Using datasets on
TensorFlow and Keras
software framework,

Unsupervised

Not given, [71]

DoS and FDI into
control and

measurement signals

Feed-forward ANN,
NB, SVM

MATLAB/real-time
simulation, Supervised

MAPE 1 0.6% (FDI),
0.1% (DoS), [57]

DoS, FDI, and time
delay on

communication and
measurements

LSTM, CNN Simulation-based data,
Supervised

Accuracy nearly
100%, [74]
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Table 2. Cont.

System Attack Algorithm Data Performance Metric

Islanded DC

FDI into voltage and
current measurements Linear regression Simulation-based,

Supervised Not given, [36]

FDI into output voltage
sensor of DC converter Deep learning

Simulation-based,
Supervised using back

propagation
Not given, [37]

FDI into DC bus
voltage sensor Deep learning Matlab simulation,

Supervised Not given, [38]

FDI into voltage sensor
Deep learning

auto-encoder with grey
wolf optimization

Simulation-based,
Unsupervised Precision 95%, [72]

RL 3-based intelligent
FDI into measurements

and control signals

Pattern recognition
network, type of

feed-forward ANN

Simulation-based,
Supervised Accuracy 98.5%, [81]

FDI into measurements
and communications NARX ANN

MATLAB/real-time
simulations,
Supervised

MAPE 1 0.064%
(voltages), 0.36%
(currents), [76]

FDI into sensor,
communication

network, and
measurements

Gated recurrent unit
neural network

MATLAB simulation,
Supervised RMSE 2 0.028036, [80]

Networked

FDI,MiTM, and DoS on
network

communication
Deep learning

Real data (from smart
grid, substation, power

plant), Supervised
Accuracy 96.50%, [39]

FDI into measurements NB, RF, Regression Simulation-based,
Supervised

F-score (0.08,095,0.81)
for (NB, RF, Regression,

respectively), [40]
FDI on substation

measurements and
sensors

Ensemble learning
technique, minimum

voting for critical class

Simulation-based,
Supervised Accuracy 98.8%, [69]

FDI into wide area
communication
networks and
measurements

Deep recurrent ANN Simulation-based,
Supervised MSE 4 2.15 × 10−3, [75]

FDI and DoS sensor
measurements and PV

control operation
modes

LR, kNN, GBT, RF,
MLP

(Real smart home
electricity consumption
data, real solar power,

and MATPOWER
simulations),

Supervised-based data.

Accuracy 95%, [82]

FDI and time delay on
PV control center

Auto-regressive (AR),
data driven approach

Simulation-based,
Supervised Not given, [83]

FDI into substation
measurements, sensors,
and control commands

domain-adversarial
training based on
neural networks

(DANN)

Datasets obtained from
experimental hardware

testbed, Transfer
learning

Accuracy 80%, [87]

1 Mean Absolute Percentage Error, 2 Root Mean Square Error, 3 Reinforcement Learning, 4 Mean Square Error.

Table 3. Continuation of Table 1 (AI-based cyber-attack detection).

System Attack Algorithm Data Performance Metric

Islanded DC

FDI into currents and
voltage measurements Feed-forward ANN Real-time Typhoon

simulation, supervised Accuracy >90%, [88]

FDI into
communication

network
RNN MATLAB real-time

simulation, Supervised Not given, [89]
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Table 3. Cont.

System Attack Algorithm Data Performance Metric

Islanded AC

FDI into
communication layer

and replay attacks
NARX ANN MATLAB real-time

simulation, Supervised Not given, [90]

FDI into output voltage
and power

measurements

Deep learning using
rectified linear unit

MATLAB simulation,
Supervised Accuracy 91%, [91]

FDI into measurements LSTM MATLAB simulation,
Supervised Not given, [92]

Networked

FDI into substation
measurements and

sensors

Cross wavelet
transform with SVM

classifier

Simulation-based,
Supervised Accuracy 95.53%, [84]

Network traffic attacks
(FDI, malware behavior

(Dos), Disabling
reassembly)

Bidirectional RNN

Normal dataset from
operating IEEE

1815.1-based Korean
substation and

simulations based
attacked dataset,

Supervised

Accuracy 98%, [77]

FDI (measurement
source data spoofing)

Ensemble empirical
mode decomposition

using back propagation
neural network

Real data from
universal grid

analyzers in US
locations, Supervised

Accuracy 96%, [70]

FDI (spoofing
synchrophasor
measurements)

Dynamic dual kernel
SVM

distributed
Synchrophasor data

from FNET/GridEye,
(Supervised, particle
swarm optimization)

Accuracy 94.26%, [85]

FDI (spoofing
synchrophasor
measurements)

Multi-view
convolutional neural

networks (CNN)

Distributed
synchrophasor data

from 11 locations in the
frequency

measurements network
FNET/GridEye,

Supervised

Accuracy 91.46%, [78]

FDI into sensor and
measurements

Isolation forest based
technique

MATPOWER based
simulations,

Unsupervised
Accuracy 94%, [86]

FDI, DoS, Distributed
DoS on communication
networks and sensors

Deep
Learning(LSTM,RNN)

MATLAB-based
simulation, Supervised Accuracy 95%, [79]

FDI into PV related
measurements ANFIS MATLAB simulation,

Supervised RMSE 0.11, [93]

DOS, communication
layer Decision Tree classifier MATLAB simulation,

supervised Accuracy 98%, [94]

4. AI-Based Cyber-Attack Mitigation

With the inclusion of DERs and communication networks, distributed control is be-
coming popular for integrating renewable resources into the microgrids. The collaborative
nature of such distributed cooperative control-based microgrids can easily spread out a
simple cyber-attack on a single DER or a communication link to the entire system, resulting
in control failure or even making the overall power system unstable [95–98]. One solu-
tion to mitigate such cyber-attacks and maintain the stable operation of microgrids is to
develop a resilient controller [8,27,95,99–104]. AI-based techniques are being utilized to
design resilient control schemes in microgrids to mitigate the malicious effects of such
attacks [42–46,105]. Because of its low computing overhead, effectiveness, and simplicity
in design and implementation in a distributed control system, adaptive neuro-fuzzy infer-
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ence systems (ANFISs) are used for cyber-attack mitigation in an islanded DC microgrid
in [42,43]. The proposed framework is based on a residual analysis of the error signal
that results from comparing estimated and real detected signals to detect and mitigate
the cyber-attack.

NARX ANN is a special class of recurrent neural networks best suited for time series
data prediction, input–output modeling of nonlinear dynamical systems, and cyber attack
detection in microgrids. Therefore, NARX ANN-based resilient controller is designed to
mitigate the cyber-attacks in distributed cooperative control-based AC and DC microgrids
in [44,106], respectively.

The proposed controller is trained using the data obtained by simulating the test mi-
crogrid system under varying operating conditions. After optimal selection of NARX ANN
parameters during offline training, it is deployed as an estimator to generate the reference
for the proportional-integral-based controller in [106] whereas, it acts as a secondary level
controller to replace the conventional PI-based controller in [44]. Feed-forward ANNs are
used to make the existing control resilient in both AC and DC microgrids and showed the
improved performance to mitigate the cyber-attacks [46,57,105,107–109]. The proposed
technique is based on the reference tracking application for the output DC current of each
converter to mitigate the false data. This approach works as a PI-based controller reference
tracking application in which the reference is prepared by a Feed-forward ANN that acts
as a local estimator for each DER to estimate the output current of the converter. The
estimated output from the ANN sets the reference for a PI-based controller whose output
is added to the output current of the converter [46,107,108]. This way, the feed-forward
ANN maintains the desired reference value in the secondary control layer when false
data are injected into the measurements and communication network of the microgrid to
mitigate the impact of cyber-attacks. A similar approach utilizing the feed-forward ANN is
proposed for a distributed cooperative control-based AC microgrid and a model predictive
control-based DC microgrid in [57,109], respectively.

Microgrids are becoming more complex with the increased adoption of electric vehi-
cles, and load frequency control has been effectively utilized to maintain frequency under
fluctuating load and generation conditions. For such complex microgrids, a Hyper-basis
function neural network is employed to mitigate FDI-type attacks on communication net-
works and measurements. These attacks may lead the microgrid operation to an unstable
state due to incorrect state estimation caused by compromised measurements [45]. In the
proposed controller, an intelligent hyper-basis function neural network observer is designed
to accurately estimate the state of the microgrids and reconstruct the possible attack signal.
Subsequently, a novel hyper-basis ANN-based H∞ controller is designed to mitigate the
negative impact of FDI attacks to maintain the normal operation of the microgrid. In [110],
a multi-agent deep reinforcement learning (RL)-based algorithm is proposed for exposing
weaknesses in the current cyber-attack detection techniques and laying the groundwork for
more dependable cyber-secure solutions, with a focus on DC microgrids. This technique
identifies the weak points in the traditional index-based cyber-attack detection schemes
and generates coordinated stealthy destabilizing FDI attacks on cyber-secured islanded
DC microgrids. A deep deterministic policy gradient is integrated to give trained RL
agents a continuous action space and improve the algorithm’s accuracy and convergence
rate. This method identifies a state-of-the-art detection scheme’s sensitivity to a number
of coordinated FDI attacks considering the distributed communication delays and load
changes. Table 4 provides state-of-the-art AI-based cyber-attack mitigation techniques, their
applications in multiple resilient control designs, and a measure of performance metric
along with the specific target of cyber-attacks in the microgrids.
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Table 4. Summary of AI-based techniques for cyber-attack mitigation in microgrids is provided.

System Control Attack Algorithm Data Performance
Metric

Islanded DC

Distributed
secondary control

FDI into cyber
layer ANFIS

MATLAB
simulation,
Supervised

Accuracy
99.40%, [42]

Adaptive model
predictive control

(APMC)

FDI into voltage
and current

sensors
ANFIS

MATLAB
simulation,

Unsupervised

RMSE 0.000846,
MAE 0.001543, [43]

Decentralized
cooperative control

FDI into cyber
layer (current

measurements)

Feed-forward
ANN

MATLAB real-time
simulation,
Supervised

Not given, [46]

Supervisory
control

FDI into secondary
control voltage and

current
measurements

Feed-forward
ANN

MATLAB
simulation,
Supervised

Not given, [105]

Distributed
cooperative

secondary control

FDI into cyber
layer

measurements

Feed-forward
ANN

MATLAB real-time
simulation,
Supervised

Not given, [107]

Droop control
FDI into output

voltage
measurements

Deep learning
Gated recurrent

unit

MATLAB
Simulation,
Supervised

RMSE <0.05, [80]

Distributed
cooperative

secondary control

FDI into cyber
layer voltage and

current
measurements

Feed-forward
ANN

MATLAB
simulation,
Supervised

MSE
5 × 10−10, [108]

Distributed
cooperative

secondary control

FDI into cyber
layer current and

voltage
measurements

NARX ANN
MATLAB

simulation,
Supervised

Not given, [106]

Model predictive
control

FDI into cyber
layer currents and

voltages

Feed-forward
ANN

MATLAB
simulation,
Supervised

MSE
2.9 × 10−10, [109]

Distributed
cooperative

secondary control

FDI into cyber
layer currents and

voltages

Multiagent deep
reinforcement

learning

MATLAB and
dSpace

MicroLabBox,
Supervised

Not given, [110]

Synchronous buck
converter primary

control

FDI into output
voltage sensor

Back-propagation
ANN

MATLAB
simulation,
Supervised

RMSE
0.000283, [37]

Islanded AC

Distributed
cooperative

secondary control

FDI into
measurements and

communication
network

NARX ANN
MATLAB real-time

simulation,
Supervised

MAPE 0.01%, [44]

Load frequency
control with

electric vehicles

FDI into
measurements and

communication
network

Hyper basis
function neural

network

MATLAB
simulation,
Supervised

RMSE 0.0015, [45]

Distributed
cooperative

secondary control

FDI into
measurements and

communication
network

Feed-forward
ANN

MATLAB real-time
simulation,
Supervised

Not given, [57]

IEEE distribution
networks and

islanded microgrid
with supervisory

control

FDI
(Low-frequency

source oscillations)
Ensemble learner Digisilent,

Supervised

True positive rate
(TPR) >90% False
positive rate (FPR)

< 3%, [111]
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Table 4. Cont.

System Control Attack Algorithm Data Performance
Metric

Islanded AC

Central
supervisory

control

FDI into smart
metering devices

and central
controller unit

Modified
prediction

interval-based
LSTM

Residential
microgrid data,

Supervised

Accuracy
97%, [112]

Secondary control
for frequency

regulation

DoS and FDI into
measurements

Adaptive
reinforcement

learning

MATLAB real-time
simulation,
Supervised

MAE
1.2 × 10−5, [113]

5. Learning-Based Cyber Attack Detection and Mitigation

The vulnerability of microgrids to cyber attacks can be addressed using various data-
driven and learning-based techniques for cyber attack detection. The conventional methods
are over-reliant on the accurate model of the system while learning-based techniques
leverage the computation power and amount of data from the system. Several techniques
have been used in the literature to detect and mitigate cyber attacks on microgrids such as
transfer learning, explainable learning, ensemble learning, and physics-informed AI.

Transfer learning uses the pre-trained models for the detection of malicious attacks
which decreases the need for a huge amount of training data. Transfer learning can
be further divided into inductive transfer learning, unsupervised transfer learning, and
transducive transfer learning [114]. Representation subspace distance (RSD) based transfer
learning is applied to the DNN-based estimator in [115] to improve the cyber security of
the microgrid. In smartgrids, cyber-attacks may impede access to local data which can
cause issues in power planning and dispatch decisions. Deep transfer learning for load
forecasting can provide high-quality load prediction with less data so that in case of missing
local data the prediction data are readily available [116]. In general, forecasting methods
can be improved by utilizing the generalizing capability of transfer learning without the
need for excessive data. A Lower Upper Bound Estimation (LUBE) method is used for FDI
attack detection in [117] to provide Prediction intervals (PIs) over smart meter data at the
consumer end. In [118], Hilbert–Huang Transform and Deep Learning are employed on
distinctive data sets generated via bootstrap for FDI attack detection.

The recent advances in machine learning have improved performance metrics, but
the ML models are largely black boxes. Explainable learning or Explainable AI (XAI) is
a discipline of AI that tries to explain the predictions and outcomes of machine learning
models [119]. From a cyber-security perspective of the microgrid, operators need to trust
models and their predictions. XAI is important for the interpretation of decisions in critical
scenarios such as flagging a measurement and initiating an inquiry for a particular attack.
The cost of misclassification in certain circumstances can be too large [120]. In [121], an
XAI framework for fault detection and classification is developed and tested on a 50kW
microgrid testbed. An Intrusion Detection System (IDS) is designed in [122] that provides an
explanation of each classification through statistics-based measures using Shapley additive
explanations (SHAP).

Ensemble learning involves diverse data sets, training various member classifiers, and
combining classifier results through various techniques [123]. Extreme-Learning Machines
(E3LM) are used to detect the anomaly cases caused by FDIAs and validated on IEEE 14-,
57-, and 118-bus systems [124]. Physics Informed AI leverages the fusion between the
physics-based models and the AI advances. Physics-Informed Neural Networks (PINN)
and Physics-Informed Reinforcement Learning find a range of applications in power
systems [125–128]. In [129], a Distributed Deep Reinforcement Learning (DRL) strategy is
used to design an optimal defensive strategy against FDI attacks in microgrids under a few
assumptions. Though promising, the physics-informed AI depends on the accuracy of the
model and the dataset. The cyber security of microgrids against attacks can be improved by
investing efforts in enhancing the model fidelity. On the other hand, XAI is a relatively new
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field and it can be leveraged further to make sense of the decisions about the detection of
cyber attacks for the grid operators. Various AI-based techniques for cyber-attack detection
and mitigation in microgrids are summarized in Figure 5.

Figure 5. A summary of AI-based cyber-attack detection and mitigation techniques in microgrids
is shown.

Table 5 provides a summary of various learning-based techniques for cyber-attack
detection and mitigation in microgrids, data acquisition, attack types, and a measure of
performance metric.

Table 5. Summary of works using various Learning-based methods for cyber-attack detection
and mitigation.

Learning Method Attack Algorithm Data Performance Metric

Transfer Learning

FDI, DoS RSD-based transfer learning MATLAB/Simulink based
simulation RMSE 3.332 × 10−3, [115]

FDI Deep transfer learning Raw power fluctuations
data from neighboring cities

MAPE 2.87%, RMSE
0.042, [116]

FDI
Lower and Upper Bound

Estimator (LUBE) combined
with Optimization

Smart meters on the
customer side

Confusion matrix CR
91.64% FR 8.63%, [117]

FDI
Deep learning using Krill

Herd Optimization
algorithm

Distinctive datasets
generated via bootstrap Accuracy 93.76%, [118]

Explainable Learning

FDI XAI framework using
python libraries

Accuracy, recall and
precision, [121]

FDI Explainable AI using SHAP UNSW-NB15
True Positive Ration (TPR)
and False Positive Ration

(FPR), [122]

Physics-based Learning FDI DRL microgrid simulations Average security level [129]

6. Case Study

To show the effectiveness of AI-based cyber-attack mitigation, an islanded AC mi-
crogrid is considered with cyber-attacks targeting the communication network as shown
in Figure 6. The physical layer contains DERs and loads, whereas the cyber layer has
communication protocols for information exchange among DERs. The primary controller
is implemented locally at DERs using a conventional droop control technique that provides
a relationship between the frequency ωi, the reactive power Qi, the active power Pi, and
the voltages vo.



Energies 2023, 16, 7644 15 of 23

Figure 6. The islanded AC microgrid is implemented with distributed cooperative-based secondary
control to manage the four DERs.

The voltage and frequency droop characteristics are given by:{
vo = v∗ − nQi Qi,
wi = w∗ −mPi Pi,

(3)

where v∗, ω∗ are the primary voltage and frequency reference values, and mPi , nQi are
the active and reactive power droop coefficients, respectively. At the secondary level,
distributed cooperative control is utilized to reduce the voltage and frequency error when
compared to the nominal values generated by the primary control. The secondary control
sets a reference for the primary control such that the voltage and frequency of each DG are
synchronized with their respective reference values (v∗ and w∗):{

limt→∞‖vo − v∗‖ = 0,
limt→∞‖wi − w∗‖ = 0.

(4)

The distributed cooperative secondary voltage and frequency control for a single
DER requires its own information and that of the neighboring DERs to achieve the control
objectives. The reference for the inverters is produced by the voltage and current controllers
utilizing droop-control methods [6].

Two types of FDI cyber-attacks are considered for this case study. Firstly, the desired
reference set value for the controller is replaced with false data to compel the system to
follow an incorrect set of reference values. The attacker replaces the intended signal un(t)
entirely with its multiple using a constant γ, resulting in:

x(un(t)) =
{

un(t), when t < to,
γ ∗ un(t), when t > to.

(5)

FDI cyber-attack is initiated at t = 2 s with γ = 0.5, targeting the DER2 voltage
communication link. Secondly, a periodic time-varying cyber-attack is initiated by injecting
a periodic sinusoidal signal with time period (ωt) and amplitude ξ into the normal signal
un, as follows:

ψn(t) =
{

0, when t < to,
ξsin(ωt) ∗ un(t), when t > to.

(6)

In this case, false data are injected into DER3 voltage communication link at t = 2 s
with ξ = 0.5 and w = 2π60 rad/s. The microgrid continues to operate normally for t < 2 s.
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To mitigate the negative impacts of FDI cyber-attacks a NARX ANN-based resilient
controller is designed. to replace the state-of-the-art PI-based controller in the secondary
layer of distributed cooperative control. The architecture of NARX ANN has a hidden layer
with 10 nodes, an input layer with 13 nodes for voltage and frequency information, and
an output layer with four nodes for corresponding reference output for each DER. This
structure is optimized after multiple trainings and found best suited for this work. The
preceding batch of output and input, y(k− i) and x(k− i), respectively, establish the NARX
ANN’s output y(k) that constructs an autoregressive model to predict the current value
of the dynamical system [44]. These delayed output values act as pseudo-states to extract
system dynamics from time series data. This characteristic makes NARX ANN a promising
choice for nonlinear dynamical system modeling in applications like intelligent control
having a mathematical model given as follows:

y(k + 1) = f [x(k− n), ..., x(k− dx − n + 1), y(k), ..., y(k− dy + 1)], (7)

where y(k) is the model output, x(k) is the model input at discrete time interval k, dx is
input memory order, and dy is output memory order. AI-based model development in-
volves three main steps including data acquisition, training of the model, and performance
evaluation using standard metrics as shown in Figure 7. This model development process
is established from the state of the art, and has been effectively implemented in the power
systems domain [130].

Figure 7. The classical AI-based model development design steps are shown.

The test microgrid in this case study consists of four DERs coupled through RL lines
to provide power to two RL loads. This microgrid is designed in MATLAB Simulink
with a distributed cooperative control-based secondary controller. The design parameters
of the microgrid are given in Table 6. Further details regarding distributed cooperative
control design and system parameters can be found in [6,44]. The DERs share voltage and
frequency information over the communication network to meet the control objectives.

Table 6. The design parameters of the test microgrid and real-time digital simulator are given.

Parameter Value Parameter Value

L12 (0.23 + j318 µ) Ω Vre f 300 V
L23 (0.35 + j1847 µ) Ω L f ilter 1.35 mh
L34 (0.23 + j318 µ) Ω C f ilter 50 µF

Simulator OP5600 from OPAL-RT Processor 4 Cores, 3.0 GHz
Software RT-LAB 2019 FPGA Xilinx® Artix®-7 from OPAL-RT

After the FDI attack, the proposed NARX ANN-based control is compared to the
PI-based control, with the results depicted in Figure 8. As illustrated in Figure 8a, the
proposed controller maintained the required output voltage at the output of DER2 after the
initiation of the FDI cyber-attack. Similarly, after the FDI cyber-attack, the NARX ANN-
based voltage controller maintained the specified output voltage at the output of DER3, as
shown in Figure 8b. The proposed NARX ANN-based distributed secondary control has
demonstrated improved reference tracking capabilities compared to the PI-based control
under cyber-attack, as shown in Figure 8.
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(a) (b)
Figure 8. NARX ANN-based controller showed resilient performance in the presence of FDI cyber-
attacks compared to the PI-based controller. (a) Output voltage of DER2; (b) Output voltage of DER3.

7. Discussion

Few AI-based models currently offered in the academic literature have been im-
plemented in practice; the majority are still in the theoretical stage. Many AI and ML
approaches, like fuzzy expert, which simulates logical thinking, SVM, which can locate a
hyperplane in a high-dimensional space for classifications, and deep learning-based on
ANN with numerous hidden layers in the network, have been incorporated into numerous
articles. There are multiple reasons for this, such as irreproducible studies, the absence
of any benchmarking models or statistics in the literature, and the lack of comparisons to
other state-of-the-art models. As a result, the literature is abundant and of diverse quality.
In AI-based research studies, models are typically compared with models that are far less
capable than the state of the art in that family, rather than with statistical models or other
models of AI. Instead of being technique-specific, useful insights and breakthroughs must
be transferable between different approaches.

The majority of AI-based modeling uses three stages: initial training to choose parame-
ters, validation to prevent over-fitting, and testing with unknown data that is distinct from
the training and validation phases. There are some variations in these stages that are also
employed, such as cross-validation, which involves multiple training and validation runs
on historical data from various time periods. The selection of parameters is frequently made
using metaheuristic algorithms or a mixture of them. Similar to this, several ANNs topolo-
gies with varied numbers of neurons, hidden layers, and activation functions are suggested
to demonstrate superior performance. Such hyperparameter tuning might be effective in
a given situation, but it might not be applicable in all circumstances. Therefore, research
needs to shift its emphasis to creating new techniques, useful guidelines, and new ANN
structures like recurrent ANN and deep learning with transfer and explainable frameworks.
Continuous learning, environment adaptation, and extremely fast output computation are
all capabilities of ML approaches. However, addressing the highly intricate nature of power
system operations processes to prevent blackouts or to find an optimum operating point
without violating any operational limitation is still too safety-critical to accept an ML-based
solution. Because there are no performance guarantees, it is challenging for power system
operators to trust an AI-based method. AI-based models can be utilized as a tool to help, for
instance, by utilizing their computational power to rapidly assess thousands of scenarios.
This will aid in the widespread use of AI models in the field of power systems. Applying
explainable and interpretable methods is necessary to increase confidence in AI models.
This would enable the AI-model output to be verified throughout the whole input space as
opposed to just a small dataset. Additionally, physics-informed AI models can be applied
by incorporating physics-based models into the training phase of AI models, allowing the
model to learn from them rather than creating data as part of the training process.

In order to increase automation, flexibility, and efficiency in operations, energy and
critical infrastructure companies are actively developing an industrial Internet of Things
(IoT). This is achieved by seamlessly integrating information technology (IT) applications
with operational technology (OT) to control physical assets. However, these goals will
not be achieved without IoT cybersecurity monitoring and detection. Siemens Energy
has developed an AI-based Managed Detection and Response (MDR) system. MDR’s
monitoring methodology and technology platform leverage AI and machine learning to
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gather and model energy asset intelligence. Siemens Energy has created a new platform for
Security Information and Event Management (SIEM) called EOS.iiTM. This is a scalable
and adaptable AI-based platform for monitoring and detection and is intended to be the
cornerstone of a next-generation fusion security operation center for IoT. It is made to allow
for the quick collection, processing, and prioritization of useful information in industrial
operating situations. EOS.iiTM applies machine learning to combine IT and OT monitoring
and cyber-attack detection capabilities [131,132].

8. Conclusions

This paper provides a comprehensive review of microgrids’ cyber vulnerabilities
and AI-based techniques to enhance the security of microgrids. This includes AI-based
cyber-attack detection and mitigation to achieve a resilient operation of microgrids in
the presence of extensive communication networks. Cyber security is addressed from a
physical and cyber layer perspective containing power-electronics-based converters, smart
metering devices, and information-sharing networks. Cyber-attack’s potential targets and
their impacts on the operation of microgrids are discussed. AI-based cyber-attack detection
and mitigation in microgrids were summarized, along with a case study where utilizing
such techniques is presented. In addition, learning-based techniques are also covered to
overcome the black-box nature of AI-based models. The proposed ideas have the potential
to counter the challenges posed by cyber-attacks on microgrids.
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