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Abstract: Tight sandstones produce an increasing amount of natural gas worldwide. Apart from
identifying the gas enrichment, the predictions of lithology and permeable zones are crucial for the
prediction of tight gas sandstones. In the present study, a seismic inversion method is developed
based on rock physical modeling, by which it is possible to directly predict the lithology and pore
structure in tight formations. The double-porosity model is used as a modeling tool in considering
complex pore structures. Based on the model, the microfracture porosity is then predicted using
logging data, which are used as a factor to estimate microfractures. Parameters representing the
lithology and pore structure are proposed and estimated using logging data analyses and rock
physical modeling based on the framework of the Poisson impedance. Thereafter, a new AVO
equation is established and extended to the form of an elastic impedance for a direct prediction of the
lithology and pore structure parameters. Real data applications show that the indicators of lithology
and permeable zones are consistent with the production status. They agree with the petrophysical
properties measured in wellbores, thereby proving the applicability of the proposed method for the
effective characterization of tight gas sandstones.

Keywords: lithology indicator; pore structure; rock physics model; seismic inversion; tight gas
sandstone reservoir

1. Introduction

The evaluation of the Ordos Basin resource has shown that the total natural gas
reserve in the basin is 15.16 × 1012 m3, of which the tight gas reserve is approximately
10.37 × 1012 m3. This accounts for about 68% of the total natural gas reserve and shows
great potential for commercial gas production [1–3]. Tight gas is primarily formed in tight
sandstones that are characterized by a porosity lower than 10% and permeability lower
than 1 mD. The prediction of the lithology and gas enrichment and the detection of the pore
structure in the interbedded strata composed of sandstones and mudstones are important
for predicting favorable gas-bearing tight sandstones.

The prediction of gas saturation with seismic methods has been performed by many
researchers [4–8]. Elastic and dispersion attributes that sre sensitive to gas saturation were
then suggested for the identification of gas-bearing tight sandstones. In addition to the
substantial porosity in the tight rocks, the development of fractures can provide spaces
for gas storage and offer pathways for gas migration and accumulation. Therefore, the
identification of pores and fractures by using seismic methods is highly important for a
comprehensive characterization of tight gas sandstone reservoirs.

Azimuthal seismic inversion methods have usually been used to predict vertical struc-
tural fractures that have been developed from tectonic activities in tight formations [9–13].
The tight sandstones that are embedded with the vertical fractures are equivalent to horizon-
tal transverse isotropy (HTI) media. However, core analyses have shown that microfractures
with random orientations are the primary type of natural fractures in tight sandstones. In
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this case, the azimuthal seismic inversion methods encounter difficulties in the detection of
microfractures. Instead, appropriate rock physics methods should be used to quantify the
elastic and seismic responses that are associated with microfractures. In practice, based on
core and thin section analyses, various double-porosity (DP) models have been proposed
to describe the poroelastic behaviors that are associated with complex pore structures in
rocks [14–17]. In these structures, the total pore space is usually decomposed into round
pores and microfractures of a low aspect ratio. The applicability of the DP model has been
validated by experimental investigations [4,5] and numerical modeling based on well-log
data [18]. Furthermore, various rock physics templates (RPTs) have been developed to
estimate the pore structures in tight sandstones [19,20], as well as to identify fluids [21] and
evaluate the brittleness [22]. However, the target-oriented features of the RPTs may limit
the applicability of the methods in the evaluation of the petrophysical properties of the
entire tight formation and within a range of depths.

It is advantageous to directly estimate the reservoir parameters (e.g., pore parameters)
using seismic data [23–25]. Furthermore, petrophysical reservoir properties have also been
evaluated by using seismic methods based on extended elastic impedance inversion [26],
pre-stack elastic inversion [27], and quantitative interpretations [28,29]. By using seismic
methods, despite the successful use of direct estimation of petrophysical properties, more
rock physical constraints should be incorporated in the inversion based on well-log analyses
and rock physical modeling. This should be done for improved characterization of tight
sandstone gas reservoirs. In addition, the prediction of the lithology of a tight formation is
an essential issue since the configuration of sand bodies basically controls the hydrocarbon
distribution in the interbedded strata. At present, an accurate prediction of tight sandstones
in the interbedded formations remains a challenge. This is due to the weak sensitivity of
the seismic reflections in the target intervals.

The present study has focused on the development of a rock-physics-based seismic
inversion method, by which it would be possible to directly predict the lithology and
pore structure for improved characterization of tight gas sandstone reservoirs. At first, a
method is proposed for the estimation of microfracture porosity in tight gas sandstones
by using the DP model based on logging data. As the next step, parameters that represent
the lithology and pore structure are proposed, which are based on well-log data analyses
and rock physical estimations. Based on the obtained results, a new AVO equation is
established and extended to an elastic impedance inversion for a direct prediction of
lithology and pore structure parameters. Furthermore, the proposed methods are used for
logging and seismic data that are obtained from the tight sandstone formations in Ordos
Basin, China. The parameters of lithology and pore structures in tight formations could
thereby be calculated. In addition, a combined parameter that considers the lithology,
pore structure, and gas saturation is proposed for a comprehensive characterization of
gas-bearing tight sandstones.

2. Methods
2.1. Estimation of the Microfracture Porosity of Tight Sandstones with the Rock Physics Model

The thin sections of the studied area show that tight sandstones can develop diverse
types of pores (including intra-granular pores and dissolved inter-granular pores) and
structural fractures (Figure 1). It is, therefore, necessary to establish a suitable rock physics
model that can describe the elastic properties associated with pore structures in tight
sandstones. In the present study, the total porosity (φ) was decomposed into round pores
(φp) and microfractures (φf) (Figure 2a). The flowchart in Figure 2b illustrates the DP
modeling method for tight sandstones. The elastic properties of the solid matrix were
calculated by using the HSB theory [30], and the elastic moduli of the fluid-saturated tight
sandstone were calculated by using the self-consistent approximation (SCA) approach [31].
The details of the rock physics method are illustrated in Appendix A.
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As can be seen in Figure 3, a flowchart was established for the prediction of ϕf from 
logging data using the DP model presented in Figure 2. For each sampling depth interval 
in the borehole, the porosity, mineralogical volumetric fractions, and fluids were used as 
input data in the calculations of P-wave velocities for a series of preset ϕf values. The value 
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Figure 2. (a) Schematic diagram and (b) modeling methods for the tight sandstones.

As can be seen in Figure 3, a flowchart was established for the prediction of φf from
logging data using the DP model presented in Figure 2. For each sampling depth interval
in the borehole, the porosity, mineralogical volumetric fractions, and fluids were used as
input data in the calculations of P-wave velocities for a series of preset φf values. The value
of φf that minimized the difference between the calculated (VP-calculated) and measured
(VP-measured) P-wave velocity was denoted as the estimated φf value:

f
(

φ f

)
= min

(∣∣∣VP−calculated

(
φ f

)
− VP−measured

∣∣∣2) (1)

The corresponding S-wave velocity (VS(φf)) could also be obtained from the estimated
φf value. By repeating this process for a range of depths in the borehole, the modeled VP(φf)
and VS(φf), in addition to the estimated φf, could be generated.

2.2. Definition of Reservoir Parameters That Represent the Lithology and Pore Structure

Using the framework of the Poisson impedance [32], we proposed the lithology indi-
cator (LI) and the factor of microfractures and pores (MP), respectively, for the evaluation
of lithology and pore structure in tight sandstone formations:

LI(θ1) = IP − IStanθ1 (2)

MP(θ2) = IP − IStanθ2 (3)
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where IP denotes the P-wave impedance and IS denotes the S-wave impedance. The angles
θ1 and θ2 are the rotation angles that transfer the IP and IS values to LI and MP, respectively.
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As is further discussed in Section 3, the well-log analysis has indicated that the ratio of
gamma-ray (GR) to the square of VP (GR/VP

2) can effectively identify tight sandstones in
the studied tight formations. It can, therefore, be used to estimate the optimized θmax1 value
in the determination of LI(θmax1) for lithology identification. In addition, the rock physical
modeling has indicated that φ × φf can be used to evaluate the comprehensive effect of
microfractures and pores. The factor φ × φf has, therefore, been used to estimate the
optimized θmax2 value, which in turn has been used to obtain MP(θmax2) for the detection
of permeable zones in tight formations.

2.3. A New AVO Equation for the Prediction of the Lithology and Pore Structure

LI(θmax1) and MP(θmax2) are, from here on, denoted as LI and MP, respectively. By using
Equations (2) and (3) and the definitions c1 = tanθmax1 and c2 = tanθmax2, Equations (4) and (5)
are obtained:

∆LI
LI

=
∆IP − c1∆IS

IP − c1 IS
=

1

1 − c1
VS
VP

(
∆IP
IP

− c1
VS
VP

∆IS
IS

)
(4)

∆MP
MP

=
∆IP − c2∆IS

IP − c2 IS
=

1

1 − c2
VS
VP

(
∆IP
IP

− c2
VS
VP

∆IS
IS

)
(5)

By using the following definitions (Equations (6) and (7)):

m1 = 1 − c1
VS
VP

, n1 = c1
VS
VP

(6)

m2 = 1 − c2
VS
VP

, n2 = c2
VS
VP

(7)
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substituted into Equations (4) and (5), the following equations are formed (Equations (8) and (9)):

m1
∆LI
LI

=
∆IP
IP

− n1
∆IS
IS

(8)

m2
∆MP
MP

=
∆IP
IP

− n2
∆IS
IS

(9)

Equations (8) and (9) can be further reorganized, which results in Equations (10) and (11):

∆IP
IP

=
m1n2

n2 − n1

∆LI
LI

− m2n1

n2 − n1

∆MP
MP

(10)

∆IS
IS

=
m1

n2 − n1

∆LI
LI

− m2

n2 − n1

∆MP
MP

(11)

Furthermore, by substituting Equations (10) and (11) into the Fatti equation [33],
i.e., Equation (12):

RPP(θ) =
1
2
(
1 + tan2θ

)∆IP
IP

− 4
(

VS
VP

)2
sin2θ ∆IS

IS

−
(

1
2 tan2θ − 2

(
VS
VP

)2
sin2θ

)
∆ρ
ρ

(12)

Equation (13) is formed:

RPP(θ) =
m1

n2−n1

[
n2
2
(
1 + tan2θ

)
− 4
(

VS
VP

)2
sin2θ

]
∆LI
LI

− m2
n2−n1

[
n1
2
(
1 + tan2θ

)
− 4
(

VS
VP

)2
sin2θ

]
∆MP
MP

−
(

1
2 tan2θ − 2

(
VS
VP

)2
sin2θ

)
∆ρ
ρ

(13)

The new AVO equation (Equation (13)) provides the PP-wave reflection coefficient,
RPP (θ), which is represented by the density (ρ) and the parameters LI and MP.

2.4. Elastic Impedance Inversion Based on the New AVO Equation

According to the elastic impedance inversion method that was proposed by Con-
nolly [34], the relationship between RPP(θ) and the elastic impedance EI(θ) could be ex-
pressed as shown in Equation (14):

RPP(θ) =
EI2(θ)− EI1(θ)

EI2(θ) + EI1(θ)
=

1
2

∆EI(θ)

EI(θ)
≈ 1

2
∆ln[EI(θ)] (14)

where EI1(θ) and EI2 (θ) are the elastic impedances of the upper and lower media, respec-
tively. Also, ∆EI(θ) and EI denote the difference and average, respectively, of the elastic
impedance across the interface.

By substituting Equation (13) into Equation (14) and by performing appropriate
mathematical operations, Equation (15) is formed:

EI(θ) = LIa(θ)MPb(θ)ρc(θ) (15)

where

a(θ) =
m1

n2 − n1

[
n2

(
1 + tan2θ

)
− 8
(

VS
VP

)2
sin2θ

]
(16)

b(θ) = − m2

n2 − n1

[
n1

(
1 + tan2θ

)
− 8
(

VS
VP

)2
sin2θ

]
(17)



Energies 2023, 16, 7642 6 of 18

c(θ) = 4
(

VS
VP

)2
sin2θ − tan2θ (18)

A normalization operation is, thereafter, performed on Equation (15) according to the
elastic impedance normalization method [35], which results in Equation (19):

EI(θ) = EI0

(
LI
LI0

)a(θ)( MP
MP0

)b(θ)( ρ

ρ0

)c(θ)
(19)

where LI0, MP0, and ρ0 represent the average values of the corresponding properties that
have been obtained from the well-log data. Also, EI0 indicates the elastic impedance
normalization parameter with the expression shown in Equation (20):

EI0 = LI0
(

m1n2
n2−n1

)MP
(− m2n1

n2−n1
)

0 (20)

After dividing both sides of Equation (19) by EI0, and by taking the natural logarithm
of each side, Equation (21) is formed:

ln
EI(θ)
EI0

= a(θ)ln
(

LI
LI0

)
+ b(θ)ln

(
MP
MP0

)
+ c(θ)ln

(
ρ

ρ0

)
(21)

As can be seen in Equation (22), the inversion framework is finally established from
Equation (21): ln[EI(θ1)/EI0]

ln[EI(θ2)/EI0]
ln[EI(θ3)/EI0]

 =

a(θ1) b(θ1) c(θ1)
a(θ2) b(θ2) c(θ2)
a(θ3) b(θ3) c(θ3)

 ln(LI/LI0)
ln(MP/MP0)

ln(ρ/ρ0)

 (22)

3. Results
3.1. Datasets

The study area in Figure 4 covers approximately 180 km2 and the seismic survey was
taken in 2018 in this area. Meanwhile, in this area, we collected data from five wells that
were drilled and reached the tight gas sandstone reservoirs. As can be seen in Figure 4,
the contour map of the seismic two-way travel time for the gas sandstone reservoir has
a relatively simple tectonic structure. The locations of five wells (A–E) are indicated, out
of which A and E are dry wells, and B, C, and D are gas-producing wells. Furthermore,
Figure 5 presents the seismic section across the five wells, with illustrates GR logs from
each borehole. The studied area was located in the Ordos Basin, China.
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3.2. Prediction of the Microfracture Porosity by Using the DP Model

The values of the microfracture porosity, φf, for the tight gas sandstone reservoir in
the studied area have been calculated by using the method presented in Figure 3. The
logging data and predicted results for the A, B, and C wells are shown in Figure 6. The
curves of φf were obtained by fitting the calculated values of VP with the measured ones
using Equation (1). As shown in Figure 6, the calculated VP values fitted well with
the corresponding experimental VP values, which resulted in estimated φf values. In
addition, the predicted VS values agreed well with the corresponding VS curves measured
in wellbores, which validated the estimated φf results.

3.3. LI and MP Parameters That Are Represented by the Elastic Properties IP and IS

Figure 7 shows the logging curves of the elastic properties and reservoir parameters
in the three wells A, B, and C. As discussed in Section 2.2, the GR/VP

2 parameter showed
improved performance in the identification of the tight sandstones, as compared with the
GR parameter. The reason for this difference was that the tight sandstones became more
separable from the mudstones when using GR/VP

2. In addition, the φ × φf parameter
could be used to estimate the comprehensive effects of the pore structures in the tight
formations. Furthermore, the optimized LI(θmax1) and MP(θmax2) curves in Figure 7 were
determined by using the estimated maximum correlation coefficients that are presented in
Figure 8.

The method presented in Section 2.2 was used to estimate the correlation coefficients
between the reservoir parameters (LI(θ1) and MP(θ2)) and the elastic impedances (IP and IS).
As can be seen in Figure 8, the correlation coefficients for the three wells A, B, and C reached
a maximum at approximately θmax1 = 80◦ for the optimized LI parameter (Equation (2)) and
a maximum at approximately θmax2 = 45◦ for the optimized MP parameter (Equation (3)).

In the cross-plot of IP versus LI (as color-coded by GR/VP
2), it could be seen that

the LI(θmax1 = 80◦) parameter could effectively identify the lithology. The high values of
LI(θmax1 = 80◦) corresponded to low values of GR/VP

2, indicating the lithology of the
tight sandstone (Figure 9). In addition, the MP(θmax1 = 45◦) parameter could effectively
determine the pore structure that was identified by the φ × φf values, where low values of
MP(θmax1 = 45◦) corresponded to high φ × φf values (Figure 10). Thus, it has been shown
that the MP(θmax1 = 45◦) parameter can be used in the identification of permeable zones in
tight formations.

3.4. Estimation of LI and MP by Using the Proposed Elastic Impedance Inversion Method

The LI(θmax1 = 80◦) and MP(θmax2 = 45◦) parameters were denoted as LI and MP. By
using the elastic impedance inversion method presented in Section 2.4, the LI and MP
parameters could be estimated directly by using the pre-stack seismic data. Furthermore,
the EI values were computed from the pre-stack seismic data by using the inversion
presented in Equation (22). These calculations were based on the method of Connolly [34],
and the results were EI(5◦), EI(15◦), and EI(25◦) (Figure 11).
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Figure 12 shows the inverted LI profiles with overlapping GR logging curves. It
was found that the tight sandstones, which were recognized by low GR values in the
boreholes, could be well identified by the seismic-inverted LI parameter. Specifically, the
tight sandstones in the gas-producing B and C wells corresponded to high-value anomalies
of the LI parameter. In particular, the thin layers of tight sandstone in gas well D could be
determined by the LI parameter with high accuracy. In addition, the LI parameter showed
fewer anomalies in the dry wells A and E. The results presented in Figure 12 have validated
the applicability of the LI parameter for the identification of tight sandstones that exhibit
an optimal lithology for gas production.
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Calculated MP profiles are, together with overlapping permeability loggings, dis-
played in Figure 13. As discussed above, the MP parameter could be used to estimate
φ × φf in the evaluation of the development of total porosity and microfracture porosity.
As can be seen in Figure 13, the low-value anomalies of the MP parameter showed a good
agreement with the high permeability that was measured in gas wells B, C, and D. However,
the tight formations in gas well A showed a very low permeability and no anomalies in
the MP parameter. In addition, the weak MP anomalies in the dry well E corresponded to
sparsely distributed permeability. Therefore, the results presented in Figure 13 have proven
the applicability of the MP parameter in the determination of permeable areas of the tight
formations in the studied area.
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for the wellbores.

Furthermore, the obtained three-dimensional (3D) data of LI and MP are presented in
Figures 14 and 15, respectively. They provided useful information for the identification of
tight sandstones and potential permeable zones in the studied area.

3.5. Comprehensive Characterization of the Tight Gas Sandstone Reservoir

Comprehensive characterization of tight sandstones should consider both optimal
lithologies indicated by LI and permeable zones suggested by MP. In addition, the bulk
modulus (K) or compressibility (1/K) were suggested for characterizing gas-bearing tight
sandstones because these properties were considered to be related to the effects of gas
saturation in the tight sandstones in the studied area [6,36]. Lower K, or higher 1/K, was
regarded to indicate higher gas saturation in the tight sandstones. Figure 16 shows the
section of K computed from the results of seismic elastic inversion.
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Then, a combination factor (F) was proposed to comprehensively consider the effects
of lithology, pore space, and gas saturation:

F = Normalized(LI)× Normalized
(

1
MP

)
× Normalized

(
1
K

)
(23)

where the involved properties were normalized.
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Figure 17 shows the F profile, where the overlapping GR logging curves indicate tight
sandstones in the boreholes. Also, Figure 18 presents the calculated 3D data of K for the
tight formations in the studied region. Furthermore, Figure 19 shows the calculated 3D
data of F that has been computed from the results presented in Figures 14, 15 and 18. As
discussed above, the obtained factor, F, reflects the combined effects of lithology, pore space,
and gas saturation and can, therefore, be used for a comprehensive characterization of tight
sandstones in the studied area.
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4. Discussion

Successful exploration and development of tight gas sandstones require identifying
premium lithology and predicting pore structures, which are two controlling factors of high-
quality reservoirs. However, direct estimation of these parameters using seismic methods is
challenging owing to the complex rock physical characteristics of tight sandstones [37–40].
In the present study, we have focused on the direct estimation of the lithology and pore
structure in tight formations and proposed an indicator of high-quality tight sandstone gas
reservoirs, comprehensively considering the effects of lithology, pore structure, and gas
saturation. Accordingly, a seismic inversion method based on rock physical modeling was
proposed where the primary objective of the proposed method was to incorporate the rock
physical constraints in the seismic inversion. Appropriate rock physical modeling methods
were used to derive useful information from well-log data to provide such constraints.
Despite many sophisticated models for the poroelastic behaviors of rocks [16,17], the DP
model [14,15] has been validated as a practical modeling tool for tight sandstones. The
microfracture porosity, φf, was then regarded as an essential parameter in the modeling
using logging data (Figure 6). In addition, the obtained φf could be further used to estimate
the microfracture development.

As compared by using only GR values, the proposed GR/VP
2 factor, as represented

by the lithology indicator (LI), showed an improved performance in the discrimination of
tight sandstones from mudstones (Figure 7). In addition, the proposed φ × φf factor, as
represented by the pore structure parameter (MP), provided a straightforward estimation
of the total and microfractural porosity. Thus, the MP parameter could be used as an
indicator of permeable areas in tight formations. Moreover, the proposed indicators LI and
MP could be determined from the IP and IS values by using Equations (2) and (3) and the
optimized rotation angles (Figure 8). The results presented in Figures 9 and 10 show the
effectiveness of the LI and MP indicators, respectively, in the semi-quantitative predictions
of the lithology and permeable zones.

The obtained LI and MP parameters provided the basis for the establishment of a new
AVO equation. By using IP and IS according to Equations (2) and (3), although the direct
quantitative interpretation of LI and MP was a straightforward alternative, it was suggested
that a direct pre-stack inversion of the reservoir parameters could reduce the cumulative
errors [27]. The proposed AVO equation was, therefore, further extended to the form of an
elastic impedance to facilitate direct estimations of the lithology and pore structure.

As illustrated in Figures 12 and 13, the application results suggested that the seismic-
inverted LI and MP parameters could be used as effective indicators of the optimal lithology
and permeable zones of tight formations in the studied region. The estimated LI and MP
values agreed with the reservoir properties that were measured in the wellbores and were
consistent with the production status of the wells. In addition, among the five boreholes
in the studied area, only the logging data from the A, B, and C wells were used in the
performance of the rock physical modeling and analyses (Figures 7 and 8). Therefore, the
A, B, and C wells could be regarded as constrained wells, while the D and E wells were
regarded as test wells. As can be seen in Figures 12 and 13, the seismic-inverted results
showed a good agreement for all five wells, which further proved the applicability of the
proposed methods for the characterization of tight sandstones in the studied region.

5. Conclusions

Based on rock physical modeling, a seismic inversion method for direct prediction
of the optimal lithology and pore structure in tight formations has been developed in the
present study. The following conclusions could be drawn from the obtained results:

(1) The DP model was validated as a useful modeling tool for tight sandstones with
complex pore structures. The microfracture porosity, φf, could be used as a practical
fitting parameter when modeling the velocities of the tight sandstones and acts as a
useful factor in the evaluation of microfracture development;
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(2) By using the framework of the Poisson impedance, the proposed lithology indicator, LI,
and the pore structure parameter, MP, were obtained from the maximum correlation
between GR/VP

2, φ × φf, and the elastic properties IP and IS. The LI indicator
showed satisfactory performance in the discrimination of tight sandstones from
mudstones. The MP indicator provided an applicable indicator for the permeable
zones in tight formations;

(3) A new AVO equation was established based on the optimized LI and MP parameters.
Real data applications showed that the seismic-inverted LI and MP parameters could
function as useful indicators for the optimal lithology and permeable zones in the tight
gas sandstones in Ordos Basin, China. The obtained results were consistent with the
measured petrophysical properties in the wellbores and agreed with the production
status of the wells. Furthermore, a combined F, considering the comprehensive effects
of lithology, pore structure, and gas saturation, provided a useful method for the
identification of favorable areas in tight formations.

With the advancement of experiments and rock physics modeling methods, the frame-
work proposed in the present study may help in the development of other direct inversions
of reservoir properties for various hydrocarbon resources.
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Appendix A

Hashin and Shtrikman [32] proposed a method to estimate the high and low elastic
bounds of the elastic modulus KHS± and µHS±:

KHS± = K1 +
f2

(K2 − K1)
−1 + f1

(
K1 +

4
3 µ1

)−1 , (A1)

µHS± = µ1 +
f2

(µ2 − µ1)
−1 + 2 f1(K1+2µ1)

5µ1(K1+
4
3 µ1)

, (A2)

where Ki and µi are the bulk and shear modulus, respectively, and fi is the volumetric
fraction of the corresponding components in rocks (with i = 1, 2). The elastic moduli
of the solid matrix can be estimated by the average of the upper and lower bounds in
Equations (A1) and (A2).

The more general forms of the bounds are shown in Equations (A3) and (A4), which
can be used for more than two constitutions:

KHS+ = Λ(µmax), KHS− = Λ(µmin) (A3)

µHS+ = Γ
[

ζ(Kmax, µmax)], µHS− = Γ[ζ(Kmin, µmin)] (A4)

where

Λ(z) =

〈
1

K(r) + 4
3 z

〉
− 4

3
z (A5)
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Γ(z) =
〈

1
µ(r) + z

〉−1
− z (A6)

ζ(K, µ) =
µ

6

(
9K + 8µ

K + 2µ

)
(A7)

The parentheses, <·>, in Equations (A5) and (A6) express the averages of the material.
That is, each constitution is weighted equally according to its volume content.

Berryman [33] proposed a method to estimate the equivalent elastic moduli by using
the self-consistent approximation (SCA) method, as expressed by Equations (A8) and (A9):

n

∑
i=1

xi(Ki − K∗
SC)P∗i = 0, (A8)

n

∑
i=1

xi(µi − µ∗
SC)Q

∗i = 0, (A9)

where i represents the i-th phase and xi corresponds to its volume fraction. Also, Ki and µi
are the bulk and shear modulus, respectively, of the i-th constituent. P*i and Q*i, respectively,
are the corresponding geometrical factors.

In the present study, the fluids have been assumed to have a homogeneous distribution.
The modulus of the mixed fluid was expressed as shown in Equation (A10) [41]:

K f = SwKw + SgKg, (A10)

where Sw and Sg are the water and gas saturation, respectively. Also, Kw and Kg are the
bulk moduli of the water and gas, respectively.

Furthermore, the density of the fluid mixture was estimated by using Equation (A11):

ρ f = Swρw + Sgρg, (A11)

where ρw and ρg are the water and gas densities, respectively.
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